特開2019-207291(P2019-207291A)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ キヤノン株式会社の特許一覧
<>
  • 特開2019207291-ズームレンズ及び撮像装置 図000005
  • 特開2019207291-ズームレンズ及び撮像装置 図000006
  • 特開2019207291-ズームレンズ及び撮像装置 図000007
  • 特開2019207291-ズームレンズ及び撮像装置 図000008
  • 特開2019207291-ズームレンズ及び撮像装置 図000009
  • 特開2019207291-ズームレンズ及び撮像装置 図000010
  • 特開2019207291-ズームレンズ及び撮像装置 図000011
  • 特開2019207291-ズームレンズ及び撮像装置 図000012
  • 特開2019207291-ズームレンズ及び撮像装置 図000013
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2019-207291(P2019-207291A)
(43)【公開日】2019年12月5日
(54)【発明の名称】ズームレンズ及び撮像装置
(51)【国際特許分類】
   G02B 15/20 20060101AFI20191108BHJP
   G02B 13/18 20060101ALI20191108BHJP
   G02B 15/16 20060101ALI20191108BHJP
【FI】
   G02B15/20
   G02B13/18
   G02B15/16
【審査請求】未請求
【請求項の数】16
【出願形態】OL
【全頁数】21
(21)【出願番号】特願2018-101825(P2018-101825)
(22)【出願日】2018年5月28日
(71)【出願人】
【識別番号】000001007
【氏名又は名称】キヤノン株式会社
(74)【代理人】
【識別番号】100126240
【弁理士】
【氏名又は名称】阿部 琢磨
(74)【代理人】
【識別番号】100124442
【弁理士】
【氏名又は名称】黒岩 創吾
(72)【発明者】
【氏名】中原 誠
【テーマコード(参考)】
2H087
【Fターム(参考)】
2H087KA02
2H087MA14
2H087MA18
2H087NA14
2H087PA05
2H087PA07
2H087PA08
2H087PA09
2H087PA17
2H087PA18
2H087PB07
2H087PB09
2H087PB10
2H087QA02
2H087QA03
2H087QA07
2H087QA17
2H087QA19
2H087QA22
2H087QA25
2H087QA32
2H087QA34
2H087QA37
2H087QA41
2H087QA42
2H087QA46
2H087RA05
2H087RA12
2H087RA13
2H087RA36
2H087SA07
2H087SA09
2H087SA14
2H087SA16
2H087SA19
2H087SA24
2H087SA26
2H087SA30
2H087SA32
2H087SA44
2H087SA46
2H087SA50
2H087SA52
2H087SA56
2H087SA62
2H087SA63
2H087SA64
2H087SA65
2H087SA66
2H087SB04
2H087SB13
2H087SB14
2H087SB15
2H087SB22
2H087SB23
2H087SB32
2H087SB43
2H087UA01
2H087UA06
(57)【要約】      (修正有)
【課題】小型かつ軽量で、高い光学性能を有するズームレンズを提供する。
【解決手段】ズームレンズZLの複数のレンズ群は、負の屈折力の第1レンズ群L1と、1以上のレンズ群を有し、全体として正の屈折力の後群Lrからなる。第1レンズ群L1は、物体側から像側へ順に配置された、第1負レンズG1、第2負レンズG2、正レンズG3からなる。このときの、第1負レンズG1の焦点距離、第2負レンズG2の焦点距離、第1負レンズG1の比重を適切に定めたことを特徴とする。
【選択図】図1
【特許請求の範囲】
【請求項1】
複数のレンズ群を有し、ズーミングに際して隣り合うレンズ群の間隔が変化するズームレンズであって、
前記複数のレンズ群は、負の屈折力の第1レンズ群と、該第1レンズ群の像側に配置され、1以上のレンズ群を有し、全体として正の屈折力の後群からなり、
前記第1レンズ群は、物体側から像側へ順に配置された、第1負レンズ、第2負レンズ、正レンズからなり、
前記第1のレンズ群の焦点距離をf1、前記第2負レンズの焦点距離をfG2、前記第1負レンズの比重をSG1するとき、
2.00<SG1<3.60
2.1<fG2/f1<20
なる条件式を満たすことを特徴とするズームレンズ。
【請求項2】
前記第1負レンズの材料の屈折率をnd1とするとき、
1.40<nd1<1.65
なる条件式を満たすことを特徴とする請求項1に記載のズームレンズ。
【請求項3】
前記第1負レンズの材料のアッベ数をνd1とするとき、
45<νd1<99
なる条件式を満たすことを特徴とする請求項1または2に記載のズームレンズ。
【請求項4】
前記第2負レンズの比重をSG2とするとき、
0.5<SG2<2.0
なる条件式を満たすことを特徴とする請求項1乃至3のいずれか1項に記載のズームレンズ。
【請求項5】
前記第1負レンズの像側の面と前記第2負レンズの物体側の面との光軸上の距離をd1、広角端における前記ズームレンズのレンズ全長をTLとするとき、
0.0001<d1/TL<0.20
なる条件式を満たすことを特徴とする請求項1乃至4のいずれか1項に記載のズームレンズ。
【請求項6】
前記第1負レンズの物体側の面および像側の面は球面であり、
前記第1負レンズの物体側の面の曲率半径をR1、前記第1負レンズの像側の面の曲率半径をR2とするとき、
−3.0<(R2+R1)/(R2−R1)<−0.01
なる条件式を満たすことを特徴とする請求項1乃至5のいずれか1項に記載のズームレンズ。
【請求項7】
前記正レンズの材料のアッベ数は前記第1負レンズの材料のアッベ数よりも小さく、
前記正レンズの材料のアッベ数をνdpとするとき、
10<νdp<35
なる条件式を満たすことを特徴とする請求項1乃至6のいずれか1項に記載のズームレンズ。
【請求項8】
前記正レンズの材料の屈折率をndpとするとき、
1.60<ndp<2.10
なる条件式を満たすことを特徴とする請求項1乃至7のいずれか1項に記載のズームレンズ。
【請求項9】
前記第2負レンズは樹脂材料よりなることを特徴とする請求項1乃至8のいずれか1項に記載のズームレンズ。
