【実施例6】
【0056】
MN溶解の評価
MNの溶解を評価するために、ヌードマウスの皮膚に挿入する前と挿入した後のCMC針の外観を確認した(
図11)。4時間(
図11A)および8時間(
図11B)の処置後、針の外観において、有意な視覚的変化は観察されなかった。24時間のMN治療後、針の外観は、明らかに変化した(
図11C)。体液により溶解し、吸収されるので、針はより緩く柔らかになった。この結果は、24時間までの処置後にMNが部分的に溶解することも示した。したがって、MNは、ドラッグデリバリーにおける長期間の放出に適している可能性がある。
【0057】
参考文献:
[1] T. Agarwal, T., Narayana, S.N., Pal, K., Pramanik, K., Giri, S., Banerjee, I., 2015. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int J Biol Macromol 75, 409-417.
[2] Asbill, C.S., Michniak, B.B., 2000. Percutaneous penetration enhancers:local versus transdermal activity. Pharm Sci Technolo Today 3, 36-41.
[3] Badran, M.M., Kuntsche, J., Fahr, A., 2009. Skin penetration enhancement by a microneedle device (Dermaroller) in vitro:dependency on needle size and applied formulation. Eur J Pharm Sci 36, 511-523.
[4] Bronaugh, R.L., Maibach, H.I., 2005. Percutaneous absorption :drugs, cosmetics, mechanisms, methodology, 4th ed. Taylor & Francis, Boca Raton.
[5] Chen, Y.C., Ho, H.O., Liu, D.Z., Siow, W.S., Sheu, M.T., 2015. Swelling/floating capability and drug release characterizations of gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose. PLoS One 10, e0116914.
[6] Cheung, K., Han, T., Das, D.B., 2014. Effect of force of microneedle insertion on the permeability of insulin in skin. J Diabetes Sci Technol 8, 444-452.
[7] Chillo, S., Laverse, J., Falcone, P.M., Del Nobile, M.A., 2007. Effect of carboxymethylcellulose and pregelatinized corn starch on the quality of amaranthus spaghetti. J Food Eng 83, 492-500.
[8] Chu, L.Y., Prausnitz, M.R., 2011. Separable arrowhead microneedles. J Control Release 149, 242-249.
[9] Ding, Z., Verbaan, F.J., Bivas-Benita, M., Bungener, L., Huckriede, A., van den Berg, D.J., Kersten, G., Bouwstra, J.A., 2009. Microneedle arrays for the transcutaneous immunization of diphtheria and influenza in BALB/c mice. J Control Release 136, 71-78.
[10] Hadgraft, J., Peck, J., Williams, D.G., Pugh, W.J., Allan, G., 1996. Mechanisms of action of skin penetration enhancers/retarders:Azone and analogues. International Journal of Pharmaceutics 141, 17-25.
[11] Hafeli, U.O., Mokhtari, A., Liepmann, D., Stoeber, B., 2009. In vivo evaluation of a microneedle-based miniature syringe for intradermal drug delivery. Biomed Microdevices 11, 943-950.
[12] Higashiyama, T., 2002. Novel functions and applications of trehalose. Pure Appl Chem 74, 1263-1269.
[13] Hirobe, S., Azukizawa, H., Hanafusa, T., Matsuo, K., Quan, Y.S., Kamiyama, F., Katayama, I., Okada, N., Nakagawa, S., 2015. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials 57, 50-58.
[14] Jeong, H., Shepard, K.B., Purdum, G.E., Guo, Y.L., Loo, Y.L., Arnold, C.B., Priestley, R.D., 2016. Additive Growth and Crystallization of Polymer Films. Macromolecules 49, 2860-2867.
[15] Kaushik, S., Hord, A.H., Denson, D.D., McAllister, D.V., Smitra, S., Allen, M.G., Prausnitz, M.R., 2001. Lack of pain associated with microfabricated microneedles. Anesth Analg 92, 502-504.
[16] Ke, C.J., Lin, Y.J., Hu, Y.C., Chiang, W.L., Chen, K.J., Yang, W.C., Liu, H.L., Fu, C.C., Sung, H.W., 2012. Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres. Biomaterials 33, 5156-5165.
[17] Kim, Y.C., Park, J.H., Prausnitz, M.R., 2012. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 64, 1547-1568.
