【解決手段】音響感知システム及び解析器モジュールを備え、音響感知システムが、物体に対して配置され、この音響感知システムは、アコースティックエミッションを検出し、検出されたアコースティックエミッションの音響波形データを生成する。解析器モジュールは、物体についての負荷データ及び音響波形データを受信するコンピュータシステムで実装され、音響波形データを用いて複数の周波数分布関数を生成し、複数の周波数分布関数それぞれについて複数の点を含む周波数分布関数時間発展画像を生成する。
前記複数の周波数分布関数について複数のビンのためにビン幅の値を特定することであって、前記ビン幅の値は、規定された時間間隔、又は規定された負荷間隔のいずれかである、特定すること、
をさらに含み、
前記複数の周波数分布関数について前記複数のビンのために前記ビン幅の値を特定することは、反復的なパラメータ調整と、前記音響波形データから生成された複数の周波数分布関数時間発展画像とを用いて、前記ビン幅の値を特定することを含む、請求項1に記載の方法。
前記複数の周波数分布関数について前記複数のビンのために前記ビン幅の値を特定することは、前記複数の周波数分布関数時間発展画像のうち2つの連続的な周波数分布関数時間発展画像間のパーセンテージでの差異が、10%以内の定常状態条件の変化であるとき、前記ビン幅の値を特定することを含む、請求項3に記載の方法。
反復的なパラメータ調整と、前記音響波形データから生成した複数の周波数分布関数時間発展画像とを用いて、周波数ビンの幅又は多数の周波数ピークのうち少なくとも1つを特定することをさらに含む、請求項1に記載の方法。
前記周波数分布関数時間発展画像を用いて、多数のクラスタを判定することをさらに含み、前記多数のクラスタを判定することは、特異値分解を前記周波数分布関数時間発展画像に適用することによって前記多数のクラスタを判定することを含む、請求項1に記載の方法。
前記多数のクラスタを判定することは、前記周波数分布関数時間発展画像における前記特異値分解からの特異値のプロットの曲線部内にあるエントリから多数のクラスタを選択することを含む、請求項6に記載の方法。
前記アレイを、周波数分布関数時間発展画像として表示することであって、前記周波数分布関数時間発展画像の各列が、前記複数の周波数分布関数の各周波数分布関数を示す、表示すること、
をさらに含み、前記周波数分布関数時間発展画像の各ピクセルが、振幅を示す色又は彩度を有する、請求項8に記載の方法。
複数の周波数分布関数時間発展画像を反復的に生成及び解析して、前記複数の周波数分布関数を生成するために使用したパラメータのうち少なくとも1つを調整することであって、前記パラメータは、多数の周波数ピーク、ビン幅の値、及び周波数ビンの幅を含む、調整することをさらに含む、請求項9に記載の方法。
【発明を実施するための形態】
【0011】
例示的な実施形態は、種々の検討事項を考慮する。例えば、例示的な実施形態は、同時に生じている複数の構造的事象の特定及び分類を可能にする、物体からのアコースティックエミッションを検出及び解析するための方法及び装置を有することが、望ましいだろうということを考慮する。特に、例示的な実施形態は、音響波形と構造的変化の特定のモードとの間の正確な関連付けを可能にする、物体の負荷履歴に対してアコースティックエミッションを解析するための方法及び装置を有することが、望ましいだろうということを考慮する。
【0012】
従って、例示的な実施形態は、アコースティックエミッションを使用して物体を解析するための方法及び装置を提供する。例示的な一実施例では、音響感知システムを使用して、物体から発せられるアコースティックエミッションが検出され、音響波形データを生成する。音響波形データは、物体の負荷データと共に受信される。負荷データの複数のビンが生成される。音響波形データを使用して、複数のビンの複数の周波数分布関数が生成される。一組の学習アルゴリズムが、複数の周波数分布関数に適用され、オペレータがより容易に、そしてより迅速に物体の構造的完全性を評価することを可能にする出力を生成する。
【0013】
特に、例示的な実施形態は、構造的変化の複数のモードがいつ同時に物体内で生じたかを判定することに関連する課題を解決する、方法及び装置を提供する。更に、例示的な実施形態は、構造的変化の複数のモードが所与の時間間隔の間に生じたときでさえも、その時間間隔の間に物体内で生じた構造的変化の各特定のモードを特定することに関連する課題を解決する、方法及び装置を提供する。
【0014】
例示的な実施形態は、アコースティックエミッションのための従来の周波数プロット、例えば最大周波数を時間に対して点でプロットしたものを考慮に入れており、幾つかのシグナルフィーチャは、マスクされているか、又は失われている。例示的な実施形態は、特定されていないピークが、特定されていない構造的変化と相関関係にあることを、考慮に入れている。
【0015】
例示的な実施形態は、従来の方法ではオペレータによって事前に特定されなかった構造的変化を特定する方法及び装置をもたらす。例示的な実施形態は、幾つかの場合において、事前に特定されなかった構造的変化を特定するために、音響波形データをより効率的に使用する方法及び装置をもたらす。例示的な実施形態は、事前に特定されなかった構造的変化を特定するために、音響波形のパターンをより効率的に見つける方法及び装置をもたらす。
【0016】
例示的な実施形態は、試験コストを削減しつつ、部材を製造するためのサイクル時間を減らす方法及び装置をもたらす。例示的な実施形態は、新たな材料の開発において使用可能な方法及び装置をもたらす。例示的な実施形態により特定される新たな材料の性質的特性及び構造的変化は、従来の方法よりも高い確度を有することになる。
【0017】
次に、図面、特に
図1を参照すると、例示的な一実施形態による、試験環境の図が描かれている。この例示的な実施例では、試験環境100が、物体102の試験を実行するために使用され得る。この例示的な実施例では、物体102が、複合材料物の形態を採る。しかし、非限定的に、他の例示的な実施例では、物体102が、金属製の物体などの他の種類の物体であり得る。
【0018】
音響感知システム104は、物体102から発せられるアコースティックエミッションを検出するために使用される。音響感知システム104は、音響センサ106、信号調整器107、及び送信機108を含む。音響センサ106の各音響センサは、物体102と接触するように配置され、負荷が物体102に加えられた際に、経時的に物体102を通って放射され得る音波を検出することができる。この負荷(図示せず)は、経時的に一定であり、経時的に変動し、又は経時的に変動する間隔と混合された一定の間隔のパターンに従い得る。
【0019】
この例示的な実施例では、音響センサ106が、信号調整器107を通って送信機108へ送信される、アコースティックエミッション信号を生成する。信号調整器107は、これらのアコースティックエミッション信号を、増幅し、フィルタリングし、増幅及びフィルタリングし得る。その後、送信機108は、アコースティックエミッション信号を音響波形データへ変換し、その後、音響波形データが、処理のために無線で解析器モジュール109に送信される。ある場合では、送信機108が、前置増幅器又は増幅器構成要素を含み、それらが、音響波形データへの変換の前に、アコースティックエミッション信号のゲインを調整し得る。
【0020】
描かれているように、解析器モジュール109は、コンピュータシステム110内に実装されている。この例示的な実施例では、送信機108が、音響波形データをコンピュータシステム110内の解析器モジュール109に無線で送信する。他の例示的な実施例では、送信機108が、1以上の有線接続を介して、音響波形データを解析器モジュール109に送信し得る。
【0021】
解析器モジュール109は、音響波形データと負荷データの両方を受信する。負荷データは、経時的に、物体102に加えられた負荷又は物体102によって経験された負荷の測定値を含み得る。解析器モジュール109は、検出されたアコースティックエミッションに基づいて、経時的な物体102内の構造的変化の性質及びモードを特定するために必要な、時間及びコンピュータ処理リソースの量を低減させるやり方で、音響波形データ及び負荷データを処理する。特に、解析器モジュール109は、オペレータがより容易に、そしてより迅速に物体102の構造的完全性を評価することを可能にする出力を生成する。
【0022】
次に、
図2を参照すると、例示的な一実施形態による、物体、音響感知システム、及び解析器モジュールの図が、ブロック図の形態で描かれている。物体200は、幾つかの異なる形態を採り得る。例示的な一実施例では、物体200が、複合材料物202の形態を採る。しかし、他の例示的な実施例では、物体200が、金属製の物体、少なくとも部分的に金属成分を有する物体、又は何らかの他の種類の物体の形態を採り得る。
【0023】
実施態様に応じて、物体200は、物体200のライフサイクルにおける任意の段階にあり得る。例えば、非限定的に、物体200は、試験段階にあり、システムインテグレーション段階にあり、運航段階にあり、整備段階にあり、修理段階にあり、又は物体200のライフサイクルの間の時間における何らかの他の点にあり得る。例示的な一実施例では、複合材料物202が、試験材であり得る。
図1の物体102は、
図2の物体200に対する例示的な一実施態様である。
【0024】
音響感知システム204は、物体200への負荷に応じて、物体200からのアコースティックエミッション206を検出するために使用される。この負荷は、実施態様に応じて幾つかの異なるやり方で実行され得る。例えば、ある場合では、外的な負荷が、長時間にわたり物体200に対して加えられ得る間に、この負荷によって生じたアコースティックエミッション206を検出するために、音響感知システム204が使用される。他の例示的な実施例では、負荷が、より大きな構造体又はシステムへの物体200の統合によるものであり得る。
【0025】
物体200への負荷は、経時的に、物体200の構造的完全性に影響を与え得る。例えば、負荷は、物体200の構造的完全性を低減させる、物体200内の特定の構造的変化をもたらし得る。これらの構造的変化は、亀裂形成、スプリッティング、亀裂伸長、スプリット伸長、繊維破断、層間剥離、何らかの他の種類の望ましくない構造的変化、又はそれらの組み合わせを含み得るが、それらに限定されるものではない。
【0026】
アコースティックエミッション206は、物体200内の構造的変化に起因して物体200を通って放射される音響波である。音響感知システム204は、一組の音響センサ208を備える。本明細書で使用される際に、「一組の」アイテムは、1以上のアイテムを含み得る。このやり方では、一組の音響センサ208が、1以上の音響センサを含み得る。
【0027】
音響センサ210は、一組の音響センサ208内の1つの音響センサの一例である。例示的な一実施例では、音響センサ210が、アコースティックエミッション206を検出するために、物体200と接触するように配置されている。
【0028】
一組の音響センサ208は、アコースティックエミッション206を検出し、検出されたアコースティックエミッション206の音響波形データ212を生成する。音響波形データ212は、解析器モジュール214に送信される。解析器モジュール214は、任意の数の有線通信リンク、無線通信リンク、他の種類の通信リンク、又はそれらの組み合わせを使用して、音響感知システム204から音響波形データ212を受信し得る。