【請求項10】
前記第2負レンズの物体側および像側の面の少なくとも一方は非球面形状であることを特徴とする請求項1乃至9のいずれか1項に記載のズームレンズ。
【請求項11】
前記後群は、正の屈折力の第2レンズ群からなることを特徴とする請求項1乃至10のいずれか1項に記載のズームレンズ。
【請求項12】
前記後群は、物体側より像側へ順に配置された、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群からなることを特徴とする請求項1乃至10のいずれか1項に記載のズームレンズ。
【請求項13】
前記後群は、物体側より像側へ順に配置された、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群からなることを特徴とする請求項1乃至10のいずれか1項に記載のズームレンズ。
【請求項14】
前記後群は、物体側より像側へ順に配置された、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群からなることを特徴とする請求項1乃至10のいずれか1項に記載のズームレンズ。
【請求項15】
請求項1乃至14のいずれか1項に記載のズームレンズと、該ズームレンズによって形成される像を受光する撮像素子を有することを特徴とする撮像装置。
【請求項16】
広角端における有効像円径が、望遠端における有効像円径よりも小さいことを特徴とする請求項15に記載の撮像装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ズームレンズ及び撮像装置に関する。
【背景技術】
【0002】
撮像装置に用いるズームレンズには、広画角であり、小型かつ軽量であることが要望されている。広画角のズームレンズとして、最も物体側に負の屈折力のレンズ群を配置した、所謂ネガティブリード型のズームレンズが知られている。
【0003】
特許文献1は、物体側より像側へ順に配置された、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群よりなるズームレンズを開示している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2017−37164号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
最も物体側に配置されるレンズ群の外径は、広角端の軸外光束により定まる。そのため他のレンズ群に比べて、大型化し、かつ重量が重くなる傾向がある。また、当該レンズ群では広角端での軸外光束の入射高さが高いため、像面湾曲や歪曲収差等の諸収差が発生しやすくなる。そのため、ネガティブリード型のズームレンズにおいて、小型かつ軽量で、高い光学性能を有する際、特に第1レンズ群の構成を適切に設定することが重要となる。
【0006】
本発明は、小型かつ軽量で、高い光学性能を有するズームレンズ及び撮像装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明の一実施例に係るズームレンズは、複数のレンズ群を有し、ズーミングに際して隣り合うレンズ群の間隔が変化するズームレンズであって、前記複数のレンズ群は、負の屈折力の第1レンズ群と、該第1レンズ群の像側に配置され、1以上のレンズ群を有し、かつ全体として正の屈折力の後群からなり、前記第1レンズ群は、物体側から像側へ順に配置された、第1負レンズ、第2負レンズ、正レンズからなり、前記第1のレンズ群の焦点距離をf1、前記第2負レンズの焦点距離をfG2、前記第1負レンズの比重をSG1するとき、
2.00<SG1<3.60
2.1<fG2/f1<20
なる条件式を満たすことを特徴とする。
【発明の効果】
【0008】
本発明によれば、小型かつ軽量で、高い光学性能を有するズームレンズおよび撮像装置を得ることができる。
【図面の簡単な説明】
【0009】
図1】実施例1のズームレンズの断面図である。
図2】実施例1のズームレンズの無限遠合焦時の収差図である。
図3】実施例2のズームレンズの断面図である。
図4】実施例2のズームレンズの無限遠合焦時の収差図である。
図5】実施例3のズームレンズの断面図である。
図6】実施例3のズームレンズの無限遠合焦時の収差図である。
図7】実施例4のズームレンズの断面図である。
図8】実施例4のズームレンズの無限遠合焦時の収差図である。
図9】実施例の撮像装置の構成を示す図である。
【発明を実施するための形態】
【0010】
以下、本発明の実施例に係るズームレンズ及び撮像装置について、添付の図面に基づいて詳細に説明する。
【0011】
なお、本明細書において、「バックフォーカス」は、レンズ最終面(最も像側のレンズ面)から近軸像面までの光軸上の距離を空気換算長により表記したものとする。「レンズ全長」は、ズームレンズの最前面(最も物体側のレンズ面)から最終面までの光軸上の距離にバックフォーカスを加えた長さである。「レンズ群」は、複数のレンズから構成される場合に限らず、1枚のレンズから構成される場合も含むものとする。
【0012】
ある材料のアッベ数νdは、フラウンホーファ線のd線(587.6nm)、F線(486.1nm)、C線(656.3nm)、g線(波長435.8nm)における屈折率をNd、NF、NC、Ngとするとき、
νd=(Nd−1)/(NF−NC)
で表される。
【0013】
各実施例のズームレンズは、デジタルビデオカメラ、デジタルカメラ、銀塩フィルムカメラ、テレビカメラ等の撮像装置に用いられる撮影光学系である。図1、3、5、7に示すズームレンズの断面図において、左方が物体側(前方)であり、右方が像側(後方)である。また各断面図において、iを物体側から像側へのレンズ群の順番とすると、Liは第iレンズ群を示す。また、開口絞りSPは、開放Fナンバー(Fno)の光束を決定(制限)する。FPはフレアーカット絞りであり、不要光をカットしている。
【0014】
無限遠から至近距離物体へのフォーカシングに際して、フォーカスレンズ群は、図中の破線矢印に示すように移動する。広角端から望遠端へのズーミングに際して、各レンズ群は、図中の実線矢印に示すように移動し、ズーミングに際して隣り合うレンズ群の間隔が変化する。ただし、広角端はズームレンズの焦点距離が最も短くなる状態を示し、望遠端はズームレンズの焦点距離が最も長くなる状態を示す。
【0015】
デジタルビデオカメラやデジタルカメラなどに各実施例のズームレンズを使用する場合は、像面IPは、CCDセンサまたはCMOSセンサ等の撮像素子(光電変換素子)に相当する。銀塩フィルムカメラに各実施例の光学系を使用する場合は、像面IPはフィルム面に相当する。
【0016】
