【解決手段】フランジ部材12,13および成形ベローズ11は、互いの溶融固化部14が主としてオーステナイト相となる異種金属素材からなる。フランジ部材12,13は、第一面15aと、その反対側の第二面15bと、を有した突起状の接続部15を備え、成形ベローズ11は、接続部15の第一面15aに沿う板状の被溶接部11aを有する。溶融固化部14は、接続部15および被溶接部11aの先端部に設けられるとともに、接続部15の先端側および被溶接部11aを合せた厚み寸法以上の直径を有する断面円形に形成されている。
前記対象部位は、主としてオーステナイト系ステンレス鋼から構成され、前記可撓部材は、主としてニッケル基合金から構成されることを特徴とする請求項1または2に記載の溶接構造。
前記溶融固化部の直径は、前記接続部の先端側および前記被溶接部を合せた厚み寸法に対し、1.1倍以上かつ1.6倍以下であることを特徴とする請求項1〜7のいずれか一項に記載の溶接構造。
前記接続部における前記第一面と前記第二面とは、当該接続部の先端に向かって狭まる交差角度を有して設けられ、前記交差角度が40°以下であることを特徴とする請求項1〜8のいずれか一項に記載の溶接構造。
前記被溶接部は、前記可撓部材を構成する薄板材の端部を折り返して重ねた折返部によって構成され、前記薄板材の端縁側が前記接続部の前記第一面に沿って設けられていることを特徴とする請求項1〜9のいずれか一項に記載の溶接構造。
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、オーステナイト系ステンレス鋼は、一般的に溶接割れを起こしやすい金属素材であることが知られており、オーステナイト系ステンレス鋼とニッケル基合金等との異種金属素材同士の溶接においても、溶接欠陥が生じやすいことが予想される。特に、薄板材からなる金属ベローズや金属ダイヤフラム等の可撓部材を肉厚な対象部位に溶接する際に、可撓部材を板厚方向に貫通して対象部位の内部に至るような溶接部が形成されると、溶融金属が固化するときの収縮が拘束されることから、溶接固化部に引張応力が作用して割れが発生しやすくなる。このため、可撓部材と対象部位との異種金属素材同士の溶接部における溶接割れを防止しつつ、溶接耐久性を向上させることができる溶接構造が求められていた。
【0007】
本発明の目的は、異種金属素材同士の溶接部における溶接割れを防止しつつ、溶接耐久性を向上させることができる溶接構造および弁装置を提供することである。
【課題を解決するための手段】
【0008】
本発明の溶接構造は、対象部位に対して薄板材からなる可撓部材を溶接接合するための溶接構造であって、前記対象部位および前記可撓部材は、互いの溶融固化部が主としてオーステナイト相となる異種金属素材からなり、前記対象部位は、第一面と、その反対側の第二面と、を有した突起状の接続部を備え、前記可撓部材は、前記接続部の前記第一面に沿う板状の被溶接部を有し、前記溶融固化部は、前記接続部および前記被溶接部の先端部に設けられるとともに、前記接続部および前記被溶接部を合せた厚み寸法以上の直径を有する断面円形に形成されていることを特徴とする。
【0009】
このような本発明によれば、対象部位の接続部および可撓部材の被溶接部の先端部に溶融固化部が設けられ、接続部および被溶接部を合せた厚み寸法以上の直径を有する断面円形に溶融固化部が形成されていることで、溶接割れを防止することができる。すなわち、接続部と被溶接部の先端部同士を溶接する際に、溶融した金属が表面張力で断面円形(溶接部が点であれば球状)となることで、凝固する過程で収縮したとしても、その収縮力が母材に作用しにくくなり、収縮による引張応力の発生を抑制することができる。従って、溶融固化部が主としてオーステナイト相となる異種金属素材同士であり、溶融固化部や周辺の母材に溶接割れが生じやすい条件であっても、溶接割れを防止することができ、残留応力を抑制することによって溶接耐久性を向上させることができる。
【0010】
この際、前記接続部の先端側および前記被溶接部の先端側の厚み寸法が互いに同程度であることが好ましい。
【0011】
この構成によれば、接続部の先端側および被溶接部の先端側の厚み寸法が互いに同程度であることで、これらの先端部同士を溶接する際に溶融する金属量が互いに同程度になり、凝固する際の収縮方向が偏らないことから引張応力の発生をさらに抑制でき、溶接割れを防止することができる。
【0012】
さらに、前記対象部位は、主としてオーステナイト系ステンレス鋼から構成され、前記可撓部材は、主としてニッケル基合金から構成されることが好ましい。
【0013】
この構成によれば、対象部位が主としてオーステナイト系ステンレス鋼から構成され、可撓部材が主としてニッケル基合金から構成されることで、各部ごとに適切な特性を有した金属素材を選択しつつ、溶接耐久性を向上させることができる。
【0014】
さらに、前記可撓部材は、円筒状かつ蛇腹状に形成された金属ベローズであり、前記対象部位は、前記金属ベローズの軸方向末端に固定されるフランジ部材であって、前記接続部は、径方向の外側方向に突出するとともに周方向に連続した環状に形成され、前記被溶接部は、前記金属ベローズの軸方向末端にて径方向の外側方向に延びるとともに、周方向に連続した環状に形成され、前記溶融固化部は、前記接続部および前記被溶接部の先端部に沿って周方向に連続して設けられていることが好ましい。
【0015】
