【解決手段】磁気メモリ素子10は、第1方向と第2方向の少なくとも2方向において反強磁性となり得る反強磁性体から成る記録部(記録層11)と、前記記録部に接して、又は該記録部との間に導電性部材を介して設けられた、スピンホール効果を有する物質から成るスピン流生成部(第1スピン流生成部121、第2スピン流生成部122)と、前記スピン流生成部に、前記第1方向に垂直な電流を流す第1電流導入部131と、前記スピン流生成部に、前記第2方向に垂直な電流を流す第2電流導入部132とを備える。第1電流導入部又は第2電流導入部からスピン流生成部に電流を流すだけで記録部に情報を記録することができるため、情報の書き込み速度が速く、且つ消費電力が小さい。
a) 第1方向と第2方向の少なくとも2方向を取り得る第1磁気モーメントを有する第1磁性体層と、前記第1磁気モーメントに平行且つ逆向きの第2磁気モーメントを有する第2磁性体層を積層した積層体から成る記録部と、
b) 前記記録部に接して、又は該記録部との間に導電性部材を介して設けられた、電流が流れることでスピンホール効果によるスピン流が形成されるスピン流生成部と、
c) 前記スピン流生成部に前記第1方向に垂直な方向の電流を流す第1電流導入部と、
d) 前記スピン流生成部に前記第2方向に垂直な方向の電流を流す第2電流導入部と
を備えることを特徴とする磁気メモリ素子。
前記第1磁性体層のCoの原子含有率が80〜90%であり、前記第2磁性体層のCoの原子含有率が55〜72%であることを特徴とする請求項6に記載の磁気メモリ素子。
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献1に記載の磁気メモリ素子では、まず、ネール温度T
Nよりも高い温度に加熱することによって常磁性としたうえで、所定の方向に磁界を印加しつつネール温度T
N以下の温度に冷却することで、原子のスピンが該磁界の方向に垂直な方向を向いた反強磁性の状態にすることにより、情報の書き込みを行う。特許文献1に記載の磁気メモリ素子は、このように加熱及び冷却の操作を行う必要があるため、情報の書き込み速度を速くすることができないうえに、加熱及び冷却に要する消費電力が大きいという欠点を有する。
【0008】
本発明が解決しようとする課題は、情報の書き込み速度が速く、且つ消費電力が小さい磁気メモリ素子、及び該磁気メモリ素子に用いる磁性材料を提供することである。
【課題を解決するための手段】
【0009】
上記課題を解決するために成された本発明に係る磁気メモリ素子の第1の態様は、
a) 第1方向と第2方向の少なくとも2方向において反強磁性となり得る反強磁性体から成る記録部と、
b) 前記記録部に接して、又は該記録部との間に導電性部材を介して設けられた、スピンホール効果を有する物質から成るスピン流生成部と、
c) 前記スピン流生成部に、前記第1方向に垂直な電流を流す第1電流導入部と、
d) 前記スピン流生成部に、前記第2方向に垂直な電流を流す第2電流導入部と
を備えることを特徴とする。
【0010】
第1の態様の磁気メモリ素子は、反強磁性体から成る記録部に接して、又は該記録部との間に導電性部材を介して、スピン流生成部が設けられている。スピン流生成部はスピンホール効果を有する物質から成り、そこに電流を流すことにより、スピンホール効果によりスピン流が形成される。ここでスピンホール効果とは、金属又は半導体等の自由電子を有する物質中に電流を流したときに、スピン軌道相互作用の効果によって、上向きスピンを有する電子と下向きスピンを有する電子が電流に垂直な方向に分離される現象をいう。このとき、電子スピンが電流に垂直な方向に移動する(流れる)ことから、この電子スピンの流れをスピン流と呼ぶ。スピン流生成部にこのようなスピン流が生じると、特定の向きのスピンを有する電子が記録部又は導電性部材と記録部の境界に向かって移動し、記録部の反強磁性体のうちスピン流生成部の近傍にある原子のスピンに、電流に垂直な特定の方向の電子スピンに平行となるように回転させるトルクが生じる。このトルクによってスピン流生成部の近傍のスピンの向きが変わると、隣接原子間のスピンを逆向きにする相互作用により、記録部の反強磁性体中にあるその他のスピンの向きも変わる。
【0011】
この現象を利用して、異なる2値のうちのいずれかを情報として記録部に記録する。すなわち、スピン流生成部に第1方向に垂直、及び第1方向に非平行な第2方向に垂直、という異なる2方向のいずれかの電流を流すことで、記録部の反強磁性体のスピンを第1方向及び第2方向のいずれかに向ける。この記録部の反強磁性体のスピンの向きが、記録される情報に対応する。
【0012】
このように情報が記録された記録部では、2点間の電気抵抗が記録部内のスピンの向きによって異なる。そのため、この電気抵抗を測定することにより、記録部に記録された情報を読み出すことができる。それら2点の位置は、記録部内であれば任意である。