図2、4、6、8は、後述の各実施例のズームレンズの収差図である。球面収差図において、実線はd線(波長587.6nm)、破線はF線(波長486.1nm)、一点鎖線はC線(波長656.3nm)、二点鎖線はg線(波長435.8nm)を示している。非点収差図において破線Mはメリディオナル像面、実線Sはサジタル像面である。歪曲収差はd線について示している。倍率色収差はF線、C線、g線について示している。ωは半画角(度)、FnoはFナンバーである。
【0017】
本発明のズームレンズは、ズーミングに際して隣り合うレンズ群の間隔が変化する複数のレンズ群を有する。当該複数のレンズ群は、負の屈折力の第1レンズ群と、該第1レンズ群の像側に配置され、1以上のレンズ群を有し、かつ全体として正の屈折力の後群からなる。
【0018】
負の屈折力の第1レンズ群を有する、所謂ネガティブリード型のズームレンズは、小さい前玉有効径で広く光線を取り込むことが可能なため広角化に適している。しかし、ズームレンズを広角化すると、広角端において、像面湾曲や歪曲収差等の諸収差が増大する。このうち、歪曲収差は撮像装置側で電気的に補正することが可能である。そのため、ズームレンズにおいては、歪曲収差を許容し、かつ第1レンズ群の構成を適切にすることで像面湾曲を補正することにより、カメラシステム全体として諸収差を良好に補正をすることが可能となる。
【0019】
また、第1レンズ群の外径は、広角端の軸外光束により定まる。そのため、第1レンズ群は、他のレンズ群に比べて、大型化しやすくかつ重くなりやすい。したがって、ズームレンズの軽量化のためには、第1レンズ群を軽量化することが好ましい。
【0020】
以下、小型で、軽量で、像面湾曲を補正できるズームレンズを実現するための、第1レンズ群の構成について説明する。
【0021】
第1レンズ群の軽量化のために、第1レンズ群を構成するレンズの枚数を少なくしている。具体的には、第1レンズ群を、物体側から像側へ順に配置された、第1負レンズ、第2負レンズ、および、正レンズから構成している。
【0022】
さらなる第1レンズ群の軽量化のために、第1レンズ群に比較的比重が小さい材料のレンズを用いている。ただし、一般的に比重の小さな材料は屈折率が低い傾向にあるため、第1レンズ群の屈折力が弱くなりやすくなる。しかし、第1レンズ群の屈折率を小さくすると軽量化はできるが、広角端において像面湾曲等の諸収差を十分に補正することやズームレンズの小型化が困難になる。
【0023】
そこで、本発明のズームレンズは、第1負レンズおよび第2負レンズについて、以下の条件式(1)、(2)を満たすように構成している。
2.00<SG1<3.60 ・・・(1)
2.10<fG2/f1<20.00 ・・・(2)
【0024】
ここで、第1負レンズの比重をSG1、第1レンズ群の焦点距離をf1、第2負レンズの焦点距離をfG2とする。
【0025】
条件式(1)は第1負レンズの比重を規定している。ここで材料の比重は、圧力101.325kPa(標準気圧)のもとにおける、第1負レンズの材料の常温(15℃〜25℃)での質量と、当該材料の体積と同体積の4℃の純水の質量との比である。
【0026】
条件式(1)は、第1負レンズの比重を比較的小さくすることを示している。条件式(1)の下限値を下回って第1負レンズの比重が小さくなると、一般に選択可能な材料の屈折率は小さくなる。そのため、必要な屈折力を得るために面の曲率を大きくする必要が生じ、像面湾曲、歪曲収差等の諸収差が増大するため好ましくない。条件式(1)の上限値を上回って比重が大きくなると、ズームレンズの軽量化が困難となるため好ましくない。
【0027】
条件式(2)は第2負レンズと第1レンズ群の焦点距離の比を規定している。条件式(2)の下限値を下回って第2負レンズの焦点距離が短くなり、第2負レンズの屈折力が強くなると、第2負レンズの偏芯敏感度が高くなる。これにより、第2負レンズの製造が困難になるため好ましくない。特に、第2負レンズを樹脂材料で構成した場合、温度変化に対してピントや収差の変動が大きくなるため好ましくない。条件式(2)の上限値を上回って第2負レンズの焦点距離が長くなり、第2負レンズの屈折力が弱くなると、第1レンズ群で生じる像面湾曲の補正が困難になるため好ましくない。
【0028】
このように、前述のレンズ群の構成と、条件式(1)、(2)を満足ことにより、小型かつ軽量で、歪曲収差を許容しつつ高い光学性能を有するズームレンズを得ることができる。
【0029】
条件式(1)、(2)の数値範囲を以下のようにすることが好ましい。
2.05<SG1<3.55 ・・・(1a)
2.20<fG2/f1<18.00 ・・・(2a)
【0030】
さらに、条件式(1)、(2)の数値範囲を以下のようにすることが好ましい。
2.10<SG1<3.50 ・・・(1b)
2.3<fG2/f1<15 ・・・(2b)
【0031】
さらに、ズームレンズが、以下の条件式のうち1以上を満足することが好ましい。
1.40<nd1<1.65 ・・・(3)
45.00<νd1<99.00 ・・・(4)
0.50<SG2<2.00 ・・・(5)
0.0001<d1/TL<0.20 ・・・(6)
−3.00<(R2+R1)/(R2−R1)<−0.01 ・・・(7)
10.00<νdp<35.00 ・・・(8)
1.60<ndp<2.10 ・・・(9)
【0032】
ただし、第1負レンズの材料の屈折率をnd1、第1負レンズの材料のアッベ数をνd1、第2負レンズの比重をSG2、第1負レンズの像側の面と前記第2負レンズの物体側の面との光軸上の距離をd1、広角端におけるズームレンズのレンズ全長をTLとする。第1負レンズの物体側の面の曲率半径をR1、第1負レンズの像側の面の曲率半径をR2、第1レンズ群中の正レンズの材料のアッベ数をνdp、該正レンズの材料の屈折率をndpとする。なお、第1レンズ群中の正レンズの材料のアッベ数は、第1負レンズの材料のアッベ数よりも小さいものとする。
【0033】
条件式(3)は第1負レンズの材料の屈折率を規定している。条件式(3)の下限値を下回って第1負レンズの材料の屈折率が小さくなると、像面湾曲、歪曲収差等の諸収差を補正することが困難となるため好ましくない。条件式(3)の上限値を上回って第1負レンズの材料の屈折率が高くなると、選択可能な材料が重くなりやすく、ズームレンズの軽量化が困難となるため好ましくない。
【0034】
条件式(4)は第1負レンズの材料のアッベ数を規定している。広角端において、第1負レンズを通過する軸外光束の周辺光線の高さが高くなるため、倍率色収差が発生しやすくなる。そこで、当該倍率色収差を補正するために、第1負レンズの材料のアッベ数は比較的大きいことが好ましい。条件式(4)の下限値を下回って第1負レンズの材料のアッベ数が小さくなると、倍率色収差を補正することが困難となるため好ましくない。条件式(4)の上限値を上回って第1負レンズの材料のアッベ数が大きくなると、選択可能な材料の屈折率は一般的に小さくなる。これにより、像面湾曲、歪曲収差等の諸収差を補正することが困難となるため好ましくない。
