【課題】成形体から最初に流下してガラス板の形状になる前のガラス板の先端部分の幅が、搬送経路の両側に位置する搬送ローラ対の挟持可能な幅に至らない場合であっても、短時間のうちに安定したガラス板の流れをつくる。
【解決手段】ガラス板の製造法は、オーバーフローダウンドロー法を用いてガラス板を成形する成形工程と、前記ガラス板の幅方向の両側の領域を、複数の搬送ローラ対で挟持して前記ガラス板を搬送させる搬送工程と、を有する。前記成形工程の開始前に、前記成形体から最初に流下して前記ガラス板の形状になる前の、前記搬送経路の両側に位置する搬送ローラ対の挟持可能な幅に至らないガラス体の幅を、前記ガラス体の温度が、ガラス転移点+50℃の温度から歪点になる場所に設けられている、一対の補助ローラによって前記ガラス体を挟んで両側から押圧して前記搬送ローラの挟持可能な幅に広げることにより、前記搬送ローラ対に挟持させる。
前記搬送ローラ対は、前記搬送ローラ対のうち、前記成形体に最も近くに位置し、前記ガラス板の前記幅方向の両側を挟持して冷却することにより、前記ガラス板の前記幅方向の両側の領域の粘度を109.0poise以上にする冷却ローラ対と、前記冷却ローラ対に対して前記ガラス板の搬送方向の下流側の空間内に設けられた複数の引下げローラ対と、を含み、
前記補助ローラは、前記冷却ローラ対と、前記引下げローラ対のうち、前記搬送方向の最上流に位置する引下げローラの対との間の搬送経路上に設けられている、請求項1に記載のガラス板の製造方法。
前記一対の補助ローラは、前記一対の補助ローラの間を前記ガラス体の先端が通過した後、徐々に前記一対の補助ローラの間の距離を狭くする、請求項1〜3のいずれか1項に記載のガラス板の製造方法。
前記ガラス体が前記搬送ローラ対により挟持された後、前記一対の補助ローラの間の距離を広げて、前記一対の補助ローラを、前記ガラス体及び前記ガラス基板と非接触な位置に退避させて、前記成形工程及び前記冷却工程を行う、請求項1〜4のいずれか1項に記載のガラス板の製造方法。
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記製造方法では、成形したガラス板の幅方向の両端部をガラス板の幅方向の中央部よりも速く冷却し、さらに、ガラス板に塑性変形が生じないように、ガラス板の温度がガラス転移点以上ガラス軟化点以下となる温度領域において、ガラス板に対して搬送方向に張力を働かせることにより、搬送ローラ対で狭持されるガラス板の部分に隣接する隣接領域に波形状の変形が生じることを抑えることができる。搬送ローラ対は、ガラス板の両側の面を挟み、ガラス板を一定の力で押圧しながら自ら回転してガラス板を搬送させる。これにより、ガラス板の搬送速度を制御して、ガラス板に対して搬送方向に張力を働かせることができる。
【0006】
このような徐冷装置では、連続したガラス板を安定して搬送しながら冷却することができるが、溶融ガラスが成形装置を流れ始める操業の立ち上げ時、成形された最初のガラス板の先端部分は十分な幅を持たない場合が多い。例えば、成形体の溝から最初にあふれ出す溶融ガラスは均一にあふれ出すわけではなく、成形体から徐冷炉内に自重落下によって導入される最初のガラス板の先端部分は、目標とする一定の幅に対して極めて幅が狭い。すなわち、先端部分の幅は、ガラス板の搬送経路の両側に位置する搬送ローラ対の挟持可能な幅に至らない。このため、搬送ローラに挟持されず、成形体で成形されるガラス板が搬送ローラ対の挟持可能な幅になるまで待機する必要がある。しかし、このような幅を持つガラス板になるまで時間がかかり、無駄にする溶融ガラスの量は多い、また、成形体から流れ落ち自重で落下するガラス体の先端部分は、徐冷装置内を下方から上方に向かう上昇気流によって振り子のように前後左右にふらつき、徐冷炉内の温度制御装置等の構成部材に接触したり、最悪の場合、構成部材に付着して構成部材を破損する場合がある。
このような操業開示時の問題は、安定したガラス板の製造を行う前に必ず生じ得る。
【0007】
そこで、本発明は、ガラス板の成形を行うに当たり、成形体から最初に流下してガラス板の形状になる前の、ガラス板の先端部分の幅が、搬送経路の両側に位置する搬送ローラ対の挟持可能な幅に至らない場合であっても、短時間のうちに安定したガラス板の流れをつくることを可能にするガラス板の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の一態様は、ガラス板の製造方法である。当該ガラス板の製造方法は、