【0013】
記録部には、第1方向と第2方向の少なくとも2方向において反強磁性となり得る種々の反強磁性体を用いることができる。例えば、NiOは、
図1に示すように立方晶であるNaCl型の結晶構造を有し、同一の(111)面内にあるNi原子のスピン同士では同じ向きとなり、隣接する(111)面間のNi原子のスピン同士では逆向きとなる反強磁性体である。NiOの(111)面は「磁化容易面」と呼ばれ、スピンが(111)面内の少なくとも2方向を向き得ることから、該少なくとも2方向において反強磁性となり得る。CoOもNiOと同様の結晶構造及び反強磁性状態を取るが、NiOの方が、ネール温度T
Nが室温よりも十分に高い525K(252℃)であるという点で望ましい(CoOのネール温度:291K(18℃))。
【0014】
スピン流生成部の材料には、スピンホール効果が生じる種々の材料を用いることができる。そのような材料として、Pt(白金)、Ta(タンタル)、W(タングステン)、Ir(イリジウム)、Au(金)、Bi(ビスマス)等が知られている。これらの材料はいずれも、5d軌道の電子が電気伝導を担う導電性材料である。5d軌道の電子は、s軌道や3d又は4d軌道の電子よりも軌道角運動量が大きいことからスピン軌道相互作用の影響を受け易く、それによってスピンの向きに依存した異なる方向に散乱されやすい。そのため、上掲の各材料はスピンホール効果によるスピン流が形成され易い。また、4d軌道の電子が電気伝導を担うRu(ルテニウム)やPd(パラジウム)をスピン流生成部の材料として用いることもできる。あるいは、ここで挙げた元素のうちの2種以上から成る合金をスピン流生成部の材料として用いてもよい。
【0015】
第1の態様の磁気メモリ素子によれば、第1電流導入部又は第2電流導入部からスピン流生成部に電流を流すだけで記録部に情報を記録することができるため、特許文献1に記載の磁気メモリ素子よりも情報の書き込み速度が速く、且つ消費電力が小さい。
【0016】
第1の態様の磁気メモリ素子において、
前記スピン流生成部は前記記録部を挟んで2個設けられ、
前記第1電流導入部は該2個の前記スピン流生成部にそれぞれ、前記第1方向に垂直な電流を流すように設けられ、
前記第2電流導入部は該2個の前記スピン流生成部にそれぞれ、前記第2方向に垂直な電流を流すように設けられている
ことが望ましい。
【0017】
このように記録部を挟んでスピン流生成部を2個設け、それら2個のスピン流生成部にそれぞれ第1方向に垂直又は第2方向に垂直な電流を流すことにより、記録部では、スピン流生成部のうち記録部の近傍を流れる電子スピンは、2個のスピン流生成部で互いに逆方向を向く。これにより、記録部の反強磁性体のスピンは、一方のスピン流生成部の近傍と他方のスピン流生成部の近傍で互いに逆方向にトルクを受けるが、記録部全体では隣接原子間のスピンが逆向きとなる反強磁性状態が形成される。このように記録部を挟んだ両側から記録部の反強磁性体のスピンにトルクを付与することにより、記録部の反強磁性体のスピンの向きをより高速で変更することができ、情報の書き込みをより高速化することができる。
【0018】
第1の態様の磁気メモリ素子では第1方向と第2方向の少なくとも2方向において反強磁性となり得る反強磁性体から成る記録部を用いるが、このような反強磁性体の代わりに、第1方向と第2方向の少なくとも2方向を取り得る(巨視的な)第1磁気モーメントを有する第1磁性体層と、前記第1磁気モーメントに平行且つ逆向きである(巨視的な)第2磁気モーメントを有する第2磁性体層を積層した積層体を用いることができる。
【0019】
すなわち、本発明に係る磁気メモリ素子の第2の態様は、
a) 第1方向と第2方向の少なくとも2方向を取り得る第1磁気モーメントを有する第1磁性体層と、前記第1磁気モーメントに平行且つ逆向きの第2磁気モーメントを有する第2磁性体層を積層した積層体から成る記録部と、
b) 前記記録部に接して、又は該記録部との間に導電性部材を介して設けられた、電流が流れることでスピンホール効果によるスピン流が形成されるスピン流生成部と、
c) 前記スピン流生成部に前記第1方向に垂直な方向の電流を流す第1電流導入部と、
d) 前記スピン流生成部に前記第2方向に垂直な方向の電流を流す第2電流導入部と
を備えることを特徴とする。
【0020】
第2の態様の磁気メモリ素子では、スピン流生成部に第1電流導入部から第1方向に垂直な方向の電流を流すと、この電流の電子スピンから記録部の第1磁気モーメントがトルクを受け、第1磁気モーメントが電流の電子スピンに平行である第1方向を向く。また、第2磁気モーメントは、第1磁気モーメントに平行且つ逆向きの方向を向く。同様の作用により、スピン流生成部に第2電流導入部から第2方向に垂直な方向の電流を流すと、第1磁気モーメントは第2方向を向き、第2磁気モーメントは第1磁気モーメントに平行且つ逆向きの方向を向く。