【0035】
条件式(5)は第2負レンズの比重を規定している。条件式(5)の下限値を下回って比重が小さくなると、一般に選択可能な材料の屈折率は小さくなる。そのため、必要な屈折力を得るために第2負レンズの曲率を大きくすることとなり、像面湾曲、歪曲収差等の諸収差が増大するため好ましくない。条件式(5)の上限値を上回って比重が大きくなると、ズームレンズの軽量化が困難となるため好ましくない。
【0036】
条件式(6)は第1負レンズと第2負レンズの光軸上の間隔と広角端におけるズームレンズのレンズ全長との比を規定している。条件式(6)の下限値を下回って第1負レンズと第2負レンズの間隔が短くなると、製造時において第1負レンズと第2負レンズが干渉しやすくなる。これにより、表面に傷がつくと、光学特性の劣化や製造の歩留まり低下の要因となるため好ましくない。条件式(6)の上限値を上回って第1負レンズと第2負レンズの間隔が長くなると、第1レンズ群が光軸方向に長くなる。これにより、ズームレンズの小型化が困難となるため好ましくない。
【0037】
条件式(7)は第1負レンズの物体側および像側の面の形状を規定した条件式である。ズームレンズの小型化および像面湾曲の補正のために、第1レンズ群を構成する各レンズの屈折力を強めつつ、軸外光束の周辺光線の通過高さが高い第1負レンズにおいて曲率を適切に設定することで像面湾曲の発生を低減している。条件式(7)の上限値を上回ると、第1負レンズの物体側のレンズ面の曲率が大きくなり(曲率半径が小さくなり)、製造に際して加工が困難となるため好ましくない。また、像面湾曲が増大するため好ましくない。条件式(7)の下限値を下回ると、第1負レンズの物体側のレンズ面の曲率が小さくなり(曲率半径が大きくなり)、ズームレンズの広角化が困難となるため好ましくない。
【0038】
条件式(8)は第1レンズ群中の正レンズ材料のアッベ数を規定している。当該正レンズの材料のアッベ数を比較的小さくすることにより、第1負レンズの材料のアッベ数との差を大きくなる。第1負レンズと第1レンズ群中の正レンズにより色収差や像面湾曲を補正している。条件式(8)の下限値を下回って第1レンズ群中の正レンズ材料のアッベ数が小さくなると、第1負レンズの材料のアッベ数と正レンズの材料のアッベ数との差が大きくなり、1レンズ群において色収差が過剰に補正されるため好ましくない。条件式(8)の上限値を上回って第1レンズ群中の正レンズ材料のアッベ数が大きくなると、第1負レンズとのアッベ数の差が小さくなり、各レンズの屈折力が大きくなるため、色収差や像面湾曲の補正が困難となるため好ましくない。
【0039】
条件式(9)は第1レンズ群中の正レンズ材料の屈折率を規定している。条件式(9)の下限値を下回って当該正レンズの材料の屈折率が小さくなると、ズームレンズのペッツバール和が正の方向に大きくなる。これにより、像面湾曲の補正が困難となるため好ましくない。条件式(9)の上限値を上回って第1レンズ群中の正レンズ材料の屈折率が大きくなると、選択可能な材料のアッベ数は一般的に大きくなる。これにより、第1レンズ群において色収差が過剰に補正されてしまうため好ましくない。
【0040】
好ましくは条件式(3)〜(9)の数値範囲を下記のように設定することが好ましい。
1.42<nd1<1.63 ・・・(3a)
47.00<νd1<95.00 ・・・(4a)
0.60<SG2<1.90 ・・・(5a)
0.0002<d1/TL<0.19 ・・・(6a)
−2.80<(R2+R1)/(R2−R1)<−0.03 ・・・(7a)
11.00<νdp<33.00 ・・・(8a)
1.65<ndp<2.05 ・・・(9a)
【0041】
さらに好ましくは条件式(3)〜(9)の数値範囲を下記のように設定することが好ましい。
1.44<nd1<1.61 ・・・(3b)
50.00<νd1<90.00 ・・・(4b)
0.70<SG2<1.80 ・・・(5b)
0.0003<d1/TL<0.18 ・・・(6b)
−2.60<(R2+R1)/(R2−R1)<−0.05 ・・・(7b)
12.00<νdp<31.00 ・・・(8b)
1.70<ndp<2.00 ・・・(9b)
【0042】
上記条件式の少なくとも1つを満たすことで、小型かつ軽量で、歪曲収差を許容しつつさらに高い光学性能を有するズームレンズを得ることができる。
【0043】
また、各実施例のズームレンズにおいて、第2負レンズが樹脂材料よりなることが好ましい。第2負レンズが樹脂材料であることにより、ズームレンズを安価に製造することが可能となる。最も物体側の面は撮影時に露出するため傷つきやすく、第1負レンズを樹脂材料により構成すると光学性能の劣化が懸念されるが、第2負レンズであればそのようなことは生じない。また、第2負レンズは第1レンズ群中の正レンズよりも径が大きいため、第1レンズ群中の正レンズのみを樹脂材料により構成する場合に比べて第1レンズ群を軽量化できる。条件式(2)で規定したように第2負レンズの屈折力が弱いため、温度変化により形状変化しやすい樹脂材料で第2負レンズを構成したとしても、他のレンズを樹脂材料により構成する場合に比べて温度変化に伴う収差変動を低減できる。
【0044】
また、各実施例のズームレンズにおいて、第2負レンズの物体側および像側の面の少なくとも一方が非球面形状であることが好ましい。軸外光束の周辺光線の通過高さが高い位置に非球面が配置されることにより、像面湾曲等の諸収差が補正しやすくなる。
【0045】
次に、本発明の実施例に係るズームレンズについて説明する。
【0046】
[実施例1]
図1(A)は実施例1のズームレンズZLの広角端における断面図であり、図1(B)は実施例1のズームレンズZLの望遠端における断面図である。図2(A)は広角端において無限遠に合焦しているときのズームレンズZLの収差図であり、図2(B)は望遠端において無限遠に合焦しているときのズームレンズZLの収差図である。実施例1のズームレンズZLは、ズーム比4.03、Fナンバー3.65〜5.80のズームレンズである。
【0047】
実施例1に係るズームレンズZLは、複数のレンズ群を有する。当該複数のレンズ群は、物体側から像側へ順に配置された、負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2、負の屈折力の第3レンズ群L3、正の屈折力の第4レンズ群L4、負の屈折力の第5レンズ群L5からなる。本実施例において、後群Lrは、第2レンズ群L2、第3レンズ群L3、第4レンズ群L4、第5レンズ群L5からなる。第1レンズ群L1は、物体側から像側へ順に配置された、負レンズ(第1負レンズ)G1、負レンズ(第2負レンズ)G2、正レンズG3からなる。