【0029】
この例示的な実施例では、解析器モジュール214が、ソフトウェア、ハードウェア、ファームウェア、又はそれらの組み合わせで実装され得る。ソフトウェアを使用するときに、解析器モジュール214によって実行される動作は、例えば、非限定的に、プロセッサユニットで実行されるように構成されたプログラムコードを使用して実施することができる。ファームウェアを使用するときに、解析器モジュール214によって実行される動作は、例えば、非限定的に、プロセッサユニットで実行されるように、プログラムコード及びデータを使用して実施され、永続メモリに記憶することができる。
【0030】
ハードウェアが採用されるときに、ハードウェアは、解析器モジュール214の動作を実行するように動作する1以上の回路を含むことができる。実施態様に応じて、ハードウェアは、回路システム、集積回路、特定用途向け集積回路(ASIC)、プログラマブル論理デバイス、又は任意の数の動作を実行するよう構成された、何らかの他の適切な種類のハードウェアデバイスの形態を採り得る。
【0031】
プログラマブル論理デバイスは、特定の動作を実行するように構成され得る。このデバイスは、これらの動作を実行するように恒久的に構成され、又は再構成され得る。プログラマブル論理デバイスは、例えば、非限定的に、プログラマブル論理アレイ、プログラマブルアレイ論理、フィールドプログラマブル論理アレイ、フィールドプログラマブルゲートアレイ、又は何らかの他の種類のプログラマブルハードウェアデバイスの形態を採り得る。
【0032】
この実施例では、解析器モジュール214が、コンピュータシステム216を使用して実装される。
図1のコンピュータシステム110内に実装された解析器モジュール109は、コンピュータシステム216内に実装された解析器モジュール214の例示的な一実施態様であり得る。コンピュータシステム216は、単一のコンピュータ又は互いに通信する複数のコンピュータを含み得る。
【0033】
音響波形データ212を受信することに加えて、解析器モジュール214は、負荷データ218も受信する。例示的な一実施例では、負荷データ218が、負荷感知システム220によって生成されたデータであり得る。負荷感知システム220は、経時的に物体200への負荷を測定する1以上の負荷センサを含み得る。
【0034】
他の例示的な実施例では、解析器モジュール214が、データベース222から負荷データ218を読み出す。例えば、非限定的に、負荷データ218は、同じ又は同様な負荷条件の下で、物体200と類似する物体に対して生成された、事前に生成された負荷データであり得る。
【0035】
解析器モジュール214は、負荷データ218について複数のビン224を生成する。複数のビン224は、複数のビン幅226を有する。特に、複数のビン224内の各ビンは、複数のビン幅226内の対応するビン幅を有する。例示的な一実施例では、複数のビン幅226が等しくなり得る。しかし、他の例示的な実施例では、複数のビン幅226の1以上のビン幅が異なり得る。
【0036】
ある例示的な実施例では、複数のビン幅226が、複数の時間ベースのビン幅である。言い換えると、複数のビン224の各ビンは、時間間隔に対応し得る。他の例示的な実施例では、複数のビン幅226が、複数の負荷ベースのビン幅である。言い換えると、複数のビン224の各ビンは、負荷間隔に対応し得る。
【0037】
解析器モジュール214は、複数のビン224及び音響波形データ212を使用して、複数の周波数分布関数228を生成する。例示的な一実施例では、複数の周波数分布関数228が、複数の周波数ヒストグラム230の形態を採り得る。
【0038】
複数の周波数分布関数228は、複数のビン224内の各ビンに1つの周波数分布関数を含む。例えば、解析器モジュール214は、ビン234の周波数分布関数232を生成する。ビン234は、規定された時間間隔又は規定された負荷間隔であり得る、規定されたビン幅を有する。
【0039】
例示的な一実施例では、解析器モジュール214が、選択された周波数範囲を複数の周波数ビン235へ分割することによって、周波数分布関数232を生成する。実施態様に応じて、複数の周波数ビン235は、同じ又は異なるビン幅を有し得る。複数の周波数ビン235内の各周波数ビンは、カウントをホールドするために使用され、従って、インクリメントされ得る。
【0040】
その後、解析器モジュール214は、負荷データ218に対して音響波形データ212を処理する。例えば、複数のビン224内の各ビンに対して、解析器モジュール214は、音響波形データ212を使用して、そのビンに入る一組の波形を特定する。その後、解析器モジュール214は、複数のビン224内の各ビンに対して特定された一組の波形の高速フーリエ変換を計算する。
【0041】
例示的な一実施例として、解析器モジュール214は、音響波形データ212を使用して、ビン234に入る一組の波形238を特定する。ある例示的な実施例では、少なくとも1つの波形が複数のビン224の各ビン内に完全に入るように、複数のビン224の複数のビン幅226が選択され得る。次に、解析器モジュール214は、ビン234内に入る一組の波形238の高速フーリエ変換を計算する。その後、解析器モジュール214は、計算された高速フーリエ変換に基づいて、一組の波形238の周波数ピーク240を特定する。
【0042】
例示的な一実施例では、解析器モジュール214が、一組の波形238内の各波形の規定された幾つかの数の周波数ピークを選択する。本明細書で使用される際に、「幾つかの」アイテムは、1以上のアイテムを含み得る。このやり方では、規定された幾つかの数の周波数ピークが、1以上の周波数ピークを含み得る。ある場合では、解析器モジュール214によって選択された幾つかの周波数ピークが、例えば、非限定的に、一組の波形238の計算された高速フーリエ変換に基づいて、一組の波形238内の各波形に対する、3つ、4つ、5つ、8つ、又は何らかの他の数の周波数ピークであり得る。
【0043】
解析器モジュール214は、特定された周波数ピークが対応する周波数ビン内に入るときに、複数の周波数ビン235内の対応する周波数ビンをインクリメントする。例えば、幾つかの周波数ピーク240が、約80キロヘルツと約90キロヘルツの間の範囲に対応する周波数ビンに入るならば、周波数ビンは、この範囲内に入る周波数ピークの全体の数によってインクリメントされる。このプロセスは、ビン234の周波数分布関数232を生成する。
【0044】
他の例示的な実施例では、複数の周波数ビン235が、異なるように蓄積され得る。例えば、複数の周波数ビン235内の周波数ビンは、音響波形データ212を使用して計算された、その周波数ビンにおけるエネルギーの蓄積であり得る。
【0045】
ビン234の周波数分布関数232を生成するプロセスは、複数のビン224の各々に対して繰り返され、最終的に複数の周波数分布関数228を生成する。複数の周波数分布関数228は、オペレータに、物体200の構造的完全性を迅速に評価する容易なやり方を提供する。
【0046】
物体200が試験物体であるときに、複数の周波数分布関数228を更に処理することは、解析器モジュール214によって実行される。例えば、非限定的に、解析器モジュール214は、複数の周波数分布関数228を使用して、複数のクラスタ242を生成する。複数のクラスタ242は、興味の対象となる複数のクラスタである。
【0047】
例示的な一実施例では、解析器モジュール214が、1以上の管理下にない学習アルゴリズムを複数の周波数分布関数228に適用して、複数のクラスタ242を規定する。複数のクラスタ242内の各クラスタは、複数の周波数分布関数228からの周波数分布関数のグルーピングである。
【0048】
本明細書で使用される際に、管理下にない学習アルゴリズムは、ラベル付きの反応(labeled response)なしにデータを含むデータセットから結果を導くための機械学習アルゴリズムである。管理下にない学習の一例は、クラスタリングである。クラスタリングアルゴリズムは、クラスタと称され得る同じグループ内のエレメントが、他のグループ内のものよりも互いに類似するようなやり方で、一組のエレメントをグルーピングするためのアルゴリズムであり得る。
【0049】
これらの例示的な実施例では、解析器モジュール214が、複数の周波数分布関数228内の周波数分布関数をグルーピングする、一組の管理下にない学習アルゴリズム使用して、複数のクラスタ242を生成し得る。実施態様に応じて、K平均クラスタリングアルゴリズム、混合モデルクラスタリングアルゴリズム、階層クラスタリングアルゴリズム、何らかの他の種類のクラスタリングアルゴリズム、何らかの他の種類の管理下にない学習アルゴリズム、又はそれらの組み合わせが使用されて、複数のクラスタ242を特定し得る。
【0050】
複数のクラスタ242内の各クラスタは、物体200の構造的完全性に影響を与える構造的変化に対応する。例示的な一実施例では、複数のクラスタ242内の各クラスタが、物体200の構造的完全性を低減させる構造的変化の異なるモードに対応する。
【0051】
例示的な一実施例では、解析器モジュール214が、複数のクラスタ242の複数の記述子244を特定する。クラスタの記述子は、重心、平均、又はクラスタの何らかの他の種類の典型的な周波数分布関数であり得る。例示的な一実施例として、記述子は、そのクラスタの重心周波数分布関数であり得る。
【0052】
複数のクラスタ242は、交互の試験データ(alternate test data)236を使用して、構造的変化の複数のモードに関連付けられ得る。交互の試験データ236は、そこから物体200内の構造的変化が容易に特定され得るところのデータであり得る。例えば、交互の試験データ236は、X線画像データ、超音波画像データ、赤外線画像データ、モデリングデータ、又は何らかの他の種類のデータの形態を採り得る。モデリングデータは、コンピュータモデルから生成され得る。
【0053】
例示的な一実施例として、非限定的に、交互の試験データ236は、物体200への負荷の間に物体200に対して生成されたその場での(in‐situ)X線データの形態を採る。その後、交互の試験データ236は、物体200内の構造的変化を検出し、これらの構造的変化を複数のモード246として特定するために使用される。複数のモード246内の各モードは、異なる種類の構造的変化であり得る。ある場合では、複数のモード246内の各モードが、構造的損傷(structural compromise)のモードと称され得る。
【0054】
例えば、非限定的に、物体200は、複合材料試験材の形態を採り、複数のモード246は、亀裂生成、亀裂伸長、スプリッティング、及びスプリット伸長を含み得る。ある場合では、複数のモード246が、繊維破断、層間剥離、又は何らかの他の形態の構造的損傷も含み得る。
【0055】
複数のモード246と複数のクラスタ242の両方は、複数のクラスタ242内の各クラスタが、複数のモード246内の対応するモードと実質的に重なるように、負荷データ218へとマッピングバック(map back)される。言い換えると、複数のモード246は、負荷データ218を使用して、特定の時間、負荷条件、又はそれらの両方にマッピングバックされ得る。
