【解決手段】上記目的を達成するため、本発明の一形態に係るモニタリング装置は、透過部材と、出射部と、検出部とを具備する。前記透過部材は、第1の面と、前記第1の面の反対側の第2の面とを有する。前記出射部は、前記透過部材の第2の面に所定の偏波状態の第1の電磁波を出射する。前記検出部は、前記第2の面から出射される電磁波のうち所定の偏波成分の第2の電磁波を検出する。
【発明を実施するための形態】
【0033】
以下、本発明に係る実施形態を、図面を参照しながら説明する。
【0034】
<第1の実施形態>
[雪氷モニタリングシステム]
図1は、本発明の第1の実施形態に係る雪氷モニタリングシステムの構成例を示す模式図である。雪氷モニタリングシステム100は、モニタリング装置10と、解析装置30と、データベース40と、ディスプレイ50とを有する。
【0035】
モニタリング装置10は、空港の滑走路1の内部(地中)に埋め込まれる。モニタリング装置10は、滑走路1の表面2の状態をモニタリングし、そのモニタリング結果として滑走路1の表面2に関する測定データを、解析装置30に送信する。本実施形態において、滑走路1の表面は、測定対象表面に相当する。
【0036】
測定データを送信するための通信形態は限定されない。例えばWAN(Wide Area Network)やLAN(Local Area Network)等のネットワークを介して、測定データが送信される。あるいは高周波信号等を用いた無線通信により、測定データが送信されてもよい。その他、無線や有線による通信を可能とする任意の通信形態が構築されてよい。
【0037】
解析装置30は、モニタリング装置10から送信された測定データを受信する。解析装置30は、測定データの特徴に基づいて、滑走路1の表面2に堆積する雪(雪氷)3に関する雪氷情報を生成する。
【0038】
なお本開示では、氷、及び水も、雪の種類の1つ(雪の状態の1つ)に含まれるものとして、説明を行う。例えば雪の厚みといえば、滑走路1の表面2に堆積する氷の厚みを含む。また滑走路1の表面2が水で濡れている状態も、雪の1つの種類である水が堆積している状態とみなされる。
【0039】
本実施形態において雪3は、測定対象表面に堆積する堆積物に相当する。また雪氷情報は、測定対象表面に堆積する堆積物に関する堆積物情報に相当する。
【0040】
雪氷情報には、例えば雪3の種類、厚み(堆積量)、密度、水分量、温度、及び堆積分布等が含まれる。また雪氷情報として、雪3が堆積した滑走路1の表面2の摩擦係数の推定値や、雪3が堆積した滑走路1の状態を所定の基準に従って評価した評価値が生成される。そのような評価値として、例えば国際民間航空機関(ICAO:International Civil Aviation Organization)が定める滑走路状態コード(RWYCC:Runway Condition Code)が挙げられる。所定の基準に従った評価値は、所定の基準の従った数値への換算量ということもできる。なお所定の基準として、他の評価基準や指標等が採用されてもよい。
【0041】
雪3に関する雪氷情報としてどのような情報が生成されるかは限定されず、堆積する雪3に関する任意の物理量、雪3が堆積した滑走路1の表面2の状態、雪3が堆積したタイミングにおける外気温等、雪3に関する任意の情報が生成されてよい。また滑りやすさの指標となる任意の情報等、滑りやすさに関する任意の情報が堆積物情報として生成されてよい。
【0042】
これにより滑走路1の表面2の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することが可能となる。なおモニタリング結果は、雪氷情報に基づいて導出される情報、及び雪氷情報自体の両方を含む。
【0043】
解析装置30は、雪氷情報を含む出力データとして、テキストデータ、画像データ、及び音声データの少なくとも1つを生成して出力することが可能である。例えば雪氷情報を含むモニタリング画像60が生成され、ディスプレイ50に出力される。例えば空港の管制室等にいる管理者5aは、ディスプレイ50aに表示されるモニタリング画像60を確認することで、滑走路1の管理指針等を決定することが可能となる。
【0044】
また解析装置30により、モニタリング画像60の画像データが、航空機6に無線等を介して送信される。これによりパイロット5bは、操縦室にあるディスプレイ50bに表示されたモニタリング画像60を確認することで、滑走路1に対する離着陸の可否を決定することが可能となる。また地上の運航管理者5cが視聴可能なディスプレイ50cにモニタリング画像60の画像データが送信されてもよい。これにより地上の運航管理者5cは、モニタリング画像60を確認することで、滑走路1に対する離着陸の可否等を決定することが可能となる。