【0048】
広角端から望遠端へのズーミングに際し、第1レンズ群L1は像側へ移動した後物体側へ移動し、第2レンズ群L2〜第5レンズ群L5は物体側へ移動する。無限遠から近距離物体へのフォーカシングに際して、第3レンズ群L3が像側に移動する。
【0049】
これらの構成により、ズームレンズを小型化かつ軽量化できる。さらに、図2の収差図に示すように、歪曲収差以外の光学特性に優れたズームレンズを得ることができる。
【0050】
[実施例2]
図3(A)は実施例2のズームレンズZLの広角端における断面図であり、図3(B)は実施例2のズームレンズZLの望遠端における断面図である。図4(A)は広角端において無限遠に合焦しているときのズームレンズZLの収差図であり、図4(B)は望遠端において無限遠に合焦しているときのズームレンズZLの収差図である。実施例2のズームレンズZLは、ズーム比2.87、Fナンバー3.63〜5.88のズームレンズである。
【0051】
実施例2に係るズームレンズZLは、複数のレンズ群を有し、当該複数のレンズ群は、物体側から像側へ順に配置された、負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2からなる。本実施例において、後群Lrは、第2レンズ群L2からなる。第1レンズ群L1は、物体側から像側へ順に配置された、負レンズ(第1負レンズ)G1、負レンズ(第2負レンズ)G2、正レンズG3からなる。
【0052】
広角端から望遠端へのズーミングに際し、第1レンズ群L1は像側へ移動した後物体側へ移動し、第2レンズ群L2は物体側へ移動する。無限遠から近距離物体へのフォーカシングに際して、第1レンズ群L1が物体側に移動する。
【0053】
これらの構成により、ズームレンズを小型化かつ軽量化できる。さらに、図4の収差図に示すように、歪曲収差以外の光学特性に優れたズームレンズを得ることができる。
【0054】
[実施例3]
図5(A)は実施例3のズームレンズZLの広角端における断面図であり、図5(B)は実施例3のズームレンズZLの望遠端における断面図である。図6(A)は広角端において無限遠に合焦しているときのズームレンズZLの収差図であり、図6(B)は望遠端において無限遠に合焦しているときのズームレンズZLの収差図である。実施例3のズームレンズZLは、ズーム比2.87、Fナンバー3.63〜5.88のズームレンズである。
【0055】
実施例3に係るズームレンズZLは、複数のレンズ群を有し、当該複数のレンズ群は、物体側から像側へ順に配置された、負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2、正の屈折力の第3レンズ群L3からなる。後群Lrは、第2レンズ群L2と第3レンズ群L3からなる。第1レンズ群L1は、物体側から像側へ順に配置された、負レンズ(第1負レンズ)G1、負レンズ(第2負レンズ)G2、正レンズG3からなる。
【0056】
広角端から望遠端へのズーミングに際し、第1レンズ群L1は像側へ移動した後物体側へ移動し、第2レンズ群L2および第3レンズ群L3は物体側へ移動する。無限遠から近距離物体へのフォーカシングに際して、第1レンズ群L1が物体側に移動する。
【0057】
これらの構成により、ズームレンズを小型化かつ軽量化できる。さらに、図6の収差図に示すように、歪曲収差以外の光学特性に優れたズームレンズを得ることができる。
【0058】
[実施例4]
図7(A)は実施例4のズームレンズZLの広角端における断面図であり、図7(B)は実施例4のズームレンズZLの望遠端における断面図である。図8(A)は広角端において無限遠に合焦しているときのズームレンズZLの収差図であり、図8(B)は望遠端において無限遠に合焦しているときのズームレンズZLの収差図である。実施例4のズームレンズZLは、ズーム比2.75、Fナンバー3.65〜5.80のズームレンズである。
【0059】
実施例4に係るズームレンズZLは、複数のレンズ群を有し、当該複数のレンズ群は、物体側から像側へ順に配置された、負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2、負の屈折力の第3レンズ群L3、正の屈折力の第4レンズ群L4からなる。本実施例において、後群Lrは、第2レンズ群L2、第3レンズ群L3、第4レンズ群L4からなる。第1レンズ群L1は、物体側から像側へ順に配置された、負レンズ(第1負レンズ)G1、負レンズ(第2負レンズ)G2、正レンズG3からなる。
【0060】
広角端から望遠端へのズーミングに際し、第1レンズ群L1は像側へ移動した後物体側へ移動し、第2レンズ群L2、第3レンズ群L3、および第4レンズ群L4は物体側へ移動する。無限遠物体から近距離物体へのフォーカシングに際して、第3レンズ群L3が像側へ移動する。
【0061】
これらの構成により、ズームレンズを小型化かつ軽量化できる。さらに、図8の収差図に示すように、歪曲収差以外の光学特性に優れたズームレンズを得ることができる。
【0062】
以上、本発明の好ましいズームレンズの実施例について説明したが、本発明のズームレ
ンズこれらの実施例に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
【0063】
[数値実施例]
以下に、実施例1〜4のそれぞれに対応する数値実施例1〜4を示す。また、数値実施例1〜4において、面番号は、物体側からの光学面の順序を示す。rは光学面の曲率半径(mm)、面番号iにおけるdは、第i番目の光学面と第i+1番目の光学面の間隔(mm)、ndはd線における光学部材の材料の屈折率、νdはd線を基準とした光学部材の材料のアッベ数であり、定義は前述のとおりである。BFはバックフォーカスを示す。
【0064】
また、光学面が非球面の場合は、面番号の右側に、*の符号を付している。非球面形状は、xを光軸方向の面頂点からの変位量、hを光軸と垂直な方向の光軸からの高さ、Rを近軸曲率半径、kを円錐定数、A4、A6、A8、A10、A12を各次数の非球面係数とするとき、
x=(h/R)/[1+{1−(1+k)(h/R)1/2 +A4×h+A6×h+A8×h+A10×h10+A12×h12
で表している。なお、各非球面係数における「e±XX」は「×10±XX」を意味している。数値実施例1〜4のそれぞれにおける、前述の各条件式に用いられている物理量を[表1]に示し、前述の各条件式に対応する値を[表2]に示す。
【0065】
[数値実施例1]
単位 mm