【0021】
第1の態様の磁気メモリと同様の理由により、第2の態様の磁気メモリ素子においても、スピン流生成部、第1電流導入部及び第2電流導入部は2個ずつ設けられていることが望ましい。すなわち、第2の態様の磁気メモリ素子において、
前記スピン流生成部は前記記録部を挟んで2個設けられ、
前記第1電流導入部は該2個の前記スピン流生成部にそれぞれ、前記第1方向に垂直な電流を流すように設けられ、
前記第2電流導入部は該2個の前記スピン流生成部にそれぞれ、前記第2方向に垂直な電流を流すように設けられている
ことが望ましい。
【0022】
前記積層体として、以下の磁性材料を用いることができる。本発明に係る磁性材料は、
a) Co(コバルト)及びGd(ガドリニウム)から成るCoGd合金であって、Coの原子含有率が80%以上である第1磁性体層と、
b) CoGd合金であって、Coの原子含有率が72%以下である第2磁性体層と
を積層したものであることを特徴とする。
【0023】
CoGd合金では、Co原子とGd原子の間に、それらが有するスピンが互いに逆方向に向く相互作用が生じる。また、CoGd合金内のGdのスピンはCoのスピンよりも大きい。これらの理由により、CoGd合金では、Coの原子含有率が76%であるときを境界として、CoGd合金の磁気モーメントがCoの磁気モーメントと平行になるか、Gdの磁気モーメントと平行になるかが変わる。これを利用して、本発明に係る磁性材料では、Coの原子含有率が80%以上であるCoGd合金から成る第1磁性体層と、Coの原子含有率が72%以下であるCoGd合金から成る第2磁性体層を積層させることにより、第1磁性体層と第2磁性体層の磁気モーメントが互いに逆向きとなる、いわば人工的な反強磁性体が構成される。
【0024】
第1磁性体層のCoの原子含有率は80〜90%であることが望ましく、一例では83%である。第2磁性体層のCoの原子含有率は55〜72%であることが望ましく、一例では62%である。
【発明の効果】
【0025】
本発明により、情報の書き込み速度が速く、且つ消費電力が小さい磁気メモリ素子、及び該磁気メモリ素子に用いる磁性材料が得られる。
【発明を実施するための形態】
【0027】
図1〜
図18を用いて、本発明に係る磁気メモリ素子及び磁性材料の実施形態を説明する。
【0028】
(1) 第1実施形態の磁気メモリ素子
(1-1) 第1実施形態の磁気メモリ素子の構成
図2は、上記第1の態様である第1実施形態の磁気メモリ素子10の構成を示す概略図である。この磁気メモリ素子10は、記録層(記録部)11と、記録層11に接して該記録層11の上下を挟むように設けられた第1スピン流生成層121及び第2スピン流生成層122(前述の2個のスピン流生成部に相当)を有する。
【0029】
記録層11は反強磁性体から成る。第1実施形態で用いる記録層11の反強磁性体には、例えば前述のNiOのように、第1方向と第2方向の少なくとも2方向において反強磁性となり得るものを用いる。NiOを用いる場合には、磁化容易面である(111)面が記録層11に平行になるようにする。第1方向と第2方向は、
図2に示すように、記録層11に平行な面内で直交する、すなわち互いに90°異なる方向とすることが望ましい。これにより、後述のように反強磁性体のスピンが第1方向又は第2方向に平行に向くことで記録層11に記録された「0」又は「1」の情報を電気抵抗又はホール抵抗で読み出す際に、電流を第1方向と第2方向のいずれか一方に対して電気抵抗では平行(他方に対して垂直)に流し、ホール抵抗では+45°(他方に対して-45°)の方向に流すことで、「0」と「1」の電気抵抗又はホール抵抗の差を最大にすることができる。あるいは、第1方向と第2方向は、記録層11に平行な面内で90°以外の角度(例えば60°や120°)で異なる方向としてもよい。さらには、第1方向及び第2方向は、記録層11に垂直以外の方向であれば、記録層11に平行でなくてもよい。
【0030】
第1スピン流生成層121及び第2スピン流生成層122はいずれも、電流が流れることでスピンホール効果によるスピン流が形成される材料から成る。そのような材料として、Pt、Ta、W等を用いることができる。
【0031】
第1スピン流生成層121及び第2スピン流生成層122にはそれぞれ、第1方向に垂直な電流を該層に平行に流す第1電流導入部131と、第2方向に垂直な電流を該層に平行に流す第2電流導入部132が設けられている。また、記録層11には、該層に平行な所定の1方向(電気抵抗測定方向)の電気抵抗を測定する磁気抵抗効果測定部14が設けられている。なお、磁気抵抗効果測定部14は、それによって直接測定する物理量が電気抵抗であるものの、ここでは記録層11内の反強磁性体の磁化の方向の相違によって電気抵抗の値が相違する磁気抵抗効果を利用して、電気抵抗の値から磁化の方向を検出することから、かかる名称を付している。電気抵抗測定方向は、該電気抵抗測定方向と第1方向の成す角度と、該電気抵抗測定方向と第2方向の成す角度が異なっていればよい。