【0045】
もちろん解析装置30により、雪氷情報を含む音声データが生成されてもよい。管制室等や操縦室等、地上の管理室等にあるスピーカを介して、雪氷情報を含む音声が出力される。これにより管理者5a、パイロット5b、地上の運航管理者5cは、滑走路1の表面2の状態に応じた適切な対応を選択することが可能となる。
【0046】
また、雪氷情報である数値データ等を含むテキストデータが生成され、ディスプレイ50に出力されてもよい。例えばディスプレイ50a、50b、50cに所定の画像が表示されている状態で、画面の上方や下方等に、雪氷情報を含むテキストデータが表示される。これにより管理者5a、パイロット5b、地上の運航管理者5cは、滑走路1の表面2の状態を容易に把握することが可能となり、適切な対応を選択することが可能となる。
【0047】
データベース40には、モニタリング装置10から送信される測定データや、解析装置30により生成された雪氷情報等の履歴が格納される。その他、雪氷モニタリングシステム100に用いられる種々のデータが格納される。
【0048】
[モニタリング装置]
図2は、モニタリング装置10の構成例を示す模式図である。モニタリング装置10は、筐体部11と、透過部材12と、発信ユニット13と、受信ユニット14と、移動機構15と、制御ブロック16とを有する。
【0049】
筐体部11は、内部空間Sを有し、筐体部11の上面11aが滑走路1の表面2と略同じ高さとなるように、滑走路1の内部に埋め込まれる。また筐体部11の上面11aには、開口17が形成される。筐体部11の形状(内部空間Sの形状)や開口17の形状は限定されない。例えば円筒形状を有し円形状の開口17が形成された筐体部11が用いられてもよい。あるいは、直方体形状を有し、矩形状の開口17が形成された筐体部11が用いられてもよい。
【0050】
透過部材12は、透明性を有する部材であり、筐体部11の上面11aに形成された開口17に隙間なく嵌め込まれる。透過部材12は、第1の面12aと、その反対側の第2の面12bとを有する。第1の面12aは滑走路1側に配置され、第2の面12bは内部空間S側に配置される。
【0051】
図2に示すように、透過部材12は、第1の面12aが滑走路1の表面2と同じ高さとなるように、筐体部11の開口17に設けられる。これにより測定対象表面である滑走路1の表面2に関する測定データを取得することが可能となる。なお透過部材12の第1の面12aは測定対象表面に含まれる面となる。ただし、第1の面12aが必ずしも滑走路1の表面2と同じ高さである必要は無く、高さが異なっていても構わない。
【0052】
透過部材12の具体的な材質は限定されず、強化ガラスや強化プラスチック等、所望の耐性を有する部材が適宜用いられればよい。また透明性を有するとは、発信ユニット13から出射される測定波(電磁波)に対して透明な状態及び半透明な状態のいずれも含まれるもので、必ずしも可視光に対して透明・半透明であるとは限らない。
【0053】
発信ユニット13は、筐体部11の内部空間Sの所定の位置に設けられ、発信機18と、偏波板(ポラライザ)19と、回転機構20とを有する。本実施形態では、発信機18は、互いに波長の異なる複数の電磁波を出射することが可能である。
【0054】
発信機18は、例えばレーザ発振器(レーザ光源)であり、それ自体で異なる複数の波長のレーザ光を発信可能であってもよい。あるいは発信ユニット13に、互いに異なる波長のレーザ光をそれぞれ発信可能な複数の発信機18が設けられてもよい。レーザ光の波長帯域及び波長幅は限定されず、広帯域のレーザ光や狭帯域のレーザ光等が、測定波として適宜用いられてよい。
【0055】
その他、発信機18として、例えばLED等の他の光源やランプ光源等が用いられてもよい。出射される電磁波の波長帯域や波長幅等は限定されず、適宜設定されてよい。なお「電磁波」は、赤外光、可視光、紫外光等、任意の波長域の光を含む。
【0056】
偏波板(ポラライザ)19は、発信機18から出射される電磁波の光軸O1上に配置される。偏波板(ポラライザ)19は、発信機18から出射される電磁波から直線偏波の第1の電磁波E1を抽出する。従って発信ユニット13からは、第1の偏波方向を有する直線偏波の第1の電磁波E1が出射される。本実施形態において、第1の電磁波E1は、所定の偏波状態の電磁波に相当する。
【0057】