面データ
面番号 r d nd vd
1 78.919 1.76 1.59349 67.0
2 22.313 20.21
3* -91.148 2.00 1.52996 55.8
4* 211.982 0.15
5 98.769 3.06 1.92286 18.9
6 523.221 (可変)
7(絞り) ∞ 1.11
8 30.236 2.44 1.43875 94.7
9 94.436 6.77
10 17.405 7.25 1.43875 94.7
11 -48.540 0.15
12* -72.393 1.72 1.69680 55.5
13* -51.407 0.50
14 ∞ (可変)
15 741.421 0.70 1.85025 30.1
16 19.630 5.88
17 ∞ (可変)
18 78.348 5.13 1.59270 35.3
19 -27.791 (可変)
20* 80.319 2.50 1.52996 55.8
21* 61.429 9.22
22 -21.575 1.30 1.80610 40.9
23 -58.018 (可変)
像面 ∞

非球面データ
第3面
K = 0.00000e+000 A 4= 5.57735e-006 A 6=-4.23140e-008 A 8= 9.37701e-011 A10=-1.93623e-014 A12=-8.37621e-017

第4面
K = 0.00000e+000 A 4= 1.46115e-006 A 6=-4.39763e-008 A 8= 8.12741e-011 A10= 2.53530e-014 A12=-1.70992e-016