【0056】
同様に、複数のクラスタ242は、負荷データ218を使用して、特定の時間、負荷条件、又はそれらの両方にマッピングバックされ得る。例えば、非限定的に、負荷データ218の複数のビン224内の各ビンは、複数のクラスタ242内の特定のクラスタに属する1以上の波形を保持するように指定され得る。
【0057】
例示的な一実施例では、複数のクラスタ242の各クラスタが、時間に関する複数のモード246内の対応するモードと、実質的に重なり得るか又は選択された許容誤差内で重なり得る。このやり方では、複数のクラスタ242内の各クラスタが、複数のモード246内の対応するモードと対(pair)にされ又は対応するモードに割り当てられ得る。例示的な一実施例では、複数のクラスタ242内の各クラスタに対応する記述子が、複数のモード246内の対応するモードと対にされる。言い換えると、複数の記述子244は、複数のモード246と対にされ得る。
【0058】
例示的な一実施例では、複数のクラスタ242が、第1の記述子を有する第1のクラスタ、第2の記述子を有する第2のクラスタ、第3の記述子を有する第3のクラスタ、及び第4の記述子を有する第4のクラスタを含み得る。この例示的な実施例では、第1のクラスタと第1の記述子が、構造的変化の第1のモードを表す。第2のクラスタと第2の記述子は、構造的変化の第2のモードを表す。第3のクラスタと第3の記述子は、構造的変化の第3のモードを表す。第4のクラスタと第4の記述子は、構造的変化の第4のモードを表す。無論、他の例示的な実施例では、複数のクラスタ242が、4つ未満のクラスタ又は5つ以上のクラスタを含み得る。
【0059】
一旦、複数のクラスタ242内の各クラスタが、構造的変化の対応するモードに関連付けられてしまうと、複数のクラスタ242の複数の記述子244は、将来の使用のために記憶される。例えば、複数の記述子244は、各記述子のモード分類と共に、データベース222又は何らかの他の種類のデータ構造若しくはデータストレージ内に記憶され得る。
【0060】
例示的な一実施例では、解析器モジュール214が、複数の記述子244内の対応する記述子を有する、複数のモード246内の各モードのペアリングを特定する、記述子分類出力248を生成する。記述子分類出力248は、将来の使用のために、データベース222又は何らかの他のデータ構造若しくはデータストレージ内に記憶され得る。このやり方では、記述子分類出力248が、物体200と構造的に同じである又は構造的に類似する1以上の部分の構造的完全性を評価するために使用され得る、ベースラインデータを規定する。
【0061】
他の例示的な実施例では、物体200が試験物体でなくてもよい。むしろ、物体200は、運航段階、整備段階、修理段階、認可段階、又は物体200のライフサイクルにおける何らかの他の種類の段階にあり得る。これらの例示的な実施例では、一旦、複数の周波数分布関数228が生成されると、解析器モジュール214は、1以上の管理下にある学習アルゴリズムを、複数の周波数分布関数228に適用する。
【0062】
本明細書で使用される際に、管理下にある学習アルゴリズムは、ラベル付きの訓練データ(training data)から推論を引き出すための機械学習アルゴリズムである。これらの例示的な実施例では、このラベル付きの訓練データは、複数の記述子244内の各記述子にラベルを付ける、記述子分類出力248の形態を採る。各記述子は、複数のモード246の対応するモードを有する、複数のクラスタ242内のクラスタに対応する。
【0063】
サポートベクトルマシンは、管理下にある学習アルゴリズムの一種の一例である。例えば、非限定的に、サポートベクトルマシンは、複数の周波数分布関数228及び記憶された複数の記述子247に適用され、分類出力250を生成し得る。記憶された複数の記述子247は、複数の記述子244と同様のやり方で生成される。記憶された複数の記述子247は、データベース222又は何らかの他の種類のデータ構造若しくはデータストレージ内に記憶され得る。
【0064】
特に、記憶された複数の記述子247に基づいて、複数のビン224内の各ビンの二分決定(binary decision)が行われる。より具体的には、複数のビン224内の各ビンの生成された周波数分布関数が、複数の記述子244内の各記述子に対して解析される。
【0065】
例えば、非限定的に、ビン234の周波数分布関数232は、記憶された複数の記述子247内の各記述子に対して解析され得る。周波数分布関数232が選択された許容誤差内で記述子に適合するか否かに関して、判定が行われる。周波数分布関数232が選択された許容誤差内で記述子に適合するならば、ビン234に入る一組の波形238が、その記述子に対応するモードを表すとして分類され得る。この判定は、記憶された複数の記述子247内の各記述子に対して実行される。
【0066】
この種類の二分決定は、記憶された複数の記述子247内の各記述子に対して行われるので、複数のビン224内の各ビンは、構造的変化の複数のモードを表すとして分類され得る。このやり方では、複数のビン224の任意の所与のビン内に入る一組の波形が、構造的変化の1以上のモードを表すとして分類され得る。ある場合では、特定のビン内の一組の波形が、複数のモード246内の任意の特定のモードを表さないように判定され得る。
【0067】
例示的な一実施例では、解析器モジュール214が、上述の解析に基づいて、複数のモード246の1以上のモードを使用して、複数のビン224内の各ビンの分類を含む分類出力250を生成する。例示的な他の実施例では、解析器モジュール214が、複数のモード246の1以上のモードを使用して、音響波形データ212内の各波形の分類を特定する分類出力250を生成する。
【0068】
従って、例示的な実施形態は、物体200の構造的完全性を評価するための正確で効率的な方法を提供する。この種類の評価に基づいて得られた情報は、その後、認可、整備、修理、システムインテグレーション、何らかの他の種類の作業、又はそれらの組み合わせに関して、物体200についての判定を行うために使用され得る。
【0069】
解析器モジュール214によって実行される処理は、種々の種類の物体及び負荷条件に対して容易に調整され得る。例示的な一実施例として、複数のビン幅226が、物体200への負荷の種類に基づいて選択され得る。例えば、非限定的に、物体200が、より迅速に負荷を加えられたときに、アコースティックエミッション206は、より迅速に生じ得る。複数のビン幅226は、事象の明瞭な分離を可能にするために、より小さいビンを生成するように選択され得る。しかし、物体200が遅く負荷を加えられたときに、アコースティックエミッション206は、より遅く生じ得る。その時、複数のビン幅226は、より大きなビンを生成するように選択され、それによって、処理されることが必要なデータの全体量を低減させ得る。
【0070】
更に、ある例示的な実施例では、解析器モジュール214が、ディスプレイシステム252のグラフィカルユーザインターフェースを介して、記述子分類出力248、分類出力250、又はそれらの両方を表示するように構成され得る。ある場合では、複数の周波数分布関数228が、ディスプレイシステム252に表示され得る。このやり方では、オペレータが、物体200についての判定を迅速、容易に行うことができる。
【0071】
図2の物体200、音響感知システム204、及び解析器モジュール214の図解は、例示的な一実施形態が実装され得るやり方に対する、物理的又は構造的な制限を示唆することを意図してない。図示した構成要素に加えて又は代えて、他の構成要素が使用されてもよい。一部の構成要素は、任意選択的であってよい。また、ブロックは、何らかの機能的な構成要素を示すために提示されている。例示的な一実施形態で実装されるときに、これらのブロックの1以上は、結合され、分割され、又は異なるブロックへ結合及び分割され得る。
【0072】
例えば、非限定的に、ある場合では、音響感知システム204が、
図1の信号調整器107などの(図示せぬ)少なくとも1つの信号調整器、及び
図1の送信機108などの(図示せぬ)送信機を含み得る。例示的な一実施例として、信号調整器は、音響センサ210によって検出されたアコースティックエミッション信号の周波数成分(frequency content)を、増幅しフィルタリングするために使用され得る。その後、アコースティックエミッション信号は、送信機によって音響波形データ212へ変換され得る。送信機は、音響波形データ212を解析器モジュール214に送信する。送信機は、1以上の無線通信リンク、有線通信リンク、又は他の種類の通信リンクを使用して、解析器モジュール214に音響波形データ212を送信し得る。
【0073】
ある場合では、単一の信号調整器が、一組の音響センサ208によって生成された一組のアコースティックエミッション信号を、増幅しフィルタリングするために使用され得る。他の例示的な実施例では、一組の音響センサ208内の各音響センサが、異なる信号調整器に接続され得る。更に他の例示的な実施例では、信号調整器が、一組の音響センサ208内の各音響センサの部分として一体化され得る。
【0074】
更に、分類出力250が、1以上の管理下にある学習アルゴリズムを使用して生成されるように説明されたが、他の例示的な実施例では、管理下にある及び管理下にない学習アルゴリズムを結合した、半管理下にある(semi‐supervised)学習アルゴリズム又はプロセスが、分類出力250を生成するために使用され得る。また更に、記述子分類出力248が、1以上の管理下にない学習アルゴリズムを使用して生成されるように説明されたが、他の例示的な実施例では、管理下にある及び管理下にない学習アルゴリズムを結合した、半管理下にある学習アルゴリズム又はプロセスが、記述子分類出力248を生成するために使用され得る。
【0075】
次に、
図3を参照すると、例示的な一実施形態による、航空機の等角図が描かれている。この例示的な実施例では、航空機300が、胴体306に取り付けられた翼302及び翼304を含む。航空機300は、翼302に取り付けられたエンジン308及び翼304に取り付けられたエンジン310を含む。
【0076】
更に、航空機300は、テールセクション312を含む。水平安定板314、水平安定板316、及び垂直安定板318が、テールセクション312に取り付けられている。
【0077】
図2の音響感知システム204又は
図1の音響感知システム104などの、音響感知システム(図示せず)が、航空機300に対して配置され、航空機300のライフサイクルの間に、航空機300の様々な部分のアコースティックエミッションをモニタリングし得る。例えば、非限定的に、音響感知システムは、航空機300に沿った位置320に様々な音響センサ(図示せず)を含み得る。位置320は、航空機300の一部分の表面と接触し、航空機300の一部分若しくは構造内に埋め込まれ、航空機300の一部分若しくは構造の近傍に配置されているが接触せず、又はそれらの組み合わせである、位置を含み得る。
【0078】
航空機300のライフサイクルの間の任意の段階において、音響感知システム204によって生成された音響波形データは、
図2の解析器モジュール214によって収集及び解析され得る。このやり方では、航空機300の様々な部分又は構造の構造的完全性が解析され、任意の検出された望ましくない構造的変化が分類され得る。