また、前記可撓部材は、円筒状かつ蛇腹状に形成された金属ベローズであり、前記対象部位は、前記金属ベローズの軸方向末端に固定されるフランジ部材であって、前記接続部は、径方向の内側方向に突出するとともに周方向に連続した環状に形成され、前記被溶接部は、前記金属ベローズの軸方向末端にて径方向の内側方向に延びるとともに、周方向に連続した環状に形成され、前記溶融固化部は、前記接続部および前記被溶接部の先端部に沿って周方向に連続して設けられていてもよい。
【0016】
さらに、前記可撓部材は、円筒状かつ蛇腹状に形成された金属ベローズであり、前記対象部位は、前記金属ベローズの軸方向末端に固定されるフランジ部材であって、前記接続部は、軸方向の外側方向に突出するとともに周方向に連続した環状に形成され、前記被溶接部は、前記金属ベローズの軸方向末端にて軸方向の外側方向に延びるとともに、周方向に連続した環状に形成され、前記溶融固化部は、前記接続部および前記被溶接部の先端部に沿って周方向に連続して設けられていてもよい。
【0017】
これらの構成によれば、金属ベローズとフランジ部材との溶接部における溶接割れを防止するとともに、周方向に連続した溶融固化部の溶接耐久性を向上させることで、良好なシール性が維持されることから製品寿命を延ばすことができる。
【0018】
また、弁本体の弁室内に設けられる弁体と、前記弁室をシールする前記可撓部材としてのダイヤフラムと、を備えた弁装置に用いられ、前記弁本体は、周方向に連続した環状の前記接続部を有し、前記ダイヤフラムは、円板状の外周縁に沿って周方向に連続した環状の前記被溶接部を有して構成され、前記溶融固化部は、前記接続部および前記被溶接部の先端部に沿って周方向に連続して設けられていることが好ましい。
【0019】
この構成によれば、弁装置における弁本体と可撓部材としてのダイヤフラムとの溶接部における溶接割れを防止するとともに、周方向に連続した溶融固化部の溶接耐久性を向上させることで、良好なシール性が維持されることから弁装置の製品寿命を延ばすことができる。
【0020】
また、前記溶融固化部の直径は、前記接続部および前記被溶接部を合せた厚み寸法に対し、1.1倍以上かつ1.6倍以下であることが好ましい。
【0021】
この構成によれば、溶融固化部の直径が接続部および被溶接部を合せた厚み寸法に対して1.1倍以上かつ1.6倍以下に設定されることで、溶融固化部と被溶接部および接続部を滑らかに連続させ、被溶接部や接続部の先端にエッジが残らないようにすることができ、溶接部の溶接耐久性や力学特性を向上させることができる。
【0022】
また、前記接続部における前記第一面と前記第二面とは、当該接続部の先端に向かって狭まる交差角度を有して設けられ、前記交差角度が40°以下であることが好ましい。
【0023】
この構成によれば、接続部における第一面と第二面とが先端に向かって狭まる40°以下の交差角度で設けられていることで、溶融金属が凝固する際の収縮力が母材に与える影響を抑制し、接続部の溶接割れを防止することができる。
【0024】
また、前記被溶接部は、前記可撓部材を構成する薄板材の端部を折り返して重ねた折返部によって構成され、前記薄板材の端縁側が前記接続部の前記第一面に沿って設けられていることが好ましい。
【0025】
この構成によれば、薄板材の端部を折り返して重ねた折返部によって可撓部材の被溶接部を構成することで、被溶接部の厚み寸法が大きくなり、溶接時の熱の影響や凝固する際の収縮力の影響を抑制し、被溶接部の溶接割れを防止することができる。
【0026】
本発明の弁装置は、前記いずれかの溶接構造によって可撓部材が装置内部の対象部位に固定されていることを特徴とする。
【0027】
このような弁装置によれば、前述の溶接構造による効果と同様に、可撓部材と対象部位との溶接割れを防止して溶接耐久性を向上させることができるので、弁装置の製品寿命を延ばすことができる。
【発明の効果】
【0028】
本発明の溶接構造および弁装置によれば、異種金属素材同士の溶接部における溶接割れを防止しつつ、溶接耐久性を向上させることができる。
【発明を実施するための形態】
【0030】
本発明の第1実施形態の溶接構造は、冷凍空調装置やバルブ(弁装置)、ポンプ、圧力スイッチ、配管継手、カプラ等の各種機器において、伸縮可能なシール部材として用いられる金属ベローズに適用される。このような機器のうち冷凍空調装置等に利用される弁装置としては、例えば、各種の制御弁や圧力応動弁等があり、可撓部材である金属ベローズは、装置内部(例えば、弁室)の対象部位(例えば、弁本体や弁体)に固定され、対象部位間の相対変位に伴って伸縮自在に設けられている。
【0031】
以下、第1実施形態の溶接構造を用いたベローズについて、
図1、
図2に基づいて説明する。
図1は、第1実施形態の溶接構造を用いたベローズ10を示す断面図である。
図2は、ベローズ10の要部を示す拡大断面図であり、
図1に丸囲み部Aで示す部分の拡大図である。また、
図2(A)は溶接接合されたベローズ10の要部を示し、
図2(B)はベローズ10の溶接接合前の状態を示している。
【0032】
図1、2に示すように、ベローズ10は、金属ベローズである成形ベローズ(可撓部材)11と、成形ベローズ11の軸方向(
図1に示す中心軸Xに沿った方向)両端に固定される一対のフランジ部材(対象部位)12,13と、を備えている。成形ベローズ11と一対のフランジ部材12,13とは、溶融固化部14によって互いに溶接接合されている。
【0033】
成形ベローズ11は、全体円筒状でありプレス加工(例えば、バルジ加工)等によって蛇腹状に成形された薄板材からなり、薄板材の厚み寸法t