第12面
K = 0.00000e+000 A 4=-7.86030e-005 A 6= 2.75306e-007 A 8= 4.71828e-009 A10=-3.73239e-011 A12= 8.21570e-014

第13面
K = 0.00000e+000 A 4=-4.18004e-005 A 6= 3.35351e-007 A 8= 3.77339e-009 A10=-3.11773e-011 A12= 7.09781e-014

第20面
K = 0.00000e+000 A 4= 3.10668e-005 A 6= 1.27895e-007 A 8=-1.29560e-009 A10= 1.02484e-011 A12=-1.87500e-014

第21面
K = 0.00000e+000 A 4= 2.54527e-005 A 6= 1.27013e-007 A 8=-1.31732e-009 A10= 9.96190e-012 A12=-7.65908e-015

各種データ
ズーム比 4.03
広角 中間 望遠
焦点距離 20.61 43.52 83.00
Fナンバー 3.65 5.60 5.80
半画角(度) 42.52 25.76 14.61
像高 18.90 21.00 21.64
レンズ全長 144.78 134.16 149.20
BF 9.10 34.75 70.08

d 6 51.55 19.68 0.89
d14 1.38 0.66 0.50
d17 4.31 5.04 5.03
d19 6.60 2.18 0.85
d23 9.10 34.75 70.08

ズームレンズ群データ
群 始面 焦点距離
1 1 -50.76
2 7 23.80
3 15 -23.73
4 18 35.25
5 20 -39.72
【0066】
[数値実施例2]
単位 mm

面データ
面番号 r d nd vd
1 -382.346 1.30 1.60311 60.6
2 21.029 1.50
3* 18.152 2.00 1.53110 55.9
4* 13.043 11.60
5 29.859 3.40 1.84666 23.8
6 42.351 (可変)
7(絞り) ∞ 0.26
8 14.772 7.00 1.48749 70.2
9 -65.066 4.07
10 -22.712 0.55 1.78590 44.2
11 22.720 0.34
12* 21.253 1.56 1.53110 55.9
13* 17.930 0.14
14 19.143 6.07 1.49700 81.5
15 -15.847 5.71
16 ∞ (可変)
像面 ∞

非球面データ
第3面
K = 0.00000e+000 A 4=-6.25403e-005 A 6= 3.71513e-007 A 8=-3.02162e-009 A10= 1.14069e-011 A12=-1.76153e-014

第4面
K =-4.12921e-001 A 4=-8.34139e-005 A 6= 4.54675e-007 A 8=-4.77398e-009 A10= 2.10330e-011 A12=-3.88298e-014

第12面
K = 0.00000e+000 A 4=-1.21499e-004 A 6=-7.49459e-007 A 8=-1.74915e-008 A10= 6.85768e-010 A12=-4.95317e-012

第13面
K = 0.00000e+000 A 4=-3.14317e-005 A 6=-7.50425e-007 A 8=-1.05703e-008 A10= 5.51780e-010 A12=-4.20985e-012

各種データ
ズーム比 2.87
広角 中間 望遠
焦点距離 18.60 34.00 53.35
Fナンバー 3.63 5.88 5.88
半画角(度) 36.29 21.89 14.36
像高 13.66 13.66 13.66
レンズ全長 130.32 116.40 123.98
BF 38.39 55.11 76.11

d 6 46.41 15.78 2.36
d16 38.39 55.11 76.11

ズームレンズ群データ
群 始面 焦点距離
1 1 -34.05
2 7 36.96
【0067】
[数値実施例3]
単位 mm

面データ
面番号 r d nd vd
1 -224.165 1.50 1.59349 67.0
2 21.217 1.01
3* 18.508 2.30 1.53110 55.9
4* 15.081 11.36
5 36.541 3.03 1.84666 23.8
6 55.499 (可変)
7(絞り) ∞ 0.11
8 19.754 6.00 1.49700 81.5
9 -56.443 7.33
10 -21.021 0.55 1.80000 29.8
11 -98.700 (可変)
12* 27.239 3.00 1.53110 55.9
13* 26.032 1.77
14 -80.035 3.10 1.48749 70.2
15 -16.557 0.10
16 ∞ (可変)
像面 ∞

非球面データ
第3面
K = 0.00000e+000 A 4=-3.48534e-005 A 6= 7.57790e-008 A 8=-8.37993e-010 A10= 3.58698e-012 A12=-5.66764e-015