【0079】
次に、
図4を参照すると、例示的な一実施形態による、アコースティックエミッションを使用して物体を解析するためのプロセスの図が、フローチャートの形態で描かれている。
図4で示されているプロセスは、
図2で説明された解析器モジュール214によって実施され得る。
【0080】
該プロセスは、音響感知システムから物体の音響波形データを受信することによって開始し得る(動作400)。音響波形データは、音響感知システムによって検出される際に物体から発せられるアコースティックエミッションを表す。次に、物体の負荷データが受信される(動作402)。その後、負荷データの複数のビンが生成される(動作404)。
【0081】
動作404では、実施態様に応じて、複数のビンが複数の時間ビン又は複数の負荷ビンであり得る。その後、音響波形データを使用して、複数のビンの複数の周波数分布関数が生成される(動作406)。動作406では、周波数分布関数が、複数のビン内の各ビンに対して生成される。ある例示的な実施例では、複数の周波数分布関数が、複数の周波数ヒストグラムの形態を採る。
【0082】
その後、一組の学習アルゴリズムが、複数の周波数分布関数及び音響波形データに適用され、オペレータがより容易に、そしてより迅速に物体の構造的完全性を評価することを可能にする出力を生成する(動作408)。その後、プロセスは終了する。
図4で説明されたプロセスは、物体が同時に発生する複数のモードの構造的変化に晒されたときに、物体の構造的完全性を正確に評価するために必要とされる、全体の時間、労力、及びコンピュータベースの処理リソースを低減させ得る。
【0083】
次に、
図5を参照すると、例示的な一実施形態による、複数の周波数分布関数を生成するためのプロセスの図が、フローチャートの形態で描かれている。
図5で示されるプロセスは、
図2で説明された解析器モジュール214によって実施され得る。このプロセスは、
図4の動作406を実施するために使用され得る。
【0084】
該プロセスは、複数の周波数ビンを生成することによって開始する(動作500)。動作500では、複数の周波数ビン内の各ビンが、規定されたビン幅を有し得る。複数の周波数ビンのビン幅は、同じであり又は異なり得る。例示的な一実施例では、動作500が、規定された周波数間隔に基づいて、選択された周波数範囲を複数の周波数ビンへ分割することによって実行される。
【0085】
その後、ビンは、処理のために複数のビンから選択される(動作502)。動作502では、複数のビンが、例えば、
図4の動作404で生成された複数のビンであり得る。
【0086】
次に、選択されたビン内に入る一組の波形が特定される(動作504)。一組の波形の高速フーリエ変換(FFT)が計算される(動作506)。一組の波形内の各波形の幾つかの周波数ピークが特定される(動作508)。周波数ピークが入る複数の周波数ビン内の各周波数ビンが、インクリメントされる(動作510)。このやり方では、選択されたビンの周波数分布関数が生成される。動作510は、動作506において計算された高速フーリエ変換と、動作508において特定された一組の波形内の各波形の特定された幾つかの周波数ピークとに基づいて、如何にして複数の周波数ビンが更新され得るかの一例である。
【0087】
その後、任意の更なるビンが処理される必要があるか否かに関して判定が行われる(動作512)。更なるビンが処理される必要がないならば、プロセスは終了する。そうでない場合には、プロセスが上述の動作502に戻る。
図5で説明されたプロセスは、複数のビンの複数の周波数分布関数の生成をもたらす。
【0088】
次に、
図6を参照すると、例示的な一実施形態による、一組の学習アルゴリズムを複数の周波数分布関数に適用して、出力を生成するための1つのプロセスの図が、フローチャートの形態で描かれている。
図6で示されるプロセスは、
図2の解析器モジュール214によって実施され得る。該プロセスは、
図4の動作408が如何にして実施され得るかの一例であり得る。
【0089】
該プロセスは、一組の管理下にない学習アルゴリズムを複数の周波数分布関数に適用して、複数のクラスタを規定することによって開始し得る(動作600)。動作600では、複数の周波数分布関数が、管理下にない学習アルゴリズムに基づいて、クラスタへグルーピングされる。
【0090】
次に、複数のクラスタの複数の記述子が特定される(動作602)。動作602では、各クラスタの記述子が特定される。記述子は、クラスタの典型的な周波数分布関数である。例えば、非限定的に、特定のクラスタの記述子は、そのクラスタの重心周波数分布関数又は平均周波数分布関数であり得る。
【0091】
その後、複数の記述子内の各記述子は、交互の試験データを使用して、複数のモードの特定に基づいて、構造的変化の特定のモードに関連付けられる(動作604)。動作604では、交互の試験データが、例えば、X線データであり得る。更に、例えば、非限定的に、複数のモードは、繊維破断、スプリッティング、スプリット伸長、層間剥離、亀裂形成、亀裂伸長、又は何らかの他のモードの構造的変化を含み得る。
【0092】
複数の記述子の各記述子を複数のモードの特定のモードと対にする記述子分類出力が生成される(動作606)。その後、プロセスは終了する。その後、この記述子分類出力は、他の物体の構造的完全性の評価を実行するために使用され得る。
【0093】
次に、
図7を参照すると、例示的な一実施形態による、一組の学習アルゴリズムを複数の周波数分布関数に適用して、出力を生成するための別の1つのプロセスの図が、フローチャートの形態で描かれている。
図7で示されるプロセスは、
図2の解析器モジュール214によって実施され得る。該プロセスは、
図4の動作408が如何にして実施され得るかの別の一例であり得る。
【0094】
該プロセスは、一組の管理下にある学習アルゴリズムを複数の周波数分布関数及び複数の記述子に適用することによって開始し得る(動作700)。周波数分布関数が、複数の周波数分布関数から選択される(動作702)。複数の周波数分布関数の各周波数分布関数は、負荷データに基づいて特定の時間ビン又は負荷ビン内に入る一組の波形を表す。
【0095】
次に、記述子が、記憶された複数の記述子から選択される(動作704)。動作704では、記憶された複数の記述子が、
図6で説明されたプロセスと同様のやり方で事前に生成された音響波形データに対して前もって特定され得る。記憶された複数の記述子内の各記述子は、構造的変化の異なるモードに対応する。
【0096】
その後、選択された周波数分布関数は、選択された記述子に対して解析される(動作706)。例えば、動作706では、周波数分布関数が、記述子と比較され得る。記述子は、クラスタの典型的な周波数分布関数であり得る。
【0097】
次に、周波数分布関数は、解析に基づいて二値分類器の値(binary classifier value)が与えられる(動作708)。動作708では、二値分類器の値が、第1の値又は第2の値の何れかであり得る。例えば、第1の値は、周波数分布関数が選択された許容誤差内で記述子に適合することを示し、一方、第2の値は、周波数分布関数が選択された許容誤差内で記述子に適合しないことを示し得る。ある場合では、第1の値及び第2の値が、それぞれ、ポジティブ分類値及びネガティブ分類値と称され得る。
【0098】
その後、任意の選択されてない記述子が残っているか否かに関して、判定が行われる(動作710)。任意の選択されていない記述子が残っているならば、該プロセスは、上述の動作704に戻る。そうでなければ、任意の選択されていない周波数分布関数が残っているか否かに関して、判定が行われる(動作712)。任意の選択されていない周波数分布関数が残っているならば、該プロセスは、上述の動作702に戻る。
【0099】
そうでなければ、該プロセスは、複数の周波数分布関数の各周波数分布関数の分類結果を特定する分類出力を生成し(動作714)、その後、プロセスは終了する。動作714において、特定の周波数分布関数の分類結果は、その周波数分布関数が、0、1つ、2つ、3つ、4つ、5つ、又は何らかの他の数の構造的変化のモードを表すかを特定する。
【0100】
次に、
図8を参照すると、例示的な一実施形態による、アコースティックエミッションを使用して航空機内の複合材料物を解析するためのプロセスの図が、フローチャートの形態で描かれている。
図8で示されるプロセスは、
図2で説明された音響感知システム204及び解析器モジュール214を使用して実施され得る。
【0101】
このプロセスは、音響感知システムを使用して、航空機内の複合材料物から放射されるアコースティックエミッションを検出し、音響波形データを生成することによって開始し得る(動作800)。次に、物体についての音響波形データ及び負荷データが、解析器モジュールにおいて受信される(動作802)。
【0102】
その後、解析器モジュールによって、負荷データの複数のビンが生成される(動作804)。動作804では、実施態様に応じて、複数のビンが複数の時間ビン又は複数の負荷ビンであり得る。
【0103】
その後、解析器モジュールによって、音響波形データを使用して、複数のビンの複数の周波数分布関数が生成される(動作806)。動作806では、周波数分布関数が、複数のビン内の各ビンに対して生成される。ある例示的な実施例では、複数の周波数分布関数が、複数の周波数ヒストグラムの形態を採る。
【0104】
その後、一組の学習アルゴリズムが、複数の周波数分布関数、音響波形データ、及び事前に生成された周波数分布関数の複数のクラスタの記憶された複数の記述子に適用され、オペレータがより容易に、そしてより迅速に物体の構造的完全性を評価することを可能にする分類出力を生成する(動作808)。分類出力は、音響波形データ内の各波形の分類結果を特定する。その後、プロセスは終了する。動作808において、分類結果は、特定の波形を、0、1つ、2つ、3つ、4つ、又は何らかの他の数の構造的変化のモードを表すものとして特定し得る。
【0105】
図示した種々の実施形態でのフローチャート及びブロック図は、例示的な一実施形態における装置及び方法の幾つかの可能な実施形態の構造、機能、及び動作を示している。これに関して、フローチャート又はブロック図内の各ブロックは、1つの動作又は1つのステップの、モジュール、セグメント、機能、及び/又は部分を表すことができる。
【0106】
例示的な一実施形態の幾つかの代替的な実施態様では、ブロックに記載された1以上の機能が、図中に記載の順序を逸脱して起こり得る。例えば、場合によっては、連続して示されている2つのブロックが実質的に同時に実行されること、又は時には含まれる機能に応じてブロックが逆の順序に実施されることもあり得る。また、フローチャート又はブロック図に描かれているブロックに加えて、他のブロックが追加されることもある。
【0107】
次に、
図9を参照すると、例示的な一実施形態による、データ処理システムの図が、ブロック図の形態で描かれている。データ処理システム900を使用して、
図2の解析器モジュール214、コンピュータシステム216、又はそれらの両方を実装することができる。描かれているように、データ処理システム900は、通信フレームワーク902を含み、これによってプロセッサユニット904、記憶デバイス906、通信ユニット908、入力/出力ユニット910、及びディスプレイ912の間で通信を提供する。ある場合では、通信フレームワーク902が、バスシステムとして実装されてもよい。