1は、0.1mm〜0.2mm程度である。成形ベローズ11の軸方向両端部には、
図2に示すように、薄板材の端部を折り返して重ねた折返部によって構成された被溶接部11aが設けられ、この被溶接部11aは、成形ベローズ11の軸方向両端部にて径方向の外側方向に延びるとともに、周方向に連続した環状に形成されている。被溶接部11aの厚み寸法T
Bは、成形ベローズ11の薄板材を2枚重ねた寸法(T
B=2t
1)であり、0.2mm〜0.4mm程度となっている。
【0034】
フランジ部材12,13は、全体円盤状に形成された板材からなり、その厚み寸法は成形ベローズ11の厚み寸法t
1と比較して十分に大きなものであり、可撓性を有した成形ベローズ11に対して実質的に剛体となっている。フランジ部材12,13における互いに対向する面12a,13aの外周縁には、それぞれ成形ベローズ11が溶接される接続部15が形成されている。接続部15は、フランジ部材12,13の外周面から径方向の外側方向に突出するとともに、周方向に連続した環状に形成されている。また、接続部15は、
図2(B)に示すように、フランジ部材12,13の面12a,13aと面一に連続する第一面15aと、その反対側の第二面15bと、を有して突起状に形成されている。成形ベローズ11の被溶接部11aは、その折返部における薄板材の端縁側が第一面15aに沿って設けられている。
【0035】
成形ベローズ11と溶接接合される前のフランジ部材12,13において、接続部15は、
図2(B)に示すように、第一面15aおよび第二面15bに連続し、かつ、接続部15の先端側を構成する第三面15cを有している。接続部15の先端側の厚み寸法T
F、つまり第三面15cの高さ寸法は、被溶接部11aの厚み寸法T
Bと同程度(T
F=T
B、0.2mm〜0.4mm程度)となっている。なお、被溶接部11aの厚み寸法T
Bと接続部15の先端側の厚み寸法T
Fとは、0.8≦(T
B/T
F)≦1.2となるように設定されていることが好ましい。また、第一面15aと第二面15bとは、接続部15の先端に向かって狭まる交差角度θを有して設けられ、この交差角度θが30°程度になっている。なお、第一面15aと第二面15bとの交差角度θは、40°以下であることが好ましい。
【0036】
溶融固化部14は、被溶接部11aおよび接続部15の先端側からの電子ビーム溶接によって被溶接部11aおよび接続部15の先端部を溶融、固化させることで形成され、周方向に連続した環状に形成されている。溶融固化部14は、溶接時に溶融した金属が固化する際に、その表面張力によって球状に収縮することで断面円形に形成されている。溶融固化部14の中心Oは、被溶接部11aと接続部15の接触面(第一面15a)の延長線上に位置し、溶融固化部14の半径Rは、被溶接部11aの厚み寸法T
Bおよび接続部15の先端部の厚み寸法T
F以上であり、すなわち、溶融固化部14の直径が被溶接部11aおよび接続部15の先端側を合せた厚み寸法以上に形成されている。なお、溶融固化部14は、被溶接部11aや接続部15の先端にエッジが残らず、かつ滑らかに連続することが好ましく、そのために溶融固化部14の直径は、被溶接部11aおよび接続部15の先端側を合せた厚み寸法の1.1倍以上かつ1.6倍以下であることが好ましい。
【0037】
次に、第1実施形態の溶接構造を用いた他のベローズについて、
図3、
図4に基づいて説明する。
図3は、第1実施形態の溶接構造を用いたベローズ20を示す断面図である。
図4は、ベローズ20の要部を示す拡大断面図であり、
図3に丸囲み部Aで示す位置の拡大図である。また、
図4(A)は溶接接合されたベローズ20の要部を示し、
図4(B)はベローズ20の溶接接合前の状態を示している。
【0038】
図3、4に示すように、ベローズ20は、金属ベローズである溶接ベローズ(可撓部材)21と、溶接ベローズ21の軸方向(
図3に示す中心軸Xに沿った方向)両端に固定される一対のフランジ部材(対象部位)22,23と、を備えている。溶接ベローズ21と一対のフランジ部材22,23とは、溶融固化部24によって互いに溶接接合されている。
【0039】
溶接ベローズ21は、環状かつ断面波形の薄板材を2枚重ねにしたものを軸方向に複数並べて配置し、互いの内周縁と外周縁とを交互に溶接して溶接部21bで接合することで、全体円筒状かつ蛇腹状に形成されている。薄板材の1枚あたりの厚み寸法は、0.1mm〜0.2mm程度であり、2枚重ねた薄板材の厚み寸法t
2は、0.2mm〜0.4mm程度になっている。溶接ベローズ21の軸方向両端部には、
図4に示すように、フランジ部材22,23の接続部25に沿う被溶接部21aが設けられている。この被溶接部21aは、溶接ベローズ21の軸方向両端部にて径方向の外側方向に延びるとともに、周方向に連続した環状に形成されている。被溶接部21aの厚み寸法T
Bは、2枚重ねた薄板材の厚み寸法t
2であり、0.2mm〜0.4mm程度となっている。
【0040】
フランジ部材22,23は、全体円盤状に形成された板材からなり、その厚み寸法は溶接ベローズ21の厚み寸法t
2と比較して十分に大きなものであり、可撓性を有した溶接ベローズ21に対して実質的に剛体となっている。フランジ部材22,23における互いに対向する面22a,23aの外周縁には、それぞれ溶接ベローズ21が溶接される接続部25が形成されている。接続部25は、フランジ部材22,23の外周面から径方向の外側方向に突出するとともに、周方向に連続した環状に形成されている。また、接続部25は、フランジ部材22,23の面22a,23aと面一に連続する第一面25aと、その反対側の第二面25bと、を有して突起状に形成されている。溶接ベローズ21の被溶接部21aは、接続部25の第一面25aに沿って設けられている。