図2の例では、電気抵抗測定方向は第1方向(第2方向に垂直な方向)としている。
【0032】
磁気抵抗効果測定部14は、記録層11の電気抵抗を測定する代わりに、電気抵抗と同様に磁気抵抗効果によって反強磁性体の磁化(スピン)の方向に依存した値が得られる、ホール効果により生じる電圧を測定するものであってもよい。
【0033】
(1-2) 第1実施形態の磁気メモリの動作
図3を用いて、第1実施形態の磁気メモリ素子10の動作を説明する。なお、
図3では、図面を簡素化して分かり易くするために、第1電流導入部131及び第2電流導入部132の構成の代わりに、第1スピン流生成層121及び第2スピン流生成層122に流す電流I
wの方向を示す。
図3に示した例では、磁気メモリ素子10は、記録層11の反強磁性体のスピンS
AFが第1方向に平行である場合と、第2方向に平行である場合により、異なる2値を記録する。ここでは、反強磁性体のスピンS
AFが第1方向に平行である場合を「1」、第2方向に平行である場合を「0」と規定する。
【0034】
(1-2-1) 「1」の書き込み(
図3(a))
記録層11に「1」を書き込むときには、第1電流導入部131により、第1スピン流生成層121及び第2スピン流生成層122に、第1方向に垂直な電流を該層に平行に流す。これにより、第1スピン流生成層121では記録層11との境界に向かって、第1方向に平行な1方向を向いた電子スピンS
iを有する電子が移動するスピン流が生成される。これにより、記録層11では、第1スピン流生成層121の近傍において、前記スピン流が有する電子スピンS
iと同じ向きに反強磁性体のスピンS
AFを向けようとするトルクが該スピンS
AFに生じる。一方、第2スピン流生成層122では記録層11との境界に向かって、第1方向に平行であって第1スピン流生成層121の電子スピンS
iとは逆向きの電子スピンS
iを有する電子が移動するスピン流が生成され、該電子スピンS
iと同じ向きに反強磁性体のスピンS
AFを向けようとするトルクが、第2スピン流生成層122の近傍の記録層11において反強磁性体のスピンS
AFに生じる。こうして、第1スピン流生成層121及び第2スピン流生成層122の近傍でスピンS
AFが第1方向に平行な方向を向くことで、記録層11内の他のスピンS
AFも、隣接するスピンS
AFとの相互作用によって、第1方向に平行であって隣接するスピンS
AF同士が逆向きとなるように、向きを変える。以上のように、記録層11に、反強磁性体のスピンS
AFが第1方向に平行である、「1」を示す情報が書き込まれる。
【0035】
(1-2-2) 「0」の書き込み(
図3(b))
記録層11に「0」を書き込むときには、第2電流導入部132により、第1スピン流生成層121及び第2スピン流生成層122に、第2方向に垂直な電流を該層に平行に流す。これにより、第1スピン流生成層121及び第2スピン流生成層122ではそれぞれ、第2方向に平行であって、これら2つの層では互いに逆向きである1方向を向いた電子スピンS
iを有する電子が記録層11との境界に向かって移動するスピン流が生成される。記録層11では、第1スピン流生成層121及び第2スピン流生成層122の近傍においてそれぞれ反強磁性体のスピンS
AFに、前記スピン流が有する電子スピンS
iと同じ向きに反強磁性体のスピンS
AFを向けようとするトルクが生じ、該スピンS
AFが該方向に向きを変える。記録層11内の他のスピンS
AFも、隣接するスピンS
AFとの相互作用によって、第2方向に平行であって隣接するスピンS
AF同士が逆向きとなるように、向きを変える。以上のように、記録層11に、反強磁性体のスピンS
AFが第2方向に平行である、「0」を示す情報が書き込まれる。
【0036】
(1-2-3) 情報の読み出し(
図3(c), (d))
記録層11に記録された情報を読み出す際には、磁気抵抗効果測定部14によって、前記電気抵抗測定方向に生じる記録層11の電気抵抗を測定する。電気抵抗は、通常と同様に、電気抵抗測定方向に電流を流しながら記録層11の両端の電圧を電圧計で測定し、電圧値を電流値で除することにより得ることができる。情報が「1」のときには、電流が反強磁性体のスピンS
AFに平行である(
図3 (c))ことから、電流の電子がスピンS
AFから散乱を受けて電気抵抗の値が高くなるのに対して、記録層11に書き込まれた情報が「0」のときには、電流が反強磁性体のスピンS
AFに垂直である(
図3 (d))ことから、電流の電子がスピンS