【0108】
プロセッサユニット904は、幾つかの動作を実行するソフトウェアに対する指示命令を実行するように構成されている。プロセッサユニット904は、実装に応じて、幾つかのプロセッサ、マルチプロセッサコア、及び/又は他の何らかの種類のプロセッサを備える。ある場合では、プロセッサユニット904は、回路システム、特定用途向け集積回路(ASIC)、プログラマブル論理デバイスなどのハードウェアユニット、又は他の好適な種類のハードウェアユニットの形態を採ってもよい。
【0109】
プロセッサユニット904によって実行されるオペレーティングシステム、アプリケーション、及び/又はプログラムに対する指示命令は、記憶デバイス906内に配置され得る。記憶デバイス906は、通信フレームワーク902を通じてプロセッサユニット904と通信し得る。本明細書で使用されるように、記憶デバイスはまた、コンピュータ可読記憶デバイスと称されることもあり、一時的に及び/又は永続的に情報を記憶することができる任意のハードウェアである。この情報は、限定するものではないが、データ、プログラムコード、及び/又は他の情報を含み得る。
【0110】
メモリ914及び固定記憶域916は、記憶デバイス906の一例である。メモリ914は、例えば、ランダムアクセスメモリ又は何らかの種類の揮発性または不揮発性の記憶デバイスの形態を採り得る。固定記憶域916は任意の数の構成要素又はデバイスを含み得る。例えば、固定記憶域916は、ハードドライブ、フラッシュメモリ、書換え型光ディスク、書換え型磁気テープ、又はそれらの何らかの組み合わせを含み得る。固定記憶域916によって使用される媒体は着脱式であってもよく、着脱式でなくてもよい。
【0111】
データ処理システム900は、通信ユニット908により他のデータ処理システム及び/又はデバイスと通信することができる。通信ユニット908は、物理的な及び/又は無線の通信リンクを用いて通信することができる。
【0112】
入力/出力ユニット910は、データ処理システム900に接続された他のデバイスとの間で、入力の受信及び出力の送信を可能にする。例えば、入力/出力ユニット910は、キーボード、マウス、及び/又は他の何らかの種類の入力デバイスを通じて、ユーザ入力の受信を可能にする。別の例として、入出力ユニット910は、データ処理システム900に接続されたプリンタに出力を送信することができる。
【0113】
ディスプレイ912は、ユーザに対して情報を表示するように構成される。ディスプレイ912は、例えば、限定するものではないが、モニタ、タッチスクリーン、レーザーディスプレイ、ホログラフィックディスプレイ、仮想表示デバイス、及び/又は他の何らかの種類のディスプレイデバイスを含み得る。
【0114】
この実施例では、種々の例示的な実施形態のプロセスは、コンピュータに実装される命令を使用してプロセッサユニット904によって実行されてもよい。これらの命令は、プログラムコード、コンピュータ使用可能プログラムコード、又はコンピュータ可読プログラムコードと称されることがあり、プロセッサユニット904内の1以上のプロセッサによって読み取られ、実行され得る。
【0115】
これらの例では、プログラムコード918は、選択的に着脱可能でコンピュータ可読媒体920上に機能的な形態で配置され、プロセッサユニット904での実行用のデータ処理システム900に読込み又は転送することができる。プログラムコード918及びコンピュータ可読媒体920は、コンピュータプログラム製品922を形成する。この説明例では、コンピュータ可読媒体920は、コンピュータ可読記憶媒体924又はコンピュータ可読信号媒体926であってもよい。
【0116】
コンピュータ可読記憶媒体924は、プログラムコード918を伝搬または伝送する媒体というよりはむしろ、プログラムコード918を記憶するために使用される物理的な又は有形の記憶デバイスである。コンピュータ可読記憶媒体924は、例えば、限定するものではないが、データ処理システム900に接続される光又は磁気ディスク或いは固定記憶デバイスの形態を採り得る。
【0117】
代替的に、プログラムコード918は、コンピュータ可読信号媒体926を使用してデータ処理システム900に転送可能である。コンピュータ可読信号媒体926は、例えば、プログラムコード918を包含する被伝播データ信号であり得る。このデータ信号は、物理的な、及び/又は無線の通信リンクを介して伝送されることが可能な、電磁信号、光信号、及び/又は他の何らかの種類の信号であり得る。
【0118】
図9のデータ処理システム900の図は、例示的な実施形態が実装され得る様態に対する構造的な限定を提示することを意図していない。種々の例示的な実施形態が、データ処理システム900に関して示されている構成要素に追加的な、又は代替的な構成要素を含むデータ処理システム内に実装され得る。更に、
図9に示す構成要素は、実施例とは相違することがある。
【0119】
本開示の例示的な実施形態は、
図10に示す航空機の製造及び保守方法1000、並びに
図11に示す航空機1100に照らして説明され得る。まず、
図10を参照すると、例示的実施形態による、航空機の製造及び保守方法のブロック図が示される。製造前の段階で、航空機の製造及び保守方法1000は、
図11の航空機1100の仕様及び設計1002、並びに材料の調達1004を含み得る。
【0120】
製造段階では、
図11の航空機1100の構成要素及びサブアセンブリの製造1006とシステムインテグレーション1008とが行われる。その後、
図11の航空機1100は、認可及び納品1010を経て運航1012に供され得る。顧客による運航1012中、
図11の航空機1100は、改造、再構成、改修、及びその他の整備又は保守を含み得る、定期的な整備及び保守1014がスケジューリングされる。
【0121】
航空機の製造及び保守方法1000の各プロセスは、システム組立業者、第三者、及び/又はオペレータによって実施又は実行されてもよい。これらの例では、オペレータは顧客であってもよい。本明細書の目的では、システムインテグレータは、限定されないが、任意の数の航空機製造業者、及び主要システムの下請業者を含み得、第三者は、限定されないが、任意の数のベンダー、下請業者、及び供給業者を含み、オペレータは、航空会社、リース会社、軍事団体、サービス機関などであり得る。
【0122】
次に、
図11を参照すると、例示的な一実施形態が実装可能な航空機の図が示されている。この実施例では、航空機1100は、
図10の航空機の製造及び保守方法1000によって製造され、システム群1104及び内装1106を有する機体1102を含むことができる。システム群1104の例には、推進システム1108、電気システム1110、油圧システム1112、及び環境システム1114の1つ以上が含まれる。任意の数の他のシステムが含まれてもよい。航空宇宙産業の例が図示されているが、異なる例示的な実施形態は、自動車産業などの他の産業にも適用され得る。
【0123】
本明細書で具現化される装置および方法は、
図10の航空機の製造および点検方法1000のうちの少なくとも1つの段階で採用可能である。特に、
図2の音響感知システム204と解析器モジュール214は、航空機の製造及び保守方法1000の段階の任意の1つの段階で設置され得る。
【0124】
例えば、非限定的に、
図2の音響感知システム204は、構成要素及びサブアセンブリの製造1006、システムインテグレーション1008、運航1012、整備及び保守1014、又は航空機1100の製造及び保守方法1000の何らかの他の段階のうちの少なくとも1つの間において、航空機内の様々な部分からのアコースティックエミッションを検出するために使用され得る。また更に、
図2の解析器モジュール214は、構成要素及びサブアセンブリの製造1006、システムインテグレーション1008、運航1012、整備及び保守1014、又は航空機の製造及び保守方法1000の何らかの他の段階のうちの少なくとも1つの間において検出されたアコースティックエミッションを解析するために使用され得る。
【0125】
例示的な一実施例では、
図10の構成要素及びサブアセンブリの製造1006で製造される構成要素又はサブアセンブリは、
図10で航空機1100の運航1012中に製造される構成要素又はサブアセンブリと同様のやり方で、作製又は製造される。更にまた別の一実施例では、1以上の装置の実施形態、方法の実施形態、又はこれらの組み合わせを、
図10の構成要素及びサブアセンブリの製造1006並びにシステムインテグレーション1008などの製造段階で、利用することができる。1以上の装置の実施形態、方法の実施形態、又はこれらの組み合わせを、航空機1100が
図10における運航1012、及び/又は整備及び保守1014の間に利用することができる。幾つかの種々の例示的な実施形態の利用により、航空機1100の組立てを大幅に効率化すること、及び/又はコストを削減することができる。
【0126】
本装置は、音響感知システム及び解析器モジュールを備える。音響感知システムは、物体に対して配置される。この音響感知システムは、アコースティックエミッションを検出し、検出されたアコースティックエミッションの音響波形データを生成する。解析器モジュールは、コンピュータシステムにおいて実装される。解析器モジュールは、物体についての負荷データ及び音響波形データを受信し、負荷データについて複数のビンを生成し、音響波形データを用いて複数のビンについて複数の周波数分布関数を生成させ、一組の学習アルゴリズムを複数の周波数分布関数及び音響波形データに適用して、オペレータがより容易に、そしてより迅速に物体の構造的完全性を評価できるようにする出力を生成する。
【0127】
幾つかの説明的な例では音響センサが、物体に接触して配置されている。幾つかの説明的な例では、一組の学習アルゴリズムが、管理下にない一組の学習アルゴリズム、又は管理下にある一組の学習アルゴリズムのいずれかを含む。幾つかの説明的な例では負荷データが、データベースから読み出されるか、又は音響波形データが生成されたときに物体の負荷を測定する負荷感知システムから受信される。
【0128】
幾つかの説明的な例では、複数のビンが、複数のビン幅を有し、複数のビン幅におけるビン幅は、時間間隔か、又は負荷間隔である。幾つかの説明的な例において、複数の周波数分布関数における各周波数分布関数は、複数のビン幅の各ビン幅が既定の周波数間隔である複数のビン幅を有する。幾つかの説明的な例において、複数の周波数分布関数における各周波数分布関数は、複数の周波数ビンを有し、複数の周波数ビンにおける周波数ビンは、周波数ビン内に入る周波数ピークの数を数えたもの、又は音響波形データを用いて計算された周波数ビンでのエネルギーの集積を含む。
【0129】
幾つかの説明的な例では、出力が、複数の周波数分布関数の複数のクラスタを特定する。これらの説明的な例では、複数のクラスタが、以下のものを含む:構造的変化の第1モードを表す第1のクラスタ、構造的変化の第2のモードを示す第2のクラスタ、構造的変化の第2のモードを示す第3のクラスタ、及び構造的変化の第4のモードを示す第4のクラスタ。
【0130】