【0041】
溶接ベローズ21と溶接接合される前のフランジ部材22,23において、接続部25は、
図4(B)に示すように、第一面25aおよび第二面25bに連続し、かつ、接続部25の先端側を構成する第三面25cを有している。接続部25の先端側の厚み寸法T
F、つまり第三面25cの高さ寸法は、被溶接部21aの厚み寸法T
Bと同程度(T
F=T
B、0.2mm〜0.4mm程度)となっている。なお、被溶接部21aの厚み寸法T
Bと接続部25の先端側の厚み寸法T
Fとは、0.8≦(T
B/T
F)≦1.2となるように設定されていることが好ましい。また、第一面25aと第二面25bとは、接続部25の先端に向かって狭まる交差角度θを有して設けられ、この交差角度θが30°程度になっている。なお、第一面25aと第二面25bとの交差角度θは、40°以下であることが好ましい。
【0042】
溶融固化部24は、被溶接部21aおよび接続部25の先端側からの電子ビーム溶接によって被溶接部21aおよび接続部25の先端部を溶融、固化させることで形成され、周方向に連続した環状に形成されている。溶融固化部24は、溶接時に溶融した金属が固化する際に、その表面張力によって球状に収縮することで断面円形に形成されている。溶融固化部24の中心Oは、被溶接部21aと接続部25の接触面(第一面25a)の延長線上に位置し、溶融固化部24の半径Rは、被溶接部21aの厚み寸法T
Bおよび接続部25の先端側の厚み寸法T
F以上であり、すなわち、溶融固化部24の直径が被溶接部21aおよび接続部25の先端側を合せた厚み寸法以上に形成されている。なお、溶融固化部24は、被溶接部21aや接続部25の先端にエッジが残らず、かつ滑らかに連続することが好ましく、そのために溶融固化部24の直径は、被溶接部21aおよび接続部25の先端側を合せた厚み寸法の1.1倍以上かつ1.6倍以下であることが好ましい。
【0043】
次に、ベローズ10,20を構成する各部材の金属素材について説明する。成形ベローズ11および溶接ベローズ21は、主としてニッケル基合金から構成される。ニッケル基合金としては、耐熱性、耐蝕性、耐酸化性などに優れたインコネル(登録商標)が好適である。ニッケル基合金は、含有ニッケル量が50%以上のものであって、NCF600、NCF601、NCF625、NCF690、NCF718、NCF750、NCF751、NCF80A(以上の記号は、JIS G 4902:1992耐食耐熱超合金板に基づく)が例示できる。
【0044】
フランジ部材12,13,22,23は、主としてオーステナイト系ステンレス鋼から構成される。オーステナイト系ステンレス鋼としては、SUS304系のものが好適であるが、その中でも耐蝕性に優れたSUS316L、SUS316LN、SUS321、SUS347が例示できる。なお、フランジ部材12,13,22,23の金属素材としてニッケル基合金や他の合金を用いてもよいし、成形ベローズ11および溶接ベローズ21の金属素材としてオーステナイト系ステンレス鋼や他の合金を用いてもよい。すなわち、成形ベローズ11および溶接ベローズ21の金属素材と、フランジ部材12,13,22,23の金属素材と、の溶接によって形成される溶融固化部14,24が主としてオーステナイト相となる組合せであればよく、このような異種金属素材の溶接に対して、本実施形態の溶接構造が好適に利用することができる。
【0045】
以上の本実施形態によれば、フランジ部材12,13,22,23の接続部15,25の先端側および成形ベローズ11および溶接ベローズ21の被溶接部11a,21aの先端側の厚み寸法T
F,T
Bが互いに同程度であり、このような接続部15,25および被溶接部11a,21aの先端部に溶融固化部14,24が設けられ、接続部15,25の先端側および被溶接部11a,21aを合せた厚み寸法以上の直径を有する断面円形に溶融固化部14,24が形成されている。このように互いに同程度の厚み寸法を有した接続部15,25および被溶接部11a,21aの先端部同士を溶接することで、溶融した金属が表面張力で断面円形となり、凝固する過程で収縮したとしても、その収縮力が母材に作用しにくくなり、収縮による引張応力の発生を抑制することができる。従って、溶融固化部14,24が主としてオーステナイト相となる異種金属素材同士であり、溶融固化部14,24や周辺の母材に溶接割れが生じやすい条件であっても、溶接割れを防止することができ、残留応力を抑制することによって溶接耐久性を向上させることができる。
【0046】
また、溶融固化部14,24の直径が被溶接部11a,21aおよび接続部15,25を合せた厚み寸法以上に形成されていることで、溶融固化部14,24と被溶接部11a,21aおよび接続部15,25とを滑らかに連続させ、被溶接部11a,21aや接続部15,25の先端にエッジが残らないようにでき、溶接部の溶接耐久性や力学特性を向上させることができる。
【0047】
また、接続部15,25における第一面15a,25aと第二面15b,25bとが先端に向かって狭まる約30°の交差角度θで設けられていることで、溶融金属が凝固する際の収縮力が母材に与える影響を抑制し、接続部15,25周辺の溶接割れを防止することができる。
【0048】