AFからほとんど散乱を受けず、電気抵抗が高くならない。このように、情報が「0」のときと「1」のときの電気抵抗の値の相違により、記録層11に記録された情報を読み出すことができる。なお、ここでは電気抵抗を測定することで情報を読み出すことを説明したが、電気抵抗の代わりにホール効果により生じる電圧を測定する方法の例を後述する。
【0037】
(1-3) 第1実施形態の磁気メモリの具体例
図4に、第1実施形態の具体例である磁気メモリ素子10Aの斜視図で示す。この磁気メモリ素子10Aは、記録層(記録部)11Aと、記録層11Aに接して該記録層11Aの上下を挟むように設けられた第1スピン流生成層121A及び第2スピン流生成層122Aを有する。記録層11A、第1スピン流生成層121A及び第2スピン流生成層122Aはいずれも「+」形の形状を呈している。記録層11Aの材料はNiOであり、第1スピン流生成層121A及び第2スピン流生成層122Aの材料はPtである。
【0038】
記録層11A、第1スピン流生成層121A及び第2スピン流生成層122Aの「+」形の中心から延びる4本の「腕」の各先端には、リード線を接続する端子が設けられている。各端子はいずれも、記録層11A、第1スピン流生成層121A及び第2スピン流生成層122Aの全ての層に電気的に接触している。それら各端子のうちの1つを第1端子151、第1端子151に対向する端子を第2端子152、第1端子151の左隣の端子を第3端子153、第1端子151の右隣であって第3端子153に対向する端子を第4端子154と呼ぶ。これら4つの端子はいずれも、前記第1電流導入部及び前記第2電流導入部の一部としての機能を有する。
【0039】
図5〜
図7を用いて、磁気メモリ素子10Aの動作を説明する。この磁気メモリ素子10Aでは、記録層11Aの「+」形において第1端子151から第2端子152に向かう軸をx軸として(
図5(a)参照)、反強磁性体のスピンS
AFは該x軸に対して+45°傾斜した第1方向と、-45°傾斜した第2方向のいずれかに平行となる。ここでは、反強磁性体のスピンS
AFが第1方向に平行である場合を「1」、第2方向に平行である場合を「0」と規定する。
【0040】
磁気メモリ素子10Aに「1」を書き込む際には、第2端子152及び第3端子153が正、第1端子151及び第4端子154が負になるように直流電源の電極を接続することにより、第1方向に垂直(第2方向に平行)な電流I
wを第1スピン流生成層121A及び第2スピン流生成層122Aに流す(
図5(a))。ここで、第1端子151〜第4端子154は記録層11Aにも接続されているが、記録層11Aの材料であるNiOが半導体であって第1スピン流生成層121A及び第2スピン流生成層122Aの材料であるPtよりも電気抵抗が十分に大きいため、記録層11Aには電流はほとんど流れない。このように第1スピン流生成層121A及び第2スピン流生成層122Aに、第1方向に垂直な電流が流れることにより、第1スピン流生成層121A及び第2スピン流生成層122Aには、第1方向に平行な電子スピンS
iが記録層11Aとの境界に向かって流れるスピン流が形成される。これにより、記録層11Aの反強磁性体のスピンS
AFは、第1スピン流生成層121A及び第2スピン流生成層122Aの境界付近において電子スピンS
iからトルクを受けて(
図6)第1方向に向き(
図6では、第1方向に向く前の反強磁性体のスピンS
AFの向きを示している)、その他の反強磁性体のスピンS
AFは、隣接するスピンS
AFとの相互作用によって、第1方向に平行であって隣接するスピンS
AF同士が逆向きとなる。
【0041】
磁気メモリ素子10Aに「0」を書き込む際には、第2端子152及び第4端子154が正、第1端子151及び第3端子153が負になるように直流電源の電極を接続することにより、第2方向に垂直(第1方向に平行)な電流I
wを第1スピン流生成層121A及び第2スピン流生成層122Aに流す(
図5(b))。これにより、記録層11Aの反強磁性体のスピンS
AFは、第2方向に平行であって隣接するスピンS
AF同士が逆向きとなる。
【0042】
次に、磁気メモリ素子10Aにおいて記録層11Aに記録された情報の読み出しについて説明する。情報の読み出しの際には、書き込みのときの電流I
wよりも小さい電流I
rを第1端子151から第2端子152に向かって流し、ホール効果によって第3端子153と第4端子154の間に発生する電圧Vを測定する(
図5(c), (d))。電圧Vを電流I
rで除したホール抵抗R
Hallは、記録層11Aの反強磁性体のスピンS
AFの向きに依存して異なる値となる。本発明者が計算で求めたところ、
図7(a)に示すように、電流I
rとスピンS
AFの成す角度が45°、すなわちスピンS
AFが第1方向を向いているときと、該角度が135°、すなわちスピンS