第1の電磁波E1の第1の偏波方向は、偏波板(ポラライザ)19の偏波方向に応じた方向となる。偏波板(ポラライザ)19の具体的な構成は限定されず、任意に設計されてよい。
【0058】
回転機構20は、発信機18から出射される電磁波の光軸O1を中心として、偏波板(ポラライザ)19を回転させることが可能である。これにより発信ユニット13から出射される第1の電磁波E1の第1の偏波方向を任意に変更することが可能である。回転機構20の具体的な構成は限定されず、例えばモータやギア機構等を含む任意のアクチュエータ機構により実現可能である。もちろん他の任意の構成が採用されてよい。
【0059】
図2に示すように発信ユニット13は、透過部材12の第2の面12bに向けて設置される。これにより直線偏波の第1の電磁波E1が、光軸O1に沿って透過部材12の第2の面12bに出射される。本実施形態において、発信ユニット13は、出射部として機能する。また発信機18は電磁波源に相当し、偏波板(ポラライザ)19は第1の抽出部に相当する。
【0060】
図2に模式的に示すように、発信ユニット13から出射される第1の電磁波E1の一部は、透過部材12の第1の面12aに堆積する雪3により、反射・散乱される。また発信ユニット13から出射される第1の電磁波E1の一部は、透過部材12の第1の面12aや第2の面12bにより反射される。従って透過部材12の第2の面12bからは、雪3により反射・散乱された散乱波(散乱光)E2、及び透過部材12の第1の面12aや第2の面12bにより反射された反射波E3を含む電磁波E4が出射される。
【0061】
透過部材12の第2の面12bから出射される電磁波E4のうち、雪3により反射・散乱された散乱波(散乱光)E2は、雪3による散乱成分ということも可能である。また透過部材12の第2の面12bから出射される電磁波E4のうち、透過部材12の第1の面12aや第2の面12bにより反射された反射波E3は、反射成分ということも可能である。
【0062】
散乱成分となる散乱波E2は、乱反射により偏波状態も乱れ、第1の偏波方向とは異なる偏波方向の成分を含む電磁波となる。一方、反射成分となる反射波E3は、正反射(鏡面反射)により生成される電磁波であり、反射の前後で偏波状態が略維持された電磁波となる。すなわち反射波E3は、第1の偏波方向と略等しい偏波方向を有する電磁波となる。
【0063】
受信ユニット14は、筐体部11の内部空間Sの発信ユニット13に対向する位置に、所定の距離をあけて設けられる。受信ユニット14は、受信機21と、偏波板(アナライザ)22と、回転機構23とを有する。
【0064】
受信機21は、入射する電磁波の強度分布を検出することが可能である。受信機21は、例えばCCDやCMOSカメラ等の二次元光学センサであり、それ自体で波長の異なる複数の電磁波の二次元的な強度分布を検出可能であってもよい。あるいは受信ユニット14に複数の受信機21が設置され、全体として波長の異なる複数の電磁波の一次元あるいは二次元的な強度分布が検出されてもよい。
【0065】
偏波板(アナライザ)22は、受信機21の光軸O2上に配置される。偏波板(アナライザ)22は、透過部材12の第2の面12bから出射される電磁波E4のうち、第2の偏波方向を有する直線偏波の第2の電磁波E5を抽出する。抽出される第2の電磁波E5の第2の偏波方向は、偏波板(アナライザ)22の偏波方向に応じた方向となる。偏波板(アナライザ)22の具体的な構成は限定されず、任意に設計されてよい。本実施形態において、第2の電磁波E1は、所定の偏波成分の電磁波に相当する。
【0066】
回転機構23は、受信機21の光軸O2を中心として、偏波板(アナライザ)22を回転させることが可能である。これにより偏波板(アナライザ)22により抽出される第2の電磁波E5の第2の偏波方向を任意に変更することが可能である。回転機構の具体的な構成は限定されず、任意に設計されてよい。
【0067】
本実施形態では、発信ユニット13の回転機構20、及び受信ユニット14の回転機構23により、変更部が実現される。本実施形態のように、発信ユニット13の回転機構20、及び受信ユニット14の回転機構23の両方が回転可能であってもよいし、いずれか一方のみが回転可能であってもよい。すなわち第1及び第2の偏波方向の両方が変更可能であってもよいし、いずれか一方が変更可能であってもよい。
【0068】
本実施形態では、第1の電磁波E1の第1の偏波方向と、第2の電磁波E5の偏波方向とが、互いに略直交するように、偏波板(ポラライザ)19及び偏波板(アナライザ)22の回転角度が制御されている。すなわち第1の電磁波E1の第1の偏波方向と、第2の電磁波E5の偏波方向とが略直交ニコルの関係となるように設定されている。