また、成形ベローズ11において、薄板材の端部を折り返して重ねた折返部によって被溶接部11aを構成することで、被溶接部11aの厚み寸法が大きくなり、溶接時の熱の影響や凝固する際の収縮力の影響を抑制し、被溶接部11aの溶接割れを防止することができる。
【0049】
また、ベローズ10,20が弁装置に用いられる場合には、周方向に連続した溶融固化部14,24が形成され、この溶融固化部14,24周辺の溶接割れが防止されて溶接耐久性が向上することで、ベローズ10,20の良好なシール性が維持されることから弁装置の製品寿命を延ばすことができる。
【0050】
次に、本発明の第2実施形態のベローズについて、
図5、
図6に基づいて説明する。
図5は、第2実施形態の溶接構造を用いたベローズ30を示す断面図である。
図6は、ベローズ30の要部を示す拡大断面図であり、
図5に丸囲み部Aで示す部分の拡大図である。また、
図6(A)は溶接接合されたベローズ30の要部を示し、
図6(B)はベローズ30の溶接接合前の状態を示している。
【0051】
図5、6に示すように、ベローズ30は、金属ベローズである成形ベローズ(可撓部材)31と、成形ベローズ31の軸方向(
図5に示す中心軸Xに沿った方向)両端に固定される一対のフランジ部材(対象部位)32,33と、を備えている。成形ベローズ31と一対のフランジ部材32,33とは、溶融固化部34によって互いに溶接接合されている。
【0052】
成形ベローズ31は、前記第1実施形態の成形ベローズ11と同様に、その軸方向両端部に被溶接部31aが設けられ、この被溶接部31aは、成形ベローズ31の軸方向両端部にて径方向の内側方向に延びるとともに、周方向に連続した環状に形成されている。フランジ部材32,33は、それぞれ成形ベローズ31が溶接される接続部35を有している。接続部35は、フランジ部材32,33の互いに対向する面32a,33aの外周縁から径方向の内側方向に突出するとともに、周方向に連続した環状に形成されている。また、接続部35は、面32a,33aと面一に連続する第一面35aと、その反対側の第二面35bと、接続部35の先端側を構成する第三面35cと、を有して突起状に形成されている。
【0053】
溶融固化部34は、被溶接部31aおよび接続部35の先端側からの電子ビーム溶接によって被溶接部31aおよび接続部35の先端部を溶融、固化させることで形成され、周方向に連続した環状に形成されている。溶融固化部34は、溶接時に溶融した金属が固化する際に、その表面張力によって球状に収縮することで断面円形に形成されている。この溶融固化部34の直径は、被溶接部31aおよび接続部35の先端側の厚み寸法T
B,T
Fを合せた厚み寸法以上に形成されている。
【0054】
以上の成形ベローズ31、フランジ部材32,33および溶融固化部34の形状および寸法は、前記第1実施形態と同様である。また、成形ベローズ31およびフランジ部材32,33を構成する金属素材は、前記第1実施形態と同様であり、その溶接によって形成される溶融固化部34が主としてオーステナイト相となる組合せである。このような第2実施形態のベローズ30によれば、前記第1実施形態と同様の作用、効果を奏することができる。
【0055】
次に、本発明の第3実施形態のベローズについて、
図7、
図8に基づいて説明する。
図7は、第3実施形態の溶接構造を用いたベローズ40を示す断面図である。
図8は、ベローズ40の要部を示す拡大断面図であり、
図7に丸囲み部Aで示す部分の拡大図である。また、
図8(A)は溶接接合されたベローズ40の要部を示し、
図8(B)はベローズ40の溶接接合前の状態を示している。
【0056】
図7、8に示すように、ベローズ40は、金属ベローズである成形ベローズ(可撓部材)41と、成形ベローズ41の軸方向(
図7に示す中心軸Xに沿った方向)両端に固定される一対のフランジ部材(対象部位)42,43と、を備えている。成形ベローズ41と一対のフランジ部材42,43とは、溶融固化部44によって互いに溶接接合されている。
【0057】
成形ベローズ41は、前記第1実施形態の成形ベローズ11と同様に、その軸方向両端部に被溶接部41aが設けられ、この被溶接部41aは、成形ベローズ41の軸方向両端部にて軸方向の外側方向に延びるとともに、周方向に連続した環状に形成されている。フランジ部材42,43は、それぞれ成形ベローズ41が溶接される接続部45を有している。接続部45は、フランジ部材42,43の内周側にて径方向に対向する面42a,43aから軸方向の外側方向に突出するとともに、周方向に連続した環状に形成されている。また、接続部45は、面42a,43aと面一に連続する第一面45aと、その反対側の第二面45bと、接続部45の先端側を構成する第三面45cと、を有して突起状に形成されている。
【0058】
溶融固化部44は、被溶接部41aおよび接続部45の先端側からの電子ビーム溶接によって被溶接部41aおよび接続部45の先端部を溶融、固化させることで形成され、周方向に連続した環状に形成されている。溶融固化部44は、溶接時に溶融した金属が固化する際に、その表面張力によって球状に収縮することで断面円形に形成されている。この溶融固化部44の直径は、被溶接部41aおよび接続部45の先端側の厚み寸法T
B,T
Fを合せた厚み寸法以上に形成されている。
【0059】
以上の成形ベローズ41、フランジ部材42,43および溶融固化部44の形状および寸法は、前記第1実施形態と同様である。また、成形ベローズ41およびフランジ部材42,43を構成する金属素材は、前記第1実施形態と同様であり、その溶接によって形成される溶融固化部44が主としてオーステナイト相となる組合せである。このような第3実施形態のベローズ40によれば、前記第1実施形態と略同様の作用、効果を奏することができる。