オーバーフローダウンドロー法を用いて成形体から流下する溶融ガラスを、連続するガラス板に成形する成形工程と、
前記ガラス板の幅方向の両側の領域を、前記ガラス板の搬送経路に設けられた複数の搬送ローラ対で挟持しつつ、前記ガラス板を下方向に搬送させる搬送工程と、を有する。
前記ガラス板の前記成形工程の開始前に、前記成形体から最初に流下して前記ガラス板の形状になる前の、前記搬送経路の両側に位置する搬送ローラ対の挟持可能な幅に至らないガラス体の幅を、前記ガラス体の温度がガラス転移点+50℃の温度と歪点との間にある温度領域に設けられている一対の補助ローラによって、前記ガラス体を、前記ガラス体の全幅にわたって挟んで両側から押圧して前記搬送ローラの挟持可能な幅に広げることにより、前記搬送ローラ対に挟持させる。
【0009】
前記搬送経路は、前記成形体の下端部から下方に延び、
前記補助ローラは、前記搬送経路上の、前記成形体の下端部と、前記搬送ローラ対のうち前記成形体に最も近い最上流搬送ローラ対との間の場所に設けられる、ことが好ましい。
また、前記搬送ローラ対は、前記搬送ローラ対のうち、前記成形体に最も近くに位置し、前記ガラス板の前記幅方向の両側を挟持して冷却することにより、前記ガラス板の前記幅方向の両側(側部)の領域の粘度を10
9.0poise以上にする冷却ローラ対と、前記冷却ローラ対に対して前記ガラス板の搬送方向の下流側の空間内に設けられた複数の引下げローラ対と、を含み、この場合、前記補助ローラは、前記冷却ローラ対と、前記引下げローラ対のうち、前記搬送方向の最上流に位置する引下げローラの対との間の搬送経路上に設けられている、ことも好ましい。
【0010】
前記一対の補助ローラは、前記一対の補助ローラの間を前記ガラス体の先端が通過した後、徐々に前記一対の補助ローラの間の距離を狭くする、ことが好ましい。
【0011】
前記ガラス体が前記搬送ローラ対により挟持された後、前記一対の補助ローラの間の距離を広げて、前記一対の補助ローラを、前記ガラス体及び前記ガラス基板と非接触な位置に退避させて、前記成形工程及び前記冷却工程を行う、ことが好ましい。
【0012】
前記補助ローラのローラ幅は、前記ガラス板の製品幅より広く、前記搬送ローラ対の離間距離より狭い、ことが好ましい。
【発明の効果】
【0013】
上述のガラス板の製造方法によれば、ガラス板の先端部分の幅が、搬送経路の両側に位置する搬送ローラ対の挟持可能な幅に至らない場合であっても、短時間のうちに安定したガラス板の流れをつくることを可能にすることができる。
【発明を実施するための形態】
【0015】
以下、一実施形態のガラス板の製造方法及びガラス板の製造装置について詳細に説明する。一実施形態に係るガラス板の製造方法では、例えばTFTディスプレイ用のガラス基板が製造される。ガラス板は、オーバーフローダウンドロー法を用いて製造される。以下、図面を参照しながら、一実施形態に係るガラス板の製造方法について説明する。
【0016】
(1)ガラス板の製造方法の概要
まず、
図1および
図2を参照して、ガラス板の製造方法に含まれる複数の工程および複数の工程に用いられるガラス板の製造装置100を説明する。ガラス板の製造方法は、
図1に示すように、主として、溶融工程S1と、清澄工程S2と、成形工程S3と、冷却工程S4と、切断工程S5とを含む。
【0017】
溶融工程S1は、ガラスの原料が溶融される工程である。ガラスの原料は、所望の組成になるように調合された後、
図2に示すように、上流に配置された溶融装置11に投入される。ガラス原料は、例えば、SiO
2,Al
2O
3,B
2O
3,CaO,SrO,BaO等の組成からなる。具体的には、ガラス歪点が660℃以上となるガラス原料を用いる。ガラスの原料は、溶融装置11で溶融されて、溶融ガラスFGになる。溶融温度は、ガラスの種類に応じて調整される。本実施形態では、ガラス原料が1500℃〜1650℃で溶融される。溶融ガラスFGは、上流パイプ23を通って清澄装置12に送られる。
【0018】