AFが第2方向を向いているときでは、ホール抵抗R
Hallは互いに絶対値が同じであって正負が逆になる。従って、このホール抵抗R
Hallの値を求めることによって、記録層11Aに記録された情報が「0」であるか「1」であるかを読み出すことができる。
【0043】
なお、
図7(b)に示すように、記録層11Aの電気抵抗は、電流I
rとスピンS
AFの成す角度が0°のときに最大、90°のときに最小となり、該角度が45°のときと135°のときには同じ値になる。また、ホール抵抗R
Hallは、電流I
rとスピンS
AFの成す角度が0°のときと90°のときには同じ値になる。従って、
図2に示した構成では記録層11Aの電気抵抗により記録を読み出し、
図4に示した構成ではホール抵抗R
Hallにより記録を読み出すことが適切である。
【0044】
図8に、記録層11Aの厚みが異なる(10nm、20nm、40nm及び90nm)4種類の磁気メモリ素子10Aを作製して「0」又は「1」の情報を書き込んだうえで、ホール抵抗R
Hallの測定(情報の読み出し)を行った実験の結果を示す。この図では併せて、記録層11A(材料が反強磁性体であるNiO)の代わりに、非磁性であるSiO
2(二酸化シリコン)から成る厚さ10nmの膜を形成した素子についても同様の実験を行った結果を示す。実験では、「1」の情報と「0」の情報を交互に2回ずつ書き込む操作を行い、これら書き込みの操作を1回行う毎に読み出しを6回ずつ行った。
図8より、比較例では「1」の書き込みの操作と「0」の書き込みの操作を行ったときの間でホール抵抗の値がほぼ同じ(いずれもほぼ0)であった。それに対して、本実施形態の具体例の磁気メモリ素子10Aでは、記録層11Aの厚みがいずれの場合においても、「1」の書き込みを行ったときにはホール抵抗が正の値であって、「0」の書き込みを行ったときにはホール抵抗が負の値となった。従って、本実施形態の具体例の磁気メモリ素子10Aでは、これらホール抵抗の値によって、記録層11Aに書き込まれた情報が「1」であるか「0」であるかを読み出すことができる。
【0045】
ホール抵抗の値は、記録層11Aの厚さが薄いほど、情報が「1」であるときと「0」であるときの差ΔR
Hallが大きくなった。従って、より確実に情報を読み出すために、記録層11Aの厚さは薄い方が望ましい。
【0046】
次に、作製した磁気メモリ素子10Aにつき、電流による情報の記録を行うことなく、記録層11Aに平行な面内で向きを変えながら外部磁界H
exを印加しつつ、ホール抵抗の値を測定した結果を示す。仮に、この測定によってホール抵抗が前述の情報の読み出しの際の値に近いかそれよりも大きい値となったり、外部磁界H
exの方向によって異なる値となれば、外部磁界H
exが磁気メモリ素子10Aの動作に影響を及ぼしてしまうことになる。しかし、
図9に示した実験結果によれば、外部磁界H
exが印加されたときのホール抵抗の値は情報の読み出し時よりも十分に小さく、且つ、外部磁界H
exの角度にほとんど依存しない。従って、磁気メモリ素子10Aは外部磁界H
exによる攪乱を受け難いといえる。
【0047】
(1-4) 第1実施形態の磁気メモリの変形例
第1実施形態の磁気メモリは上記の例には限定されない。例えば、記録層11、11Aの材料は、前述のNiOやCoOには限定されず、第1方向と第2方向の少なくとも2方向において反強磁性となり得る反強磁性体であればよい。
【0048】
また、上記の例では記録層11、11Aを挟むようにスピン流生成層を2層(第1スピン流生成層121、121A、及び第2スピン流生成層122、122A)設けたが、スピン流生成層は1層のみであってもよい。記録層11、11Aの表裏両面側から記録層11、11Aの反強磁性体のスピンにトルクを付与することができるという点では、前述の2層のスピン流生成層を設けた方が望ましい。一方、スピン流生成層を1層のみとすることにより、スピン流生成層を設けない記録層11、11Aの面に別の構成要素を加えることができる。
【0049】
上記の例では記録層11、11Aと第1スピン流生成層121、121A及び第2スピン流生成層122、122Aが接しているが、
図10に示すように、それら記録層とスピン流生成層の間に導電性部材161、162、161A、162Aを介していてもよい。
【0050】
(2) 第2実施形態の磁気メモリ素子、及び磁性材料の実施形態
(2-1) 第2実施形態の磁気メモリ素子及び磁性材料の構成
図11は、上記第2の態様である第2実施形態の磁気メモリ素子20の構成を示す概略図である。この磁気メモリ素子20は、記録層(記録部)21と、記録層21の上下を挟むように設けられた第1スピン流生成層221及び第2スピン流生成層222を有する。
【0051】