【0060】
次に、本発明の溶接構造を用いた弁装置について、
図9を参照して説明する。
図9は、本発明の溶接構造を用いた弁装置であるベローズ弁50を示す断面図である。ベローズ弁50は、
図9に示すように、内部に弁室51を有する弁本体52と、弁本体52に進退自在に設けられた弁体53と、弁体53を進退移動させるために回転操作される操作部54と、弁室51をシールする可撓部材としてのベローズ55と、を備えた手動開閉タイプのバルブである。
【0061】
弁本体52は、互いに螺合される第1部材52aおよび第2部材52bと、第1部材52aの内部に固定されて弁体53を進退案内するガイド部材52cと、を備えている。第1部材52aは、その一端側に開口して弁室51に連通する流入ポート52dと、他端側に開口して弁室51に連通する流出ポート52eと、流出ポート52eが弁室51に開口した開口である弁ポート52fと、を備える。第2部材52bは、全体円筒状に形成され、操作部54の軸部54aを回転支持する軸受部52gと、軸受部52gと軸部54aとの間をシールするパッキン52hと、を備えて構成されている。
【0062】
弁体53は、軸方向(
図9に示す中心軸Xに沿った方向)に延びる全体円柱状に形成され、ガイド部材52cによって軸方向に進退案内されるようになっている。弁体53の上部は円筒状とされ、その内周面に雌ねじ部53aが形成されている。弁体53の下端部には連結部材53bが固定され、この連結部材53bの下面には、弁ポート52fに着座可能な弁部材53cが取り付けられている。
【0063】
操作部54は、ハンドル54aと、ハンドル54aに上端部が固定されて軸方向に延びる軸部54bと、を備え、弁本体52の軸受部52gに回転支持されている。軸部54bの外周面には雄ねじ部54cが形成され、この雄ねじ部54cと弁体53の雌ねじ部53aとが螺合されている。従って、ハンドル54aの回転操作により、回転する雄ねじ部54cと螺合した雌ねじ部53aに上下方向の駆動力が作用し、弁体53が上下に進退駆動される送りねじ機構が構成されている。
【0064】
ベローズ55は、成形ベローズ55aを有し、この成形ベローズ55aがフランジ部材としてのガイド部材52cと弁体53との間に固定されている。具体的には、弁体53の上端部に一方の接続部56が形成され、ガイド部材52cの上端部に他方の接続部56が形成され、これら上下の接続部56と成形ベローズ55aの上下端縁とがそれぞれ溶融固化部57によって溶接接合されている。このようなベローズ55の溶接構造は、前記第1実施形態のベローズ10と同様であり、溶融固化部57が周方向に連続して設けられることでシール性を有している。従って、ガイド部材52cの内部を通して弁室51と連通する内部空間と、ベローズ55の外側である弁本体52の第2部材52bの内部空間と、がベローズ55によってシールされている。
【0065】
以上のベローズ弁50では、操作部54のハンドル54aが回転操作されることで、雄ねじ部54cおよび雌ねじ部53aの送りねじ機構によって、下方に移動して弁部材53cが弁ポート52eに着座する弁閉位置と、上方に移動して弁部材53cが弁ポート52eから離座する弁閉位置と、の間を上下方向に弁体53が進退移動するようになっている。このような弁体53の移動に伴い、ベローズ55の成形ベローズ55aは、上下に伸縮して弁体33の移動に追従し、シール性が維持されるようになっている。
【0066】
以上のベローズ弁50において、成形ベローズ55a、弁体53およびガイド部材52cの接続部56、および溶融固化部57の形状および寸法は、前記第1実施形態の溶接構造と同様である。また、成形ベローズ55a、弁体53およびガイド部材52cを構成する金属素材は、前記第1実施形態と同様であり、その溶接によって形成される溶融固化部57が主としてオーステナイト相となる組合せである。このようなベローズ弁50によれば、成形ベローズ55aと弁体53およびガイド部材52cの接続部56とが溶融固化部57によって溶接された溶接構造は、前記第1実施形態と略同様の作用、効果を奏することができる。すなわち、溶融固化部57が主としてオーステナイト相となる異種金属素材同士であっても、溶接割れを防止することができ、残留応力を抑制することによって溶接耐久性を向上させることができる。従って、ベローズ55の良好なシール性が維持されることからベローズ弁50の製品寿命を延ばすことができる。
【0067】
次に、本発明の溶接構造を用いた他の弁装置について、
図10、11を参照して説明する。
図10は、本発明の溶接構造を用いた他の弁装置であるダイヤフラム弁60を示す断面図である。
図11(A),(B)は、ダイヤフラム弁60の要部を示す拡大断面図である。ダイヤフラム弁60は、
図10に示すように、内部に弁室61を有する弁本体62と、弁室61内に設けられた弁体63と、弁体63を進退移動させるために回転操作される操作部64と、弁室61をシールする可撓部材としての金属ダイヤフラム65と、を備えた手動開閉タイプのバルブである。弁本体62は、互いに螺合される第1部材62aおよび第2部材62bを備えている。
【0068】