【0069】
これにより
図2に示すように、透過部材12の第1の面12aや第2の面12bにより反射された反射波E3は、偏波板(アナライザ)22により進行が規制される。すなわち反射波E3は、偏波板(アナライザ)22を透過不能となり、受信機21により検出されることはない。一方、雪3により反射・散乱された散乱波E2は、乱反射により偏波状態が乱れ、第1の偏波方向に略直交する第2の偏波方向の成分を有する。この第2の偏波方向の成分が偏波板(アナライザ)22を透過し、第2の電磁波E5として受信機21により検出される。
【0070】
すなわち本実施形態では、透過部材12の第2の面12bから出射される電磁波E4のうち、透過部材12の第1の面12aや第2の面12bにより反射された反射波E3をカットすることが可能となる。これにより、散乱波E2の第2の偏波方向の成分である第2の電磁波E5に基づいて、透過部材12の第1の面12aに堆積する雪3の状態を高精度に検出することが可能となる。なお雪3は、第1の面12aに堆積する堆積物に相当する。
【0071】
図2に示すように受信ユニット14は、透過部材12の第2の面12bに向けて設置される。これにより第2の面12bから受信機21の光軸O2に沿って進行する第2の電磁波E5の強度分布を高精度に検出することが可能である。
【0072】
本実施形態において、受信ユニット14は、検出部として機能する。また受信機21は第2の電磁波E5を検出するセンサ部に相当し、偏波板(アナライザ)22は第2の抽出部に相当する。なお本実施形態では受信機21は、第2の電磁波E5を撮像する撮像部としても機能する。もちろん第2の電磁波E5を検出するセンサ部として、撮像デバイス以外の任意のデバイスが用いられてもよい。
【0073】
移動機構15は、発信ユニット13の位置、発信ユニット13の姿勢、受信ユニット14の位置、及び受信ユニット14の姿勢を変更することが可能である。すなわち移動機構15は、第1の電磁波E1が出射される位置である出射位置、及び透過部材12の第2の面12bに対する第1の電磁波E1の入射角度θ1を変更可能である。また移動機構15は、受信機21の検出位置、及び第2の面12bに対する受信機21の光軸O2の角度θ2を変更することが可能となる。
【0074】
また移動機構15は、発信ユニット13及び受信ユニット14間の距離tを変更することが可能である。もちろん各位置や角度等の上記した複数のパラメータのうち、少なくとも1つ、あるいは任意の複数のパラメータが変更可能であってもよい。
【0075】
各パラメータについて、変更可能な範囲は限定されない。例えば透過部材12の第2の面12bに対する第1の電磁波E1の入射角度θ1は、第1の電磁波E1が垂直に入射する角度を0°として、受信ユニット14側へ0°〜90°の範囲で適宜設定される。また第2の面12bに対する受信機21の光軸O2の角度θ2は、透過部材12の第2の面12bに対して垂直に交差する角度を0°として、発信ユニット13側へ0°〜90°の範囲で適宜設定される。もちろんこれに限定される訳ではない。
【0076】
移動機構15により、発信ユニット13の位置、発信ユニット13の姿勢、受信ユニット14の位置、及び受信ユニット14の姿勢を変更可能とすることで、これにより精度の高い測定データを取得すること可能となる。
【0077】
なお発信ユニット13の筐体部は固定されており、発信機18や偏波板(ポラライザ)19の位置や姿勢が変更されてもよい。同様に、受信ユニット14の筐体部は固定されており、受信機21や偏波板(アナライザ)22の位置や姿勢が変更されてもよい。また偏波板(ポラライザ)19や偏波板(アナライザ)22は、発信ユニット13や受信ユニット14の筐体部の内部に配置されてもよいし、外部に配置されてもよい。
【0078】
移動機構15の具体的な構成は限定されず、例えばモータやギア機構等を含む任意のアクチュエータ機構により実現可能である。もちろん他の任意の構成が採用されてよい。もちろん手動により、発信ユニット13の位置、発信ユニット13の姿勢、受信ユニット14の位置、及び受信ユニット14の姿勢が変更可能な構成が採用されてもよい。本実施形態において、移動機構15は、移動部に相当する。
【0079】
制御ブロック16は、図示しない電源ユニット、制御ユニット、及び通信ユニット等を含む。電源ユニットは、発信ユニット13及び受信ユニット14に電力を供給する。電源ユニットの具体的な構成は限定されない。