清澄工程S2は、溶融ガラスFG中の気泡の除去を行う工程である。清澄装置12内で気泡が除去された溶融ガラスFGは、その後、下流パイプ24を通って、成形装置40へと送られる。
【0019】
成形工程S3は、溶融ガラスFGをシート状のガラスであるシートガラスSGに成形する工程である。具体的に、溶融ガラスFGは、成形装置40に含まれる成形体41に連続的に供給された後、成形体41の溝からオーバーフローする。オーバーフローした溶融ガラスFGは、成形体41の表面に沿って流下する。溶融ガラスFGは、その後、成形体41の下端部41aで合流してシートガラスSGへと成形される。シートガラスSGは、幅方向の端に位置する側部(耳部、端部)と、側部に挟まれた幅方向の中央領域とを有する。シートガラスSGの側部の板厚は、中央領域の板厚と比べて厚く成形される。シートガラスSGの中央領域は、一定の板厚からなる最終製品であるガラス板となる領域である。シートガラスSGの中央領域の板厚を0.4mm以下の薄板に成形しようとする場合、シートガラスSGの側部の板厚は従来より薄く成形される。
【0020】
冷却工程S4は、シートガラスSGを冷却(徐冷)する工程である。シートガラスSGは、冷却工程S4を経て室温に近い温度へと冷却される。なお、冷却工程S4における、冷却の状態に応じて、ガラス板の厚み(板厚)、ガラス板の反り量、およびガラス板の歪量が決まる。
【0021】
切断工程S5は、室温に近い温度になったシートガラスSGを、所定の大きさに切断する工程である。
【0022】
なお、所定の大きさに切断されたシートガラスSGは、その後、端面加工等の工程を経る。以下、シートガラスSGをガラス板という。
【0023】
以下、
図3〜
図5を参照して、ガラス板の製造装置100に含まれる成形装置40の構成を説明する。なお、本実施形態において、シートガラスSGの幅方向とは、シートガラスSGが流下する方向(流れ方向)に交差する方向、すなわち、水平方向を意味する。
【0024】
(2)成形装置の構成
まず、
図3および
図4に、成形装置40の概略構成を示す。
図3は、成形装置40の断面図である。
図4は、成形装置40の側面図である。
【0025】
成形装置40は、シートガラスSGが通過する通路と、通路を取り囲む空間とを有する。通路を取り囲む空間は、オーバーフローチャンバー20、フォーミングチャンバー30、および冷却チャンバー80で構成されている。
【0026】
オーバーフローチャンバー20は、清澄装置12から送られる溶融ガラスFGをシートガラスSGに成形する空間である。シートガラスSGは、連続して延びるガラス板である。
【0027】
フォーミングチャンバー30は、オーバーフローチャンバー20の下方に配置され、シートガラスSGの厚みおよび反り量を調整するための空間である。フォーミングチャンバー30では、冷却工程の一部が実行される。溶融ガラスFGは、成形体41の表面に沿って流下し、成形体41の下端部41aで合流してシートガラスSGへと成形されるが、成形体41の下端部41aより下流においては、シートガラスSGの温度が徐々に下がっていく。フォーミングチャンバー30は、オーバーフローチャンバー20に対して仕切り部材50によって区分けされている。
【0028】
冷却チャンバー80は、フォーミングチャンバー30の下方に配置され、シートガラスSGの歪量を調整するための空間である。具体的に、冷却チャンバー80では、フォーミングチャンバー30内を通過したシートガラスSGが、徐冷点、ガラス歪点を経て、室温近傍の温度まで冷却される。なお、冷却チャンバー80は、フォーミングチャンバー30に対して断熱部材80aによって区分けされ、さらに、冷却チャンバー80の内部は、断熱部材80bによって、複数の空間に区分けされている。
【0029】
また、成形装置40は、主として、成形体41と、仕切り部材50と、冷却ローラ51と、温度調整ユニット60と、引下げローラ81a〜81gと、ヒータ82a〜82gと、切断装置90とから構成されている。さらに、成形装置40は、制御装置500を備える(
図5参照)。制御装置500は、成形装置40に含まれる各構成の駆動部を制御する。冷却ローラ51、引き下げローラ81a〜81gは、ガラス板の幅方向の両側の領域を、ガラス板の搬送方向に設けられ、ガラス板を下方向に搬送させる搬送ローラである。
【0030】
以下、成形装置40に含まれる各構成について詳細に説明する。