弁本体62の第1部材62aは、その一端側に開口して弁室61に連通する流入ポート62cと、他端側に開口して弁室61に連通する流出ポート62dと、流入ポート62cが弁室61に開口した開口である弁ポート62eと、を備える。弁本体62の第2部材62bは、全体円筒状に形成され、操作部64の軸部64bを回転支持する軸受部62fと、軸部64bの雄ねじ部64cと螺合する雌ねじ部62gと、を備えて構成されている。また、第1部材62aの弁室61内には、全体円筒状に立ち上がり金属ダイヤフラム65を固定するための対象部位としての固定部62hが形成されている。
【0069】
弁体63は、下方に開口した円筒箱状の弁体ケース63aと、弁体ケース63aの内部に保持された弁部材63bと、弁本体62に対して弁体ケース63aおよび弁部材63bを弁開方向(
図10の上方)に付勢するばね部材63cと、を有して構成されている。弁体ケース63aは、その上面に凸部を有し、この凸部が金属ダイヤフラム65の下面に当接して設けられ、ばね部材63cの付勢力によって金属ダイヤフラム65を上方に変位させる。弁部材63bは、樹脂製やゴム製のパッキンであって、弁ポート62eに着座して密閉可能に構成されている。
【0070】
操作部64は、ハンドル64aと、ハンドル64aに上端部が固定されて軸方向に延びる軸部64bと、軸部64bよりも下方に設けられた雄ねじ部64cと、雄ねじ部64cよりもさらに下方の先端部に設けられた当接部64dと、を備える。軸部64bは、弁本体52の軸受部62fに回転支持され、雄ねじ部64cは、雌ねじ部62gに螺合されている。当接部64dは、弁体63の反対側から金属ダイヤフラム65に当接して設けられている。
【0071】
このようなダイヤフラム弁60では、ハンドル64aの回転操作により、雌ねじ部62gに雄ねじ部64cが案内されて操作部64が上下に進退移動し、当接部64dと当接した金属ダイヤフラム65が面外方向に撓んで上下に変位し、金属ダイヤフラム65の変位に伴って弁体63が上下に移動する。すなわち、弁体63は、下方に移動して弁部材63bが弁ポート62eに着座する弁閉位置と、上方に移動して弁部材63bが弁ポート62eから離座する弁閉位置と、の間を上下方向に進退移動するようになっている。
【0072】
次に、
図11を参照して金属ダイヤフラム65と弁本体62の固定部62hとの溶接構造について説明する。金属ダイヤフラム65は、全体円形板状(皿状)の薄板材から構成され、その厚み寸法は、0.2mm〜0.4mm程度である。金属ダイヤフラム65の外周縁には、径方向の外側方向に延びるとともに周方向に連続した環状の被溶接部65aが設けられている。被溶接部65aの厚み寸法T
Bは、金属ダイヤフラム65の厚み寸法と略同一の0.2mm〜0.4mm程度となっている。被溶接部65aは、固定部62hの上面に沿って設けられている。
【0073】
固定部62hには、その上面が径方向の外側方向に突出した接続部67が周方向に連続した環状に形成されている。接続部67は、
図11(B)に示すように、固定部62hの上面に連続する第一面67aと、その反対側(下側)の第二面67bと、接続部67の先端側を構成する第三面67cと、を有して突起状に形成されている。接続部67の先端側の厚み寸法T
F、つまり第三面67cの高さ寸法は、被溶接部65aの厚み寸法T
Bと同程度(T
F=T
B、0.2mm〜0.4mm程度)となっている。なお、被溶接部65aの厚み寸法T
Bと接続部67の先端側の厚み寸法T
Fとは、0.8≦(T
B/T
F)≦1.2となるように設定されていることが好ましい。また、第一面67aと第二面67bとは、接続部67の先端に向かって狭まる交差角度θを有して設けられ、この交差角度θが30°程度になっている。なお、第一面67aと第二面67bとの交差角度θは、40°以下であることが好ましい。
【0074】
金属ダイヤフラム65の被溶接部65aと弁本体62の接続部67とが溶融固化部68によって溶接接合されている。溶融固化部68は、被溶接部65aおよび接続部67の先端側からの電子ビーム溶接によって被溶接部65aおよび接続部67の先端部を溶融、固化させることで形成され、周方向に連続した環状に形成されている。溶融固化部68は、溶接時に溶融した金属が固化する際に、その表面張力によって球状に収縮することで断面円形に形成されている。溶融固化部68の中心Oは、被溶接部65aと接続部67の接触面(第一面67a)の延長線上に位置し、溶融固化部68の半径Rは、被溶接部65aの厚み寸法T
Bおよび接続部67の先端側の厚み寸法T
F以上であり、すなわち、溶融固化部68の直径が被溶接部65aおよび接続部67の先端側を合せた厚み寸法以上に形成されている。なお、溶融固化部68は、被溶接部65aや接続部67の先端にエッジが残らず、かつ滑らかに連続することが好ましく、そのために溶融固化部68の直径は、被溶接部65aおよび接続部67の先端側を合せた厚み寸法の1.1倍以上かつ1.6倍以下であることが好ましい。
【0075】
以上のダイヤフラム弁60を構成する各部材の金属素材として、金属ダイヤフラム65は、前記第1実施形態の成形ベローズ11および溶接ベローズ21と同様に、主としてニッケル基合金から構成され、弁本体62は、前記第1実施形態のフランジ部材12,13,22,23と同様に、主としてオーステナイト系ステンレス鋼から構成される。なお、金属素材の組合せとしては、金属ダイヤフラム65の金属素材と、弁本体62の金属素材と、の溶接によって形成される溶融固化部68が主としてオーステナイト相となる組合せであればよく、このような異種金属素材の溶接に対して、本発明の溶接構造が好適に利用することができる。
【0076】