記録層21は、第1磁性体層211と第2磁性体層212を積層した積層体から成る。第1磁性体層211は、第1方向と第2方向の少なくとも2方向を取り得る第1磁気モーメントを有する磁性体から成り、第2磁性体層212は、第1磁気モーメントに平行且つ逆向きの第2磁気モーメントを有する磁性体から成る。第1磁気モーメントの向きを第1方向から第2方向に変えると、それに従って、第2磁気モーメントの向きも、第1方向に平行であって第1磁気モーメントと逆向きの状態から、第2方向に平行であって第1磁気モーメントと逆向きの状態に変わる。
【0052】
記録層21には、本発明に係る磁性材料を用いることができる。この磁性材料において、第1磁性体層211には、Co(コバルト)及びGd(ガドリニウム)から成るCoGd合金であって、Coの原子含有率が80%以上である材料から成る磁性体を用いる。第2磁性体層212には、CoGd合金であって、Coの原子含有率が72%以下である材料から成る磁性体を用いる。上記2層のCoGd合金中のCoの原子含有率は、第1磁性体層211では80〜90%、第2磁性体層212では55〜72%であることが望ましい。
【0053】
CoGd合金は、Coの磁気モーメントとGdの磁気モーメントの大きさが異なり、且つ両者が反平行となるフェリ磁性を有する。第1磁性体層211の全体では、Coの原子含有率が、CoGd合金の磁気モーメントがCoの磁気モーメントと平行になるか、Gdの磁気モーメントと平行になるかの境界値である76%よりも大きい80%以上であることにより、第1磁気モーメントM
1はCoの磁気モーメントと同じ向きとなる(
図12(a))。それに対して第2磁性体層212の全体では、Coの原子含有率が前記境界値よりも小さい72%以下であることにより、全体のCoの磁気モーメントがGdの磁気モーメントよりも小さくなるため、第2磁気モーメントはCoの磁気モーメントとは逆向きとなる(
図12(b))。従って、第1磁性体層211と第2磁性体層212は、Coの原子含有率を上記の値とすることにより、第1磁気モーメントと第2磁気モーメントが互いに逆向きになる。
【0054】
第1スピン流生成層221及び第2スピン流生成層222は、第1実施形態と同様の材料及び形状のものを用いることができる。また、磁気メモリ素子20にはさらに、第1実施形態と同様の第1電流導入部231、第2電流導入部232及び磁気抵抗効果測定部24が設けられている。
【0055】
(2-2) 第2実施形態の磁気メモリ素子の動作
図13を用いて、第2実施形態の磁気メモリ素子20の動作を説明する。
記録層21に「1」を書き込むときには、第1電流導入部231により、第1スピン流生成層221及び第2スピン流生成層222に、第1方向に垂直な電流を該層に平行に流す(
図13(a))。これにより、第1スピン流生成層221では第1磁性体層211との境界に向かって、第1方向に平行な1方向を向いた電子スピンS
iを有する電子が移動するスピン流が生成される。第1磁性体層211の第1磁気モーメントM
1は、この電子スピンS
iからトルクを受けて、第1方向に平行な1方向を向く。一方、第2スピン流生成層222では第2磁性体層212との境界に向かって、第1方向に平行であって、第1磁性体層211の第1スピン流生成層221の電子スピンとは逆向きの電子スピンS
iを有する電子が移動するスピン流が生成される。第2磁性体層212の第2磁気モーメントM
1は、この電子スピンS
iからトルクを受けて、第1方向に平行であって第1磁気モーメントM
1とは逆の方向を向く。以上のように、記録層21に、第1磁気モーメントM
1と第2磁気モーメントM
1が第1方向に平行であって互いに逆方向を向いた、「1」を示す情報が書き込まれる。
【0056】
記録層21に「0」を書き込むときには、第2電流導入部232により、第1スピン流生成層221及び第2スピン流生成層222に、第2方向に垂直な電流を該層に平行に流す(
図13(b))。すると、電流の向きの相違に伴って電子スピンS
i並びに第1磁気モーメントM
1及び第2磁気モーメントM
1の向きが異なる点の他は、「1」を書き込むときと同じ動作により、記録層21に、第1磁気モーメントM
1と第2磁気モーメントM
1が第2方向に平行であって互いに逆方向を向いた、「0」を示す情報が書き込まれる。
【0057】
記録層21に記録された情報を読み出す際には、磁気抵抗効果測定部14によって、記録層21に平行な所定の1方向の電気抵抗を測定する(
図13(c), (d))。ここで測定される電気抵抗の値の相違により、記録層21に記録された情報が「1」であるか「0」であるかを読み出す。記録層21内の磁気モーメント(スピン)の向きによって電気抵抗の値に相違が生じる理由は、第1実施形態の場合と同様である。なお、第2実施形態においても第1実施形態と同様に、電気抵抗の代わりに、ホール効果により生じる電圧を測定してもよい。