【0031】
(2−1)成形体
成形体41は、オーバーフローチャンバー20内に設けられる。成形体41は、溶融ガラスFGを溝からオーバーフローさせることによって、溶融ガラスFGをシート状のガラス板(シートガラスSG)へと成形する。
【0032】
図3に示すように、成形体41は、断面形状で略5角形の形状(楔形に類似する形状)を有する。略5角形の先端は、成形体41の下端部41aに相当する。
【0033】
また、成形体41は、第1端部に流入口42を有する(
図4参照)。流入口42は、上述の下流パイプ24と接続されており、清澄装置12から流れ出た溶融ガラスFGは、流入口42から成形体41に流し込まれる。成形体41には、溝43が形成されている。溝43は、成形体41の長手方向に延びる。具体的には、溝43は、第1端部から、第1端部の反対側の端部である第2端部に延びる。より具体的に、溝43は、
図4の左右方向に延びる。溝43は、流入口42近傍が最も深く、第2端部に近づくにつれて、徐々に浅くなるように形成されている。成形体41に流し込まれた溶融ガラスFGは、成形体41の一対の頂部41b,41bからオーバーフローし、成形体41の一対の側面(表面)41c,41cを沿いながら流下する。その後、溶融ガラスFGは、成形体41の下端部41aで合流してシートガラスSGになる。
【0034】
このとき、成形体41の下端部41aでのシートガラスSGの液相温度は1100℃以上であり、液相粘度は2.5×10
5poise以上であり、より好ましくは、液相温度は1160℃以上であり、液相粘度は1.2×10
5poise以上である。また、成形体41の下端部41aでのシートガラスSGの側部(耳部、端部)の粘度を10
5.7Poise未満である。
【0035】
(2−2)仕切り部材
仕切り部材50は、オーバーフローチャンバー20からフォーミングチャンバー30への熱の移動を遮断する部材である。仕切り部材50は、溶融ガラスFGの合流ポイントの近傍に配置されている。また、
図3に示すように、仕切り部材50は、溶融ガラスFGが合流ポイントで合流して形成されたシートガラスSGの厚み方向両側に配置される。仕切り部材50は、断熱材である。仕切り部材50は、溶融ガラスFGの合流ポイントの上側雰囲気および下側雰囲気を仕切ることにより、仕切り部材50の上側から下側への熱の移動を遮断する。
【0036】
(2−3)冷却ローラ(搬送ローラ)
冷却ローラ51は、フォーミングチャンバー30内に設けられる。より具体的に、冷却ローラ51は、仕切り部材50の直下に配置されている。また、冷却ローラ51は、シートガラスSGの厚み方向両側、且つ、シートガラスSGの幅方向両側に配置される。シートガラスSGの厚み方向両側に配置された冷却ローラ51は対で動作する。すなわち、シートガラスSGの両側部(幅方向両端部)は、二対の冷却ローラ51,51,・・・によって一定の力で挟持される。
【0037】
冷却ローラ51は、内部に通された管を流れる空気、冷媒により冷却されている。冷却ローラ51は、シートガラスSGの側部(耳部、端部)R,Lに接触し、熱伝導によりシートガラスSGの側部(耳部、端部)R,Lを急冷する(急冷工程)。冷却ローラ51に接触したシートガラスSGの側部R,Lの粘度は、所定値(具体的には、10
9.0poise)以上である。
【0038】
冷却ローラ51は、冷却ローラ駆動モータ390(
図5を参照)により回転駆動される。冷却ローラ51は、シートガラスSGの側部R,Lを冷却すると共に、シートガラスSGを下方に引き下げる搬送ローラとして機能する。
【0039】
(2−4)温度調整ユニット
温度調整ユニット60は、フォーミングチャンバー30内に設けられ、シートガラスSGを徐冷点近傍まで冷却するユニットである。温度調整ユニット60は、複数の冷却ユニット61〜65を有する。複数の冷却ユニット61〜65は、シートガラスSGの幅方向およびシートガラスSGの流れ方向に配置される。具体的に、複数の冷却ユニット61〜65には、中央領域冷却ユニット61〜63と、側部冷却ユニット64,65とが含まれ