幾つかの説明的な例では、解析器モジュールが、一組の学習アルゴリズムを複数の周波数分布関数に適用して、複数のクラスタを規定し、複数のクラスタについて複数の記述子を特定する。これら幾つかの説明的な例では、複数のクラスタが、交互の試験データによって解析されて、複数の記述子における各記述子を、構造的変化の異なるモードと関連付け、交互の試験データは、X線画像データ、超音波画像データ、赤外線画像データ、及びモデリングデータのうちの1つから選択される。これらの説明的な幾つかの例では、解析器モジュールが、構造的変化のモードを、複数の記述子における各記述子と関連付ける記述子分類出力を生成し、この記述子分類出力は、部材のライフサイクルにおける少なくとも1つの段階で部材の構造的完全性を評価する将来の使用のためのデータベースに記憶される。
【0131】
音波を用いて物体を解析する方法が、提供される。負荷データは、物体について受信される。音響波形データは、物体について、音響感知システムから受信される。音響波形データは、物体から発せられるアコースティックエミッションを示し、音響感知システムによって検出される。負荷データについて複数のビンが生成される。音響波形データを使用して、複数のビンについて複数の周波数分布関数が生成される。一組の学習アルゴリズムが、複数の周波数分布関数及び音響波形データに適用され、オペレータがより容易に、そしてより迅速に物体の構造的完全性を評価することを可能にする出力を生成する。幾つかの説明的な例において、本方法はさらに、物体から放射される音波を、音響感知システムにより、少なくとも1つの音響センサを用いて検出して、アコースティックエミッションシグナルを生成すること、及びアコースティックエミッションシグナルを、音響波形データに変換することを含む。
【0132】
幾つかの説明的な例において、複数のビンを生成することは、複数のビン幅について複数のビン幅を特定すること、及び複数のビンのうち各ビン内に入る音響波形データにおける一組の波形を特定することを含み、ここで複数のビン幅における1つのビン幅は、既定の時間間隔、又は既定の負荷間隔のいずれかである。これらの説明的な幾つかの例において、複数の周波数分布関数を生成することは、選択された周波数範囲を、少なくとも1つの既定周波数間隔に基づいて、複数の周波数ビンに分割することを含む。これらの説明的な例では、複数の周波数分布関数を発生することがさらに、複数のビンから選択されるビン内に入る一組の波形について高速フーリエ変換を計算すること、及び高速フーリエ変換に基づいて、ビンについての周波数分布関数における複数の周波数ビンをアップデートすることを含む。これらの説明的な幾つかの例では、複数の周波数ビンをアップデートすることは、以下のことを含む:一組の波形における各波形について幾つかの周波数ピークを選択すること、及び幾つかの周波数ピークにおける周波数ピークが、周波数ビンに入る周波数を有する場合に、複数の周波数ビンにおける1つの周波数ビンをインクリメントすること。
【0133】
幾つかの説明的な例において、一組の学習アルゴリズムを適用することは、以下のことを含む:管理下にない一組の学習アルゴリズムを、複数の周波数分布関数及び音響波形データに適用して、複数のクラスタを規定すること、多数のクラスタについて複数の記述子を特定すること、並びに複数の記述子における各記述子を、構造的変化の異なるモードを示すものとして、交互の試験データを用いて特定された複数のモードに基づき分類する記述子分類出力を生成すること。幾つかの説明的な例において、一組の学習アルゴリズムを適用することは、以下のことを含む:管理下にある一組の学習アルゴリズムを、複数の周波数分布関数、音響波形データ、及び記録された複数の記述子に適用すること、並びに複数の周波数分布関数の各周波数分布関数について分類結果を生成すること。
【0134】
航空機のライフサイクルにおける少なくとも1つの段階の間に、航空機における複合材料物をモニタリングする方法が、もたらされる。音響感知システムを使用して、複合材料物から放射されるアコースティックエミッションが検出され、音響波形データを生成する。解析器モジュールは、複合材料物についての音響波形データ及び負荷データを受信する。解析器モジュールは、負荷データについて複数のビンを生成する。音響波形データにおける一組の波形は、複数のビンにおいて対応するビンに入る。解析器モジュールは、音響波形データを使用して、複数のビンについて複数の周波数分布関数を生成する。管理下にある一組の学習アルゴリズムが、複数の周波数分布関数、音響波形データ、及び記録された多数の識別子に適用されて、複数の周波数分布関数における各周波数分布関数についての分類結果を特定する出力を生成する。この分類出力によってオペレータは、より容易に、そしてより迅速に複合材料物の構造的完全性を評価することができる。
【0135】
幾つかの説明的な例では、管理下にある一組の学習アルゴリズムを複数の周波数分布関数、音響波形データ、及び記録された多数の識別子に適用して分類出力を生成することは、以下のことを含む:選択された周波数分布関数を記録された複数の周波数分布関数のそれぞれと比較することによって、複数の周波数分布関数において選択された周波数分布関数についての分類結果を生成すること、ここでこの分類結果は、選択された周波数分布関数、ひいては音響波形データにおける対応するセットの波形が、ゼロ又はそれより多くの構造的変化を示すか否かを特定する。
【0136】
次に
図12を参照すると、例示的な一実施形態による、周波数分布関数時間発展画像の図が描かれている。周波数分布関数時間発展画像1200は、
図2に示した複数の周波数分布関数228のそれぞれについて複数の点によって形成された画像の例である。本明細書で使用するように、「複数の」アイテムとは、1つより多いアイテムである。例えば、複数の点とは、1つより多い点である。複数の周波数分布関数228のそれぞれについて複数の点が使用されて、周波数分布関数時間発展画像1200を形成する場合、複数の周波数分布関数228のそれぞれについて1つより多い点が使用されて、周波数分布関数時間発展画像1200を形成する。幾つかの説明的な例において、周波数分布関数時間発展画像1200は、
図2に示した複数の周波数分布関数228のそれぞれについて全てのデータにより形成された画像の例である。
【0137】
周波数分布関数時間発展画像1200は、
図2の複数の周波数分布関数228を生成するために使用されるパラメータを調整するために使用できる。周波数分布関数時間発展画像1200は、物体に関する変化を判定するため、又は物体の構造的完全性を評価するために使用できる(例えば
図2の物体200)。
【0138】
周波数分布関数時間発展画像1200は、x軸1202及びy軸1204を有する。Y軸1204は、周波数である。図示したようにx軸1202は、時間である。別の説明的な例において、x軸1202は、負荷である。
【0139】
凡例1206は、周波数分布関数時間発展画像1200の各ピクセルについて振幅と色との相関関係を特定する。周波数分布関数時間発展画像1200の各列は、1つの周波数分布関数についてのデータを含む。
【0140】
幾つかの説明的な例では、複数のビン幅226、複数の周波数ビン235、
図2の周波数ピーク240における多数の周波数ピーク、及び
図2の多数の複数のクラスタ242のうち少なくとも1つについての値を特定することが望ましい。
図2の物体200、音響感知システム204、及び解析器モジュール214の図解は、例示的な一実施形態が実装され得るやり方に対して、物理的又は構造的な制限を示唆することを意図してない。
図1〜3に示した異なる部材は、
図12〜16における部材と組み合わせることができ、
図12〜16における部材とともに使用することができ、又はこれら2つの組み合わせであってよい。
【0141】
次に、
図13を参照すると、物体、音響感知システム及び解析器モジュールが、例示的な一実施形態に従って、ブロック図の形態で描かれている。
図13は、先に
図2で示した物体200、音響感知システム204及び解析器モジュール214を含む。
図13は、
図2の部材を形成又は解析する際に使用される部材も含む。
【0142】
幾つかの説明的な例において、解析器モジュール214は、物体200についての音響波形データ212を用いて、周波数分布関数時間発展画像1300を生成する。幾つかの説明的な例において、周波数分布関数時間発展画像1300は、表示システム252に表示される。表示されると、周波数分布関数時間発展画像1300によってオペレータは、物体200の構造的完全性を評価することができる。
【0143】
複数の周波数分布228それぞれについてのデータが、周波数分布関数時間発展画像1300に含まれる。
図12の周波数分布関数時間発展画像1200は、周波数分布関数時間発展画像1300の物理的な実装である。
【0144】
周波数分布関数時間発展画像1300は、時間又は負荷のいずれかのx軸1302を有する。周波数分布関数時間発展画像1300は、周波数のy軸1304を有する。周波数分布関数時間発展画像1300は、色1308又は彩度(saturation)1310のいずれかを用いて、振幅1306を特定する。
【0145】
周波数分布関数時間発展画像1300は、アレイ1312のディスプレイである。アレイ1312は、多数の列1314及び多数の行1316を有する。アレイ1312は、複数の周波数分布関数228における多数1318の周波数分布関数に等しい多数の列1314を有する。アレイ1312は、複数の周波数分布関数228の周波数分布関数のそれぞれにおける多数の周波数ビン1320に等しい多数の行1316を有する。複数の周波数分布関数228の周波数分布関数はそれぞれ、識別子1322を有する。識別子1322は、複数の周波数分布関数228の周波数分布関数それぞれについて独自の範囲である。この範囲は、時間1324又は負荷1326のいずれかとして表現できる。
【0146】
識別子1322が時間1324である場合、
図2の複数のビン幅226が、複数の時間ベースのビン幅である。言い換えると、
図2の複数のビン224の各ビンは、時間間隔に対応し得る。識別子1322が負荷1326である場合、
図2の複数のビン幅226が、複数の負荷ベースのビン幅である。
【0147】
アレイ1312は、複数の周波数分布関数228のそれぞれについて複数の点がアレイ1312に含まれるように、満たされる。幾つかの説明的な例において、アレイ1312は、複数の周波数分布関数228のそれぞれについて全てのデータがアレイ1312に含まれるように、満たされる。アレイ1312によって、解析器モジュール214は、音響波形データ212の各波形から抽出した1つの点を有する周波数プロットを用いて、オペレータによっては事前に特定不能な物体200の構造的変化を特定することができる。
【0148】
アレイ1312の各エントリは、複数の周波数分布関数228の周波数分布関数それぞれのうち1つのサンプルと相関関係にある。エントリ1328は、行の値1330、及び列の値1332を有する。行の値1330は、エントリ1328についての行を示す。列の値1332は、エントリ1328についての列を表す。行の値1330は、x番目の行であり、列の値1332は、y番目の列であり、エントリ1328は、x番目の周波数分布関数についてy番目の周波数ビンの値を含む。
【0149】
複数の周波数分布関数228は、周波数ビンの幅1334、ビン幅の値1336、及び多数の周波数ピーク1338を含むパラメータを用いて生成される。幾つかの説明的な例において、周波数ビンの幅1334、ビン幅の値1336、及び多数の周波数ピーク1338のうち少なくとも1つは、オペレータによって選択される。