第4面
K =-2.79824e-001 A 4=-5.36578e-005 A 6= 8.26563e-008 A 8=-1.29623e-009 A10= 6.02379e-012 A12=-1.10810e-014

第12面
K = 0.00000e+000 A 4=-6.61953e-005 A 6=-4.14241e-007 A 8=-7.76525e-009 A10= 1.95146e-010 A12=-1.57027e-012

第13面
K = 0.00000e+000 A 4=-1.85266e-005 A 6=-4.71949e-007 A 8=-6.57076e-009 A10= 1.76371e-010 A12=-1.28842e-012

各種データ
ズーム比 2.87
広角 中間 望遠
焦点距離 18.60 36.00 53.35
Fナンバー 3.63 5.88 5.88
半画角(度) 36.29 20.78 14.36
像高 13.66 13.66 13.66
レンズ全長 140.83 116.87 120.00
BF 38.56 56.39 73.67

d 6 54.99 15.50 2.37
d11 6.11 3.82 2.80
d16 38.56 56.39 73.67

ズームレンズ群データ
群 始面 焦点距離
1 1 -38.45
2 7 74.72
3 12 44.04
【0068】
[数値実施例4]
単位 mm

面データ
面番号 r d nd vd
1 112.989 1.76 1.51633 64.1
2 21.052 16.19
3* -183.246 2.00 1.52996 55.8
4* 82.014 0.15
5 63.524 3.15 1.92119 24.0
6 132.980 (可変)
7(絞り) ∞ 2.81
8 19.087 2.44 1.61800 63.4
9 44.966 6.09
10 14.328 1.10 1.90043 37.4
11 9.867 8.20 1.49710 81.6
12* 193.670 (可変)
13 89.175 0.70 1.67003 47.2
14 18.211 1.30
15 ∞ (可変)
16 ∞ 3.29
17* -430.822 3.00 1.52996 55.8
18* -154.517 0.27
19 -131.167 3.97 1.69680 55.5
20 -60.117 (可変)
像面 ∞

非球面データ
第3面
K = 0.00000e+000 A 4=-1.11604e-005 A 6= 3.92586e-008 A 8=-4.74596e-011 A10= 2.79045e-014 A12=-6.76729e-017

第4面
K = 0.00000e+000 A 4=-1.58549e-005 A 6= 4.02828e-008 A 8=-7.80026e-011 A10= 7.50653e-014 A12=-1.50788e-016

第12面
K = 0.00000e+000 A 4= 5.75528e-005 A 6= 3.40033e-008 A 8=-3.37062e-009 A10= 6.91212e-011 A12=-5.58378e-013

第17面
K = 0.00000e+000 A 4=-2.53825e-005 A 6= 1.89925e-007 A 8=-1.11554e-009 A10= 6.95886e-012 A12=-1.47603e-014

第18面
K = 0.00000e+000 A 4=-2.86938e-005 A 6= 1.42511e-007 A 8=-8.00607e-010 A10= 4.50593e-012 A12=-7.89411e-015

各種データ
ズーム比 2.75

広角 中間 望遠
焦点距離 24.70 42.24 68.00
Fナンバー 3.65 5.60 5.80
半画角(度) 37.42 26.43 17.65
像高 18.90 21.00 21.64
レンズ全長 149.70 126.15 127.97
BF 27.45 31.48 47.40

d 6 54.99 19.93 1.68
d12 1.04 3.67 5.37
d15 9.80 14.67 17.11
d20 27.45 31.48 47.40

ズームレンズ群データ
群 始面 焦点距離
1 1 -44.96
2 7 26.43
3 13 -34.29
4 16 116.52
【0069】
【表1】
【0070】
【表2】
【0071】
次に、撮像装置の実施例について図9を用いて説明する。図9は、撮像装置10の概略図である。撮像装置10は、カメラ本体13と、上述した実施例1乃至4のいずれかと同様であるズームレンズZLを含むレンズ装置11と、ズームレンズZLによって形成される像を光電変換する受光素子(撮像素子)12を備える。受光素子12としては、CCDやCMOSセンサ等の撮像素子を用いることができる。レンズ装置11とカメラ本体13は一体に構成されていても良いし、着脱可能に構成されていても良い。本実施例の撮像装置10は、レンズ装置11を有することによって、小型かつ軽量で、高い光学性能を有する。
【0072】
撮像装置10において、広角端における有効像円径が、望遠端における有効像円径よりも小さいことが好ましい。さらに、撮像装置10が、レンズ装置11のズームレンズZLの光学特性に応じた補正データを用いて、撮像した画像に生じた歪曲収差を電気的に補正する機能を有することが好ましい。
【0073】
なお、上述した各実施例のレンズ装置は、図9に示したデジタルスチルカメラに限らず、放送用カメラ、銀塩フィルム用カメラ、監視用カメラ等の種々の撮像装置に適用することができる。
【0074】
以上、本発明の好ましい実施例について説明したが、本発明はこれらの実施形態及び実施例に限定されず、その要旨の範囲内で種々の組合せ、変形及び変更が可能である。
【符号の説明】
【0075】
L1 第1レンズ群
Lr 後群
G1 負レンズ(第1負レンズ)
G2 負レンズ(第2負レンズ)
G3 正レンズ
ZL ズームレンズ
図1
図2
図3
図4
図5
図6
図7
図8
図9