る。中央領域冷却ユニット61〜63は、シートガラスSGの中央領域CAを空冷する。ここで、シートガラスSGの中央領域とは、シートガラスSGの幅方向中央部分であって、シートガラスSGの有効幅およびその近傍を含む領域である。言い換えると、シートガラスSGの中央領域は、シートガラスSGの両側部(両耳部、両端部)R,Lに挟まれた部分である。中央領域冷却ユニット61〜63は、シートガラスSGの中央領域CAの表面に対向する位置に、流れ方向に沿って配置される。
【0040】
(2−5)引下げローラ(搬送ローラ)
引下げローラ(搬送ローラ)81a〜81gは、冷却チャンバー80内に設けられ、フォーミングチャンバー30内を通過したシートガラスSGを、シートガラスSGの流れ方向へ引き下げる。引下げローラ81a〜81gは、冷却チャンバー80の内部で、流れ方向に沿って所定の間隔を空けて配置される。引下げローラ81a〜81gは、シートガラスSGの厚み方向両側(
図3参照)、および、シートガラスSGの幅方向両側(
図4参照)に複数配置される。すなわち、引下げローラ81a〜81gは、シートガラスSGの幅方向の両側部(両耳部、両端部)R,L、かつ、シートガラスSGの厚み方向の両側を一定の力で把持しながらシートガラスSGを下方に引き下げる。
【0041】
引下げローラ81a〜81gは、引下げローラ駆動モータ391(
図5参照)によって駆動される。また、引下げローラ81a〜81gは、シートガラスSGに対して内側に回転する。
【0042】
(2−6)ヒータ
ヒータ82(82a〜82g)は、冷却チャンバー80の内部に設けられ、冷却チャンバー80の内部空間の温度を調整する。具体的に、ヒータ82a〜82gは、シートガラスSGの流れ方向およびシートガラスSGの幅方向に複数配置される。より具体的には、シートガラスSGの流れ方向には、7つのヒータが配置され、シートガラスの幅方向には7つのヒータが配置される。幅方向に配置される7つのヒータは、引下げローラ81a〜81gが挟持する挟持領域を含む、シートガラスSGの中央領域CAと、シートガラスSGの側部(耳部、端部)R,Lとをそれぞれ熱処理する。ヒータ82a〜82gは、後述する制御装置500によって出力が制御される。これにより、冷却チャンバー80内部を通過するシートガラスSGの近傍の雰囲気温度が制御される。ヒータ82a〜82gによって冷却チャンバー80内の雰囲気温度が制御されることによって、シートガラスSGの温度制御が行われる。また、温度制御により、シートガラスSGは、粘性域から粘弾性域を経て弾性域へと推移する。このように、ヒータ82a〜82gの制御により、冷却チャンバー80では、シートガラスSGの温度が、徐冷点近傍の温度から室温近傍の温度まで冷却される。ここで、徐冷点は、粘度が10
13Poiseとなるときの温度であり、ここでは、例えば715.0℃である。
【0043】
(2−7)切断装置
切断装置90は、冷却チャンバー80内で室温近傍の温度まで冷却されたシートガラスSGを、所定のサイズに切断する。切断装置90は、所定の時間間隔でシートガラスSGを切断する。これにより、シートガラスSGは、複数のガラス板になる。切断装置90は、切断装置駆動モータ392(
図5を参照)によって駆動される。
このように、ガラス板の製造装置100でガラス板を製造するとき、溶融ガラスFGからオーバーフローダウンドロー法を用いてシートガラスSGを成形する成形工程と、ガラス板の幅方向の両側の領域を、シートガラスSGの搬送方向に設けられた複数の搬送ローラ対で挟持しつつ、シートガラスSGを下方向に搬送させる搬送工程を行う。本実施形態では、搬送工程においてシートガラスの冷却が行われる。
【0044】
(2−8)制御装置
制御装置500は、CPU、RAM、ROM、およびハードディスク等から構成されており、ガラス板の製造装置100に含まれる種々の機器の制御を行う。
図5は、一実施形態における制御装置500の構成の一例を示すブロック図である。
【0045】
具体的には、
図5に示すように、制御装置500は、ガラス板の製造装置100に含まれる各種のセンサ(例えば、熱電対380、ローラ圧力センサ382)やスイッチ(例えば、主電源スイッチ381)等による信号を受けて、温度調整ユニット60、ヒータ82a〜82g、冷却ローラ駆動モータ390、引下げローラ駆動モータ391、切断装置駆動モータ392、冷却ローラ位置制御用モータ393、引下げローラ位置制御用モータ394a〜394g、等の制御を行う。冷却ローラ位置制御用モータ393は、冷却ローラ51の位置制御を行うために冷却ローラ51の位置を移動させるモータであり、引下げローラ位置制御用モータ394a〜394gは、後述する引き下げローラ81a〜81gの位置制御を行うために引き下げローラ81a〜81gの位置を移動させるモータである。なお、ローラ圧力センサ382は、冷却ローラ51、引き下げローラ81a〜81gがシートガラスSGを押圧する力を計測するセンサである。