【0150】
周波数ビンの幅1334、ビン幅の値1336、及び多数の周波数ピーク1338はいずれも、パラメータ調整1340を用いて調整できる。パラメータ調製1340は、反復的1342であり、反復的パラメータ調整と呼ぶこともある。
【0151】
幾つかの説明的な例において、周波数ビンの幅1334、ビン幅の値1336、及び多数の周波数ピーク1338は、パラメータ調整1340、及び音響波形データ212から生成された複数の周波数分布関数時間発展画像1344を用いて、特定される。パラメータ調整1340は、対象とする複数のパラメータ値について、複数の周波数分布関数時間発展画像1344を生成する。画像における差異1346が、複数の周波数分布関数時間発展画像1344の連続的なペアそれぞれの間で判定される。対象となるパラメータについての数量は、画像における差異1346から選択される。
【0152】
幾つかの説明的な例において、対象とするパラメータの数量は、オペレータによりもたらされた値の範囲から選択される。例えばオペレータは、パラメータ調整1340を受信するために、周波数ビンの幅1334、ビン幅の値1336、及び多数の周波数ピーク1338のそれぞれについての値の範囲をもたらすことができる。パラメータ調整1340は、複数の周波数分布関数時間発展画像1344を、パラメータについてもたらされた範囲に入る値のあらゆる組み合わせについて生成することにより、行われる。対象となる1つだけのパラメータがパラメータ調整1340を受信する場合、複数の周波数分布関数時間発展画像1344は、対象となるパラメータについての値の各範囲における各値を用いて生成される。
【0153】
幾つかの説明的な例において、周波数ビンの幅1334、ビン幅の値1336、及び多数の周波数ピーク1338のうち2つのパラメータは、パラメータ調整1340を用いて調整される。これらの説明的な例では、第3のパラメータが、一定の値に保たれる。2つのパラメータを調整した後、パラメータ調整1340を介して判定された2つの値は、パラメータ調整1340を用いて最後のパラメータを調整するために使用される。
【0154】
周波数ビンの幅1334、ビン幅の値1336、及び多数の周波数ピーク1338は、パラメータ調整1340を用いて、あらゆる所望の順序で調整できる。幾つかの説明的な例において、パラメータ調整1340の順序は、物体200を形成する材料によって影響を受ける。幾つかの説明的な例において、周波数ビンの幅1334、ビン幅の値1336、又は多数の周波数ピーク1338のうち少なくとも1つについての所望の範囲は、物体200の材料によって影響を受ける。幾つかの説明的な例において、周波数ビンの幅1334、ビン幅の値1336、及び多数の周波数ピーク1338のうち少なくとも1つについての範囲の広さは、物体200の材料によって影響を受ける。例えば、物体200が複合材料物202である場合、アコースティックエミッションは、100〜1000kHzの範囲にある周波数を有する。複合材料物202のアコースティックエミッション範囲が原因で、周波数ビンの幅1334の範囲は、制限される。幾つかの説明的な例では、物体200が複合材料物202である場合、周波数ビンの幅1334は、ビン幅の値1336及び多数の周波数ピーク1338の調整後に、パラメータ調整1340を用いて調整される。これらの説明的な例の幾つかにおいて、周波数ビンの幅1334は、ビン幅の値1336及び多数の周波数ピーク1338を初期調整するために、20〜50kHzの範囲にある値に固定される。
【0155】
幾つかの説明的な例において、対象とするパラメータの数量は、定常状態条件におけるパーセンテージでの差異の中から選択される。定常状態条件は例えば、連続的な画像のペア間で5%の差異であり得る。別の例では、定常状態条件は、連続的な画像のペア間で13%の差異であり得る。幾つかの説明的な例において、対象とするパラメータの数量は、変化が定常状態の変化の10%以内にある場合に、選択される。例えば、定常状態条件が連続的な画像のペア間で8%の差異であれば、対象となるパラメータについての値は、差異の値が18%と、8%の定常条件との間にある場合に、選択することができる。別の例では、定常状態条件が連続的な画像のペア間で20%の差異であれば、対象となるパラメータについての値は、差異の値が30%と、20%の定常条件との間にある場合に、選択することができる。
【0156】
幾つかの説明的な例では、解析器モジュール214が、多数のクラスタ1348を選択する。幾つかの説明的な例において、解析器モジュール214は、周波数分布関数時間発展画像1300の特異値分解1350によって、多数のクラスタ1348を特定する。幾つかの説明的な例において、多数のクラスタ1348を判定することは、周波数分布関数時間発展画像1300における特異値分解1350からの特異値のプロットの曲線部内にあるエントリから多数のクラスタ1348を選択することを含む。
【0157】
次に、
図14を参照すると、例示的な実施形態に従ってパラメータを調整するために使用可能な変化グラフにおける差異を示す図が描かれている。変化グラフ1400における差異は、
図13の画像における差異1346を物理的に説明するものである。変化グラフ1400における差異は、
図13のパラメータ調整1340で使用されるグラフの例である。
図13に示した周波数ビンの幅1334、ビン幅の値1336、又は多数の周波数ピーク1338について所望のあらゆるパラメータは、変化グラフにおける差異、例えば変化グラフ1400における差異を用いて調整できる。
【0158】
図示したように、変化グラフ1400における差異は、
図13の多数の周波数ピーク1338を調整するために使用可能なグラフの物理的な実装である。変化グラフ1400における差異は、多数のピーク1404のx軸1402を有する。変化グラフ1400における差異は、連続的な周波数分布関数時間発展画像間の変化における差異のy軸1406を有する。
【0159】
変化グラフ1400における差異では、凡例1408が、試験のための時間枠(time window)の長さを示す。時間枠の長さとは、複数の周波数ビンの幅、例えば
図13の周波数ビンの幅1334である。時間枠の長さとは、
図2の複数の周波数ビン235の幅である。図示したように、曲線群1410の各曲線は、約10%で定常状態に達する。この変化が定常状態の変化の10%以内であれば、多数のピーク1404についての値を選択できる。図示したように、曲線群1410の各曲線は、8ピークから10ピークの間で定常状態の10%以内の変化に達する。
図13の多数の周波数ピーク1338についての値は、8〜10ピークの範囲にあるのが望ましくあり得る。別の説明的な例において、その他の所望の多数のピークは、変化グラフで適用可能な差異に応じて判定することができる。
【0160】
幾つかの説明的な例において、
図13の周波数ビンの幅1334は、
図14から決定することができる。幾つかの説明的な例において、
図13の周波数ビンの幅1334についての選択肢は、
図14を用いて削除することができる。例えば、枠(window)=0.1秒、及び枠=0.05秒は、
図14から削除することができる。枠=0.1秒、及び枠=0.05秒は相互に、実質的に重なり合っている。周波数ビン幅の関数としての差異プロットを生成する場合、この差異は、周波数ビンサイズ0.05によって定常状態にあることになろう。
【0161】
次に
図15を参照すると、例示的な一実施形態による、周波数分布関数時間発展画像の図が、正規化負荷曲線に加えて描かれている。図像1500は、周波数分布関数時間発展画像1502、及び正規化された負荷曲線1504を含む。正規化された負荷曲線1504は、ディップ(降下部)1506及びディップ1508を含む。ディップ1506及びディップ1508はそれぞれ、試験する物体に対する変化を示す。
【0162】
正規化された負荷曲線1504は、正規化された負荷曲線1504における材料変化について全ての事例も、周波数分布関数時間発展画像1502に存在することを確認する有効化工程を実行するために使用できる。周波数分布関数時間発展画像1502は、正規化された負荷曲線1504に表示された変化を捕捉し、正規化された負荷曲線1504によって検出されないさらなる変化を捕捉する。
【0163】
幾つかの説明的な例では、クラスタ、例えば
図2の複数のクラスタ242を、オペレータが正規化された負荷曲線1504又は周波数分布関数時間発展画像1502のうち少なくとも1つに基づき、選択することができる。幾つかの説明的な例では、多数のクラスタ、例えば
図13の多数のクラスタ1348を、オペレータが正規化された負荷曲線1504又は周波数分布関数時間発展画像1502のうち少なくとも1つに基づき、選択することができる。
【0164】
図示したように、4つのクラスタから構成されるクラスタ群1510は、破線1512によって分割されている。図示したように、破線1512は、ディップ1506及びディップ1508を通って延びる。
【0165】
幾つかの説明的な例において、多数のクラスタ、例えば多数のクラスタ1348は、解析器モジュール、例えば
図2及び13の解析器モジュール214によって選択され得る。解析器モジュールが多数のクラスタを選択する場合、解析器モジュールは、周波数分布関数時間発展画像1502からのデータを用いて計算を行う。
【0166】
次に、
図16を参照すると、例示的な実施形態に従った、周波数分布関数時間発展画像について特異値分解から特異値をプロットした図が描かれている。幾つかの説明的な例において、特異値のプロット1600は、
図13の特異値分解1350の結果の物理的な実装である。特異値のプロット1600は、
図13の多数のクラスタ1348を選択するために使用され得る。
図2及び13の解析器モジュール214は、特異値のプロット1600を生成するため、また多数のクラスタ1348を判定するために計算を行うことができる。多数のクラスタは、周波数ビンの幅1334、ビン幅の値1336、及び多数の周波数ピーク1338のそれぞれを選択した後に、選択される。
【0167】
特異値のプロット1600は、x軸1602及びy軸1604を有する。X軸1602は、多数のクラスタについての数値の連続体である。Y軸1604は、
図15の周波数分布関数時間発展画像1502のからの特異値分解からの特異値1606である。
【0168】
図示したように、線1608は、複数の点1610を貫いて延びる。線1608は、曲線部1612を有する。幾つかの説明的な例において、多数のクラスタは、特異値のプロット1600の曲線部1612内にある複数の点1610のエントリから選択される。
【0169】
次に、
図17は、例示的な実施形態に従った、音波を用いて物体を解析する方法についてのフローチャートを示す。方法1700は、
図1の試験環境100で実装され得る。方法1700は、音響感知システム204、並びに
図2及び13のコンピュータシステム216の解析器モジュール214を用いて、実装され得る。
【0170】