なお、ダイヤフラム弁60は、金属ダイヤフラムの外周縁が弁本体の固定部62hに固定されるものに限らず、金属ダイヤフラムの中央部に形成された挿通孔を弁体の軸部が貫通するとともに、挿通孔の内周縁と弁体の軸部とが溶接接合される構成のダイヤフラム弁であってもよい。この場合、金属ダイヤフラムの挿通孔の内周縁に被溶接部が設けられ、弁体の軸部に接続部が設けられ、これらの被溶接部および接続部の先端部同士が溶融固化部によって接合されていればよい。そのような溶接構造としては前記各実施形態と同様の構造が採用可能である。
【0077】
以上のダイヤフラム弁60によれば、金属ダイヤフラム65の被溶接部65aの先端側および弁本体62の接続部67の先端側の厚み寸法T
F,T
Bが互いに同程度であり、このような被溶接部65aおよび接続部67の先端部に溶融固化部68が設けられ、被溶接部65aおよび接続部67の先端側を合せた厚み寸法以上の直径を有する断面円形に溶融固化部68が形成されている。このように互いに同程度の厚み寸法を有した被溶接部65aおよび接続部67の先端部同士を溶接することで、溶融した金属が表面張力で断面円形となり、凝固する過程で収縮したとしても、その収縮力が母材に作用しにくくなり、収縮による引張応力の発生を抑制することができる。従って、溶融固化部68が主としてオーステナイト相となる異種金属素材同士であり、溶融固化部68や周辺の母材に溶接割れが生じやすい条件であっても、溶接割れを防止することができ、残留応力を抑制することによって溶接耐久性を向上させることができる。
【0078】
また、溶融固化部68の直径が被溶接部65aおよび接続部67の先端側を合せた厚み寸法以上に形成されていることで、溶融固化部68と被溶接部65aおよび接続部67とを滑らかに連続させ、被溶接部65aや接続部67の先端にエッジが残らないようにでき、溶接部の溶接耐久性や力学特性を向上させることができる。
【0079】
また、接続部67における第一面67aと第二面67bとが先端に向かって狭まる40°以下の交差角度θで設けられていることで、溶融金属が凝固する際の収縮力が母材に与える影響を抑制し、接続部67周辺の溶接割れを防止することができる。
【0080】
また、ダイヤフラム弁60の金属ダイヤフラム65において、周方向に連続した溶融固化部68が形成され、この溶融固化部68周辺の溶接割れが防止されて溶接耐久性が向上することで、金属ダイヤフラム65の良好なシール性が維持されることからダイヤフラム弁60の製品寿命を延ばすことができる。
【0081】
なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的が達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。例えば、前記実施形態では、本発明の溶接構造を適用する装置として、弁装置を例示したが、本発明の溶接構造は、弁装置に限らず、冷凍空調装置や配管継手、カプラ、ポンプ、圧力スイッチ等にも適用可能である。
【0082】
また、前記実施形態では、可撓部材として成形ベローズ11,31,41,55a、溶接ベローズ21および金属ダイヤフラム65を例示したが、本発明の溶接構造を適用する可撓部材としては任意のものが選択可能である。
【0083】
また、前記実施形態では、可撓部材と対象部位の金属素材として、ニッケル基合金とオーステナイト系ステンレス鋼との組合せを例示したが、本発明の溶接構造が適用できる金属素材の組合せとしては、溶融固化部が主としてオーステナイト相となる異種金属素材であればよく、前記実施形態のものに限定されない。また、可撓部材の被溶接部および対象部位の接続部の形状や寸法についても前記実施形態のものに限定されず、それらの先端部に形成される溶融固化部が断面円形となっていればよい。
【0084】
また、前記実施形態では、被溶接部および接続部の先端部を電子ビーム溶接によって溶接して溶融固化部が形成されるものとしたが、これに限らず、レーザー溶接やマイクロプラズマ溶接(TIG溶接)など、適宜な溶接方法を採用することができる。
【0085】
以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。
次に、ベローズ10,20を構成する各部材の金属素材について説明する。成形ベローズ11および溶接ベローズ21は、主としてニッケル基合金から構成される。ニッケル基合金としては、耐熱性、耐蝕性、耐酸化性などに優れたインコネル(登録商標)が好適である。ニッケル基合金は、含有ニッケル量が50%以上のものであって、NCF600、NCF601、NCF625、NCF69
弁本体52は、互いに螺合される第1部材52aおよび第2部材52bと、第1部材52aの内部に固定されて弁体53を進退案内するガイド部材52cと、を備えている。第1部材52aは、その一端側に開口して弁室51に連通する流入ポート52dと、他端側に開口して弁室51に連通する流出ポート52eと、流出ポート52eが弁室51に開口した開口である弁ポート52fと、を備える。第2部材52bは、全体円筒状に形成され、操作部54の軸部54
このようなダイヤフラム弁60では、ハンドル64aの回転操作により、雌ねじ部62gに雄ねじ部64cが案内されて操作部64が上下に進退移動し、当接部64dと当接した金属ダイヤフラム65が面外方向に撓んで上下に変位し、金属ダイヤフラム65の変位に伴って弁体63が上下に移動する。すなわち、弁体63は、下方に移動して弁部材63bが弁ポート62eに着座する弁閉位置と、上方に移動して弁部材63bが弁ポート62eから離座する