【0046】
制御装置500は、冷却チャンバー80に搬送されたシートガラスSGを冷却する際に、シートガラスSGの搬送経路の各位置における幅方向の温度分布が目標となる温度プロファイルを実現するように、熱電対380の計測結果に基づいて、温度調整ユニット60及びヒータ82a〜82gの温度を調整する。これにより、シートガラスSGの波形状の変形、シートガラスSGの歪及び反りを抑えることができる。
制御装置500は、さらに、冷却ローラ位置制御用モータ393及び引下げローラ位置制御用モータ394a〜394gを用いて冷却ローラ51及び引き下げローラ81a〜81gの位置制御を行う。
【0047】
このようなガラス板の製造装置100を用いて安定したガラス板の製造方法を行う場合、安定したガラス板の製造を行う前の操業開始時、成形体41の溝43から最初にあふれ出す溶融ガラスFGは均一にあふれ出さず、成形体41から成形装置40内のフォーミングチャンバー30及び冷却チャンバー80に自重落下によって導入される最初のシートガラスSGの先端部分において、目標とする一定の幅に対して極めて幅が狭い。すなわち、先端部分の幅は、搬送経路の両側に位置する冷却ローラ51及び引き下げローラ81a〜81g(以降、冷却ローラ51及び引き下げローラ81a〜81gを総称して搬送ローラという)の対の挟持可能な幅に至らない。このため、冷却ローラ51や引下げローラ81a〜81g等の搬送ローラに挟持されず、成形体41で成形されるシートガラスSGが冷却ローラ51や引下げローラ81a〜81g等の搬送ローラ対の挟持可能な幅になるまで待機する必要がある。しかし、このような幅を持つシートガラスSGになるまで時間がかかり、無駄にする溶融ガラスFGの量は多い。また、成形体41から流れ落ち自重で落下するシートガラスSGの先端部分は、フォーミングチャンバー30及び冷却チャンバー80内を下方から上方に向かう上昇気流によって振り子のように前後左右にふらつき、フォーミングチャンバー30及び冷却チャンバー80内の温度調整ユニット60、ヒータ82a〜82gの構成部材に接触したり、最悪の場合、構成部材に付着して構成部材を破損する場合がある。
【0048】
このため、本実施形態では、フォーミングチャンバー30及び冷却チャンバー80内に補助ローラが設けられる。
図6は、補助ローラ52a,52bの一例を説明する図であり、
図7は、本実施形態で用いる補助ローラ52a,52bの機能の例を説明する図である。
図6は、搬送ローラの一例として冷却ローラ51を示している。
補助ローラ52a,52bは、冷却ローラ51に対して成形体41の側に設けられている。すなわち、補助ローラ52a,52bは、成形体41の下端部41aと冷却ローラ51との間に設けられている。シートガラスSGの成形工程の開始前に、成形体41から最初に流下してシートガラスSGの形状になる前の、搬送経路の両側に位置する、冷却ローラ51(搬送ローラ)の対の挟持可能な幅に至らないガラス体の幅を、ガラス体の全幅にわたってガラス体を挟むことにより、冷却ローラ51(搬送ローラ)の挟持可能な幅に広げる。具体的には、補助ローラ52a,52bは、上方から自重落下するガラス体85(
図6参照)を挟んで両側から押圧して冷却ローラ51(搬送ローラ)の挟持可能な幅に広げる。これにより、冷却ローラ51の対(搬送ローラ対)に挟持させる。補助ローラ52a,52bは、ガラス体85の温度が、ガラス転移点+50℃の温度と歪点との間にある温度領域に設けられている。このような場所に補助ローラ52a,52bが設けられるので、幅の広げられたシートガラスSGが割れることはない。歪点は、粘度が10
14.5Poiseとなるときの温度である。
補助ローラ52a,52bは、図示されないが、制御装置500から送信される制御信号に応じて駆動する図示されない補助ローラ駆動モータによって回転する。
【0049】