【0058】
(2-3) 第2実施形態の磁気メモリ素子の具体例
図14に、第2実施形態の具体例である磁気メモリ素子20Aの構成を示す。この磁気メモリ素子20Aは、記録層11Aを、第1磁性体層211Aと第2磁性体層212Aを積層した記録層21Aに変更した点を除いて、第1実施形態の具体例である磁気メモリ素子10Aと同じ構成を有する。第1磁性体層211A及び第2磁性体層212Aの材料はそれぞれ、前述の第1磁性体層211及び第2磁性体層212の材料と同じである。磁気メモリ素子20Aの第1スピン流生成層221A、第2スピン流生成層222A、第1端子251、第2端子252、第3端子253及び第4端子254は、磁気メモリ素子10Aの対応する構成要素と符号の末尾を合わせたうえで
図14に示し、それら構成要素の詳細な説明を省略する。なお、第1端子251、第2端子252、第3端子253及び第4端子254はいずれも、第1磁性体層211A、第2磁性体層212A、第1スピン流生成層221A及び第2スピン流生成層222Aの全ての層に電気的に接触している。また、磁気メモリ素子20Aの動作は、第1実施形態の磁気メモリ素子10Aと同様である。
【0059】
次に、磁気メモリ素子20Aを作製して、情報の書き込み及び読み出しの実験を行った結果を示す。この実験では、第1磁性体層211Aの材料にはCo
86Gd
14のアモルファス合金を用い、第2磁性体層212Aの材料にはCo
62Gd
38のアモルファス合金を用いた。第1磁性体層211A及び第2磁性体層212Aの厚さはいずれも6nmとした。第1スピン流生成層221A及び第2スピン流生成層222Aにはいずれも、厚さ4nmのPtを用いた。情報の書き込み及び読み出しには、第1実施形態の磁気メモリ素子10Aと同じ方法(
図5参照)を用いた。「1」の書き込みを1回行ったうえで読み出しを6回行い、その後「0」の書き込みを1回行ったうえで読み出しを6回行うという操作を繰り返した。実験は、書き込み時の電流I
wにつき、9mA、10mA、12mA、14mA、15mA及び16mAという異なる値でそれぞれ行った。測定時の温度は283K(10℃)であった。
【0060】
実験結果を
図15に示す。この図では、読み出し時に得られたホール抵抗の値を示している。記録層21Aに「1」を書き込んだときにはホール抵抗が正の値を有し、「0」を書き込んだときにはホール抵抗が負の値を有していることから、ホール抵抗の正負より、記録層21Aに記録された情報を読み出すことができる。実験に用いた書き込み時の電流I
wの範囲内では、その電流が大きいほど、ホール抵抗の絶対値が大きくなって読み出しが容易となる。
【0061】
次に、磁気メモリ素子20Aに対して、電流による情報の記録を行うことなく、外部磁界を第1方向に印加した場合と第2方向に印加した場合に生じるホール抵抗の差ΔR
Hallを、異なる3つの温度T=246K(-27℃)、283K(10℃)及び312K(39℃)でそれぞれ測定した結果を
図16に示す。この結果より、温度が283Kのときには、外部磁界によるホール抵抗の変化がほとんどなく、外部磁界の影響をほとんど受けない。それに対して、温度が246K及び312Kのときには、外部磁界の方向によってホール抵抗の値が変化し、外部磁界の影響を受ける。従って、磁気メモリ素子20Aを安定して使用するために、磁気メモリ素子20Aの使用時には、温度を283K付近の所定の温度範囲内(例えば278〜288K)に維持するように温度制御を行うことが望ましい。
【0062】
次に、
図17を用いて、磁気メモリ素子20Aに対して、同値(「0」及び「1」のいずれか一方)を繰り返し書き込む実験を行った結果を説明する。この実験では、まず、「0」と「1」を交互に2回ずつ書き込んだ(
図17中のA)後に、「0」を繰り返し27回書き込み(同B)、最後に「1」を繰り返し55回書き込んだ(同C)。書き込みを1回行う毎に、読み出しは6回ずつ行った。なお、
図17では、横軸に読み出し回数を取り、「1」の繰り返しの書き込みに移ったときに横軸の数値を0に戻して描いている。この実験の結果、
図17に示すように、「0」又は「1」を繰り返し書き込む回数を増加させることにより、読み出されたホール抵抗の絶対値が大きくなっている。このような特性を利用して、1個の磁気メモリ素子20Aは、「0」及び「1」の2値のみならず、多値のデータを書き込み及び読み出しを行うことも可能である。
【0063】
第2実施形態の磁気メモリ素子20、20Aにおいても、第1実施形態と同様に種々の変形が可能である。例えば、上記の例では記録層21、21Aと第1スピン流生成層221、221A及び第2スピン流生成層222、222Aが接しているが、
図18に示すように、それら記録層とスピン流生成層の間に導電性部材261、262、261A、262Aを介していてもよい。