[18] Kommareddy, S., Baudner, B.C., Oh, S., Kwon, S.Y., Singh, M., O'Hagan, D.T., 2012. Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens. J Pharm Sci 101, 1021-1027.
[19] Langer, R., 2001. Drug delivery. Drugs on target. Science 293, 58-59.
[20] Lee, I.C., Lin, W.M., Shu, J.C., Tsai, S.W., Chen, C.H., Tsai, M.T., 2017. Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice. Journal of Biomedical Materials Research Part A 105, 84-93.
[21] Lee, J.W., Park, J.H., Prausnitz, M.R., 2008. Dissolving microneedles for transdermal drug delivery. Biomaterials 29, 2113-2124.
[22] Lee, K., Lee, C.Y., Jung, H., 2011. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials 32, 3134-3140.
[23] Li, G., Badkar, A., Nema, S., Kolli, C.S., Banga, A.K., 2009. In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. Int J Pharm 368, 109-115.
[24] Lin, W., Cormier, M., Samiee, A., Griffin, A., Johnson, B., Teng, C.L., Hardee, G.E., Daddona, P.E., 2001. Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology. Pharm Res 18, 1789-1793.
[25] Liu, S., Jin, M.N., Quan, Y.S., Kamiyama, F., Katsumi, H., Sakane, T., Yamamoto, A., 2012. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. J Control Release 161, 933-941.
[26] Martanto, W., Davis, S.P., Holiday, N.R., Wang, J., Gill, H.S., Prausnitz, M.R., 2004. Transdermal delivery of insulin using microneedles in vivo. Pharm Res 21, 947-952.
[27] Martin, C.J., Allender, C.J., Brain, K.R., Morrissey, A., Birchall, J.C., 2012. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J Control Release 158, 93-101.
[28] McAllister, D.V., Wang, P.M., Davis, S.P., Park, J.H., Canatella, P.J., Allen, M.G., Prausnitz, M.R., 2003. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles:fabrication methods and transport studies. Proc Natl Acad Sci U S A 100, 13755-13760.
[29] Migalska, K., Morrow, D.I., Garland, M.J., Thakur, R., Woolfson, A.D., Donnelly, R.F., 2011. Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery. Pharm Res 28, 1919-1930.
[30] Mikszta, J.A., Alarcon, J.B., Brittingham, J.M., Sutter, D.E., Pettis, R.J., Harvey, N.G., 2002. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med 8, 415-419.
[31] Park, Y.H., Ha, S.K., Choi, I., Kim, K.S., Park, J., Choi, N., Kim, B., Sung, J.H., 2016. Fabrication of degradable carboxymethyl cellulose (CMC) microneedle with laser writing and replica molding process for enhancement of transdermal drug delivery. Biotechnology and Bioprocess Engineering 21, 110-118.
[32] Pasqui, D., Torricelli, P., De Cagna, M., Fini, M., Barbucci, R., 2014. Carboxymethyl cellulose-hydroxyapatite hybrid hydrogel as a composite material for bone tissue engineering applications. J Biomed Mater Res A 102, 1568-1579.
[33] Pettis, R.J., Harvey, A.J., 2012. Microneedle delivery:clinical studies and emerging medical applications. Ther Deliv 3, 357-371.
[34] Prausnitz, M.R., Langer, R., 2008. Transdermal drug delivery. Nat Biotechnol 26, 1261-1268.
[35] Raphael, A.P., Prow, T.W., Crichton, M.L., Chen, X., Fernando, G.J., Kendall, M.A., 2010. Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays. Small 6, 1785-1793.
[36] Sullivan, S.P., Koutsonanos, D.G., Del Pilar Martin, M., Lee, J.W., Zarnitsyn, V., Choi, S.O., Murthy, N., Compans, R.W., Skountzou, I., Prausnitz, M.R., 2010. Dissolving polymer microneedle patches for influenza vaccination. Nat Med 16, 915-920.
[37] Sullivan, S.P., Murthy, N., Prausnitz, M.R., 2008. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater 20, 933-938.
[38] Tuan-Mahmood, T.M., McCrudden, M.T., Torrisi, B.M., McAlister, E., Garland, M.J., Singh, T.R., Donnelly, R.F., 2013. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci 50, 623-637.
[39] Wokovich, A.M., Prodduturi, S., Doub, W.H., Hussain, A.S., Buhse, L.F., 2006. Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. Eur J Pharm Biopharm 64, 1-8.