フォーミングチャンバー30及び冷却チャンバー80内では、
図3に示すように、シートガラスSGの搬送経路は、成形体41の下端部41aから下方に延びている。この場合、
図7に示すように、補助ローラ52a,52bは、搬送経路上の、成形体41の下端部41aと、搬送ローラ対のうち成形体41に最も近い冷却ローラ51(最上流搬送ローラ)の対との間の場所に設けられることが好ましい。冷却ローラ51は最初にシートガラスSGの両端部を冷却して、シートガラスSGが湾曲しあるいは反ることを防止する上で重要である。このため、ガラス体85を適正な形状のシートガラスSGに早急にすることができる点から、上記場所に補助ローラ52a,52bを設けることが好ましい。
【0050】
図8は、本実施形態で用いる、
図7に示す補助ローラ52a,52bと異なる場所に設けた補助ローラ52a,52bの例を説明する図である。
図8に示す場所に補助ローラ52a,52bが設けられてもよい。
図8に示す補助ローラ52a,52bは、冷却ローラ51と引下げローラ81aとの間に設けられている。
すなわち、成形装置40は、シートガラスSGの側部R,Lを挟持してシートガラスSGを搬送する搬送ローラ対として、成形体41に最も近くに位置し、シートガラスSGの側部R,Lを冷却することにより、シートガラスSG側部R,Lの領域の粘度を10
9.0poise以上にする冷却ローラ51の対と、冷却ローラ51の対に対してシートガラスSGの搬送方向の下流側の空間である冷却チャンバー80(シートガラスSGを徐冷点近傍の温度から室温近傍の温度まで冷却する空間)内に設けられた引下げローラ対81a〜81gと、を備える。このとき、補助ローラ52a,52bは、冷却ローラ51の対と、引下げローラ81a〜81gの対のうち搬送方向の最上流に位置する引下げローラ81aの対との間の搬送経路上に設けられている。この場合においても、冷却チャンバー80の最上流の場所で、あるいは、冷却チャンバー80に進入する直前の場所で、補助ローラ52a,52bによってガラス体85を適正な形状のシートガラスSGにすることができる。このため、短時間のうちに安定したシートガラスSGの流れをつくることができる。
【0051】
一対の補助ローラ52a,52bは、一対の補助ローラ52a,52bの間をガラス体85の先端が通過した後、徐々に一対の補助ローラ52a,52bの間の距離を狭くするように移動することが好ましい。これにより、補助ローラ52a,52bの間でガラス体85を確実に挟み通過させることができる。このような補助ローラ52a,52bの移動は、制御装置500から送信される制御信号に応じた、図示されない補助ローラ駆動モータの駆動により行われることが好ましい。
【0052】
ガラス体85が冷却ローラ51の対(搬送ローラ対)により挟持された後、一対の補助ローラ52a,62bの間の距離を広げて、一対の補助ローラ52a,52bを、ガラス体85及びシートガラスSGと非接触な位置に退避さて、成形工程S3及び冷却工程S4を行うことが好ましい。補助ローラ52a,52bのガラス体85の幅を広げることは、一旦、冷却ローラ51及び引下げローラ81a〜81gによってシートガラスSGが挟持されると、不要になる。しかも、シートガラスSGが補助ローラ52a,52bと接触することは、シートガラスSGの温度分布を制御するための障害となる。このため、安定したシートガラスSGを搬送させて冷却することができる点から、補助ローラ52a,52bを、ガラス体85及びシートガラスSGと非接触な位置に退避さて、成形工程S3及び冷却工程S4を行うことが好ましい。補助ローラ52a,52bの移動は、制御装置500から送信される制御信号に応じた、図示されない補助ローラ駆動モータの駆動により行われることが好ましい。
【0053】
また、補助ローラ52a,52bのローラ幅は、最終製品となるガラス板の製品幅より広く、冷却ローラ51及び引下げローラ81a〜81g等の搬送ローラの対の離間距離より狭い、ことが好ましい。補助ローラ52a,52bの幅を上記範囲にすることで、必要以上にガラス体の幅を広げることなく、搬送ローラに容易に挟持させることができる。
【0054】
以上、本発明のガラス板の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更してもよいのはもちろんである。