方法1700は、音波を用いて物体を解析する方法である。方法1700は、物体についての負荷データを受信する(1702)。方法1700は、音響感知システムから物体の音響波形データを受信し、この音響波形データは、物体から発せられるアコースティックエミッションを表し、かつ音響感知システムによって検出される(動作1704)。方法1700は、音響波形データを使用して、複数の周波数分布関数を生成する(動作1706)。方法1700は、複数の周波数分布関数のそれぞれについて複数の点を含む周波数分布関数時間発展画像を、生成する(動作1708)。その後、方法1700は終了する。
【0171】
幾つかの説明的な例において、方法1700は、複数の周波数分布関数のそれぞれについて全てのデータを含む周波数分布関数時間発展画像を生成する。幾つかの説明的な例では、周波数分布関数時間発展画像によってオペレータが、物体の構造的完全性を評価可能になる。幾つかの説明的な例では、物体の構造的完全性を評価するために、周波数分布関数時間発展画像が、解析器モジュールにより使用される。幾つかの説明的な例において、周波数分布関数時間発展画像、又は周波数分布関数時間発展画像に含まれるデータによって解析器モジュールが、音響波形データの各波形について1つの点を含む周波数プロットを用いて、オペレータによっては事前に特定不能な物体の構造的変化を特定することができる。
【0172】
幾つかの説明的な例では、方法1700が、複数の周波数分布関数について複数のビンのためにビン幅の値を特定し、このビン幅の値は、規定された時間間隔、又は規定された負荷間隔のいずれかである(動作1710)。これら説明的な例の幾つかにおいて、複数の周波数分布関数について複数のビンのためにビン幅の値を特定することは、反復的なパラメータ調整と、音響波形データから生成された複数の周波数分布関数時間発展画像とを用いて、ビン幅の値を特定することを含む(動作1712)。これら説明的な例の幾つかにおいて、複数の周波数分布関数について複数のビンのためにビン幅の値を特定することは、複数の周波数分布関数時間発展画像のうち2つの連続的な周波数分布関数時間発展画像間のパーセンテージでの差異が、10%以内の定常状態条件の変化であるとき、ビン幅の値を特定することを含む(動作1714)。
【0173】
幾つかの説明的な例において、方法1700は、反復的なパラメータ調整と、音響波形データから生成した複数の周波数分布関数時間発展画像とを用いて、周波数ビンの幅又は多数の周波数ピークのうち少なくとも1つを特定する(動作1716)。
【0174】
幾つかの説明的な例において、方法1700は、周波数分布関数時間発展画像を用いて多数のクラスタを判定する(動作1718)。これら説明的な例の幾つかにおいて、方法1700は、特異値分解を周波数分布関数時間発展画像に適用することによって、多数のクラスタを判定する(動作1720)。これら説明的な例の幾つかにおいて、多数のクラスタを判定することは、周波数分布関数時間発展画像における特異値分解からの特異値のプロットの曲線部内にあるエントリから多数のクラスタを選択することを含む(動作1722)。
【0175】
次に、
図18は、例示的な実施形態に従った、解析のためにアレイを生成する方法についてのフローチャートを示す。方法1800は、
図1の試験環境100で実装され得る。方法1800は、音響感知システム204、並びに
図2及び13のコンピュータシステム216の解析器モジュール214を用いて、実装され得る。
【0176】
方法1800は、音響感知システムを使用して、物体から放射されるアコースティックエミッションを検出し、音響波形データを生成する(動作1802)。方法1800は、解析器モジュールにより、音響波形データを用いて複数の周波数分布関数を生成し、複数の周波数分布関数のそれぞれは、各時間又は各負荷の識別子のいずれかを有する(動作1804)。方法1800は、複数の周波数関数における多数の周波数分布関数に等しい多数の列を有するとともに、複数の周波数分布関数の周波数分配関数それぞれにおける多数の周波数ビンに等しい多数の行を有するアレイを生成する(動作1806)。方法1800は、複数の周波数分布関数のうちそれぞれの複数の点がアレイに含まれるようにこのアレイを満たし、このアレイによって解析器モジュールは、音響波形データの各波形に関する1つの点を含む周波数プロットを用いて、オペレータによっては事前に特定不能な物体の構造的な変化を特定する(動作1808)。その後、方法1800は終了する。
【0177】
幾つかの説明的な例において、方法1800は、複数の周波数分布関数のそれぞれについて全てのデータがアレイに含まれるように、このアレイを満たす。幾つかの説明的な例において、方法1800は、アレイを、周波数分布関数時間発展画像として表示し、この画像の各列は、複数の周波数分布関数の各周波数分布関数を示すものである(動作1810)。幾つかの説明的な例では、方法1800において、周波数分布関数時間発展画像の各ピクセルが、振幅について色又は彩度で示すものを有する(動作1812)。幾つかの説明的な例において、方法1800は、複数の周波数分布関数時間発展画像を反復的に生成及び解析して、複数の周波数分布関数を生成するために使用したパラメータのうち少なくとも1つを調整し、これらのパラメータは、多数の周波数ピーク、ビン幅の値、及び周波数ビンの幅を含むものである(動作1814)。
【0178】
次に、
図19は、例示的な実施形態に従った、パラメータを調整する方法についてのフローチャートを示す。方法1900は、
図1の試験環境100で実装され得る。方法1900は、音響感知システム204、並びに
図2及び13のコンピュータシステム216の解析器モジュール214を用いて、実装され得る。方法1900は、対象となるパラメータを調整する方法である。
図13に示した周波数ビンの幅1334、ビン幅の値1336、又は多数の周波数ピーク1338についての所望のあらゆるパラメータは、方法1900を用いて調整できる。
【0179】
方法1900は、対象となるパラメータの数値範囲を判定する(動作1902)。方法1900は、対象となるパラメータを、数値範囲の最小値N
f1で開始させ、その他のパラメータを全て初期化する(動作1904)。方法1900は、N
fxについて周波数分布関数時間発展画像を生成し、N
f1で開始する(動作1906)。方法1900は、N
f2について周波数分布関数時間発展画像を生成する(動作1908)。
【0180】
方法1900は、パーセンテージでの差異を、2つの画像の各セット間の差の合計によって計算し、N
f1及びN
f2についての画像間の差で割る:
(動作1910)。方法1900は、N
fの全ての値について周波数分布関数時間発展画像が生成されているかどうかを判定する(動作1912)。もし生成されていなければ、N
fについて全ての値が、周波数分布関数時間発展画像を有するまで、動作1906及び1908が繰り返される。方法1900は、複数の周波数分布関数時間発展画像のうち2つの連続的な周波数分布関数時間発展画像間のパーセンテージでの差異が、10%以内の定常状態条件の変化であるパラメータについての値を選択する(動作1914)。その後、方法1900は終了する。
【0181】
幾つかの説明的な例では、画像が同じサイズでなければ、方法1900は、これらの画像が同じサイズになるように補間する(動作1916)。
【0182】
異なって図示された実施形態におけるフローチャート及びブロック図は、構造様式、機能、及び装置を稼働させ得る幾つかの実施法、並びに説明的な実施形態における方法を説明している。これに関して、フローチャート又はブロック図内の各ブロックは、1つの動作又は1つのステップの、モジュール、セグメント、機能、及び/又は部分を表すことができる。
【0183】
例示的な一実施形態の幾つかの代替的な実施態様では、ブロックに記載された1以上の機能が、図中に記載の順序以外で起こり得る。例えば、場合によっては、連続して示されている2つのブロックが実質的に同時に実行されること、又は時には、付随する機能に応じてブロックが逆の順序で実施されることもあり得る。また、フローチャート又はブロック図で説明したブロックに加えて、その他のブロックを追加することができる。
【0184】
幾つかの説明的な例において、方法1700、方法1800、又は方法1900の全てのブロックが実施されるわけではない。例えば、
図17の動作1710から1722までは、任意である。別の例として、
図18の動作1810から1814までは、任意である。さらなる例として、
図19の動作1916は、任意である。
【0185】
さらに、本開示は、以下の条項に従った実施形態を含む:
【0186】
条項1
物体に対して配置された音響感知システムであって、前記音響感知システムは、アコースティックエミッションを検出し、検出されたアコースティックエミッションの音響波形データを生成する、音響感知システム、及び
物体についての負荷データ及び音響波形データを受信するコンピュータシステムに実装された解析器モジュールであって、前記音響波形データを用いて複数の周波数分布関数を生成し、前記複数の周波数分布関数それぞれについて複数の点を含む周波数分布関数時間発展画像を生成する、解析器モジュール、
を備える、装置。
【0187】
条項2
前記周波数分布関数時間発展画像を生成することによってオペレータは、前記物体の構造的完全性を評価することができる、条項1に記載の装置。
【0188】
条項3
前記解析器モジュールが、前記複数の周波数分布関数について複数のビンのためにビン幅の値を特定し、前記ビン幅の値は、規定された時間間隔、又は規定された負荷間隔である、条項1に記載の装置。
【0189】
条項4
前記解析器モジュールが、反復的なパラメータ調整と、前記音響波形データから生成した複数の周波数分布関数時間発展画像とを用いて、前記ビン幅の値を特定する、条項3に記載の装置。
【0190】
条項5
前記解析器モジュールは、前記複数の周波数分布関数時間発展画像のうち2つの連続的な周波数分布関数時間発展画像間のパーセンテージでの差異が、10%以内の定常状態条件の変化であるとき、前記ビン幅の値を特定することを含む、条項4に記載の方法。
【0191】
条項6
前記解析器モジュールは、反復的なパラメータ調整と、前記音響波形データから生成した複数の周波数分布関数時間発展画像とを用いて、周波数ビンの幅又は多数の周波数ピークのうち少なくとも1つを特定する、条項1に記載の装置。
【0192】
条項7
前記解析器モジュールが、前記周波数分布関数時間発展画像を用いて多数のクラスタを判定する、条項1に記載の装置。
【0193】
条項8
前記解析器モジュールが、特異値分解を前記周波数分布関数時間発展画像に適用することによって多数のクラスタを判定する、条項7に記載の装置。
【0194】
条項9
前記多数のクラスタが、前記周波数分布関数時間発展画像における特異値分解からの特異値のプロットの曲線部内にあるエントリから選択される、条項8に記載の方法。
【0195】
様々な例示的な実施形態の記載は、説明及び記載という目的のために提示されたに過ぎず、実施形態が開示された形態について網羅的であること、又は実施形態を掲示された形態に制限することを意図したわけではない。多くの修正例及び変形例が、当業者にとっては明らかであろう。さらに、様々な例示的な実施形態により、その他の望ましい実施形態と比較して、様々な特徴が得られる。1つ又は複数の実施形態は、実施形態の原則、実際の用途を最もよく説明するために、また当業者が、考えられる特定の使用に適するような様々な変形例を有する様々な実施形態に関する開示を理解するように、選択され、記載されている。