【0080】
制御ユニットは、発信ユニット13や受信ユニット14の各々の動作を制御し、所定の波長の第1の電磁波E1の出射、所定の波長の第2の電磁波E5の二次元分布の強度検出、第1及び第2の偏波方向の制御等を実行させる。本実施形態では、制御ユニットにより、受信ユニット14の受信機21にて得られた強度信号(測定信号)を含む測定データが、通信ユニットを介して
図1に示す解析装置30に送信される。
【0081】
本実施形態では、制御ブロック16の制御ユニットは、検出部として機能する。また制御ユニットにより生成される測定データは、第2の電磁波の検出結果に含まれる。
【0082】
制御ユニットは、例えばCPUやメモリ(RAM、ROM)等のコンピュータに必要なハードウェア構成を有する。制御ユニットとして、例えばFPGA(Field Programmable Gate Array)等のPLD(Programmable Logic Device)、その他ASIC(Application Specific IntegratedCircuit)等のデバイスが用いられてもよい。通信ユニットとしては、例えば任意の無線モジュール等、任意の構成が用いられてよい。
【0083】
図3は、モニタリング装置10から解析装置30に送信される測定データの一例を示す模式図である。本実施形態では、互いに異なる波長の第2の電磁波E5の二次元強度分布が、測定データとして送信される。具体的には、受信機21により生成される各画素の強度情報(輝度情報)を含む画像信号が、測定データとして送信される。
【0084】
本実施形態において、受信機21により生成される画像信号は、測定対象表面に向けて測定波を照射することで得られる測定画像データに相当する。以下、当該画像信号を、測定画像データと記載する。
【0085】
図3A〜Cは、透過部材12上に雪3が堆積している状態で、互いに波長が異なる第1の電磁波E1を照射した場合に得られる測定画像データを模式的に示す図である。
【0086】
透過部材12に向かって出射された第1の電磁波E1は、雪3により反射・散乱され、散乱波E2として透過部材12から受信ユニット14に向かって出射される。この散乱波E2の第2の偏波方向の成分である第2の電磁波E5の画像信号が、測定画像データとして生成される。
【0087】
例えば互いに異なる第1〜第3の波長λ1〜λ3の第1の電磁波E1が出射されることで、
図3A〜Cに示す3種類の画像(画像信号)が生成される。これらの画像は、第1の電磁波E1の出射により得られる第2の電磁波E5の2次元光散乱画像である。すなわち第1〜第3の波長λ1〜λ3の第2の電磁波E5の各々の2次元光散乱画像である。これら3種類の2次元光散乱画像(画像信号)が、測定画像データとして解析装置30に送信される。
【0088】
本実施形態において、3種類の測定画像データは、測定対象表面に向けて波長の異なる複数の第1の電磁波E1を照射することで得られる、複数の第1の電磁波E1に対応する複数の測定データに相当する。もちろん、複数の測定データが3種類の測定画像データに限定される訳ではなく、2以上の任意の数の測定画像データが生成されてよい。もちろん1種類の波長の第1の電磁波E1が照射されることで得られる1種類の測定画像データのみが、解析装置30に送信され雪氷情報が生成されてもよい。
【0089】
図4は、解析装置30の機能的な構成例を示すブロック図である。解析装置30は、CPU、ROM、RAM、HDD等のコンピュータの構成に必要なハードウェアを有する。解析装置30として、例えばPC(Personal Computer)が用いられるが、他の任意のコンピュータが用いられてもよい。
【0090】
CPUが、ROMやHDDに格納された本技術に係るプログラムをRAMにロードして実行することにより、
図4に示す機能ブロックである測定データ取得部31、雪氷情報生成部32、モニタリング画像生成部33、及び音声データ生成部34が実現される。そしてこれらの機能ブロックにより、本技術に係る情報処理方法が実行される。なお各機能ブロックを実現するために専用のハードウェアが適宜用いられてもよい。本実施形態では、解析装置30は、情報処理装置に相当する。
【0091】
プログラムは、例えば種々の記録媒体を介して解析装置30にインストールされる。又はインターネット等を介してプログラムのインストールが実行されてもよい。
【0092】
[雪氷モニタリング動作]
図5は、雪氷モニタリング動作の一例を示すフローチャートである。図中の「滑走路雪氷モニタリング装置」はモニタリング装置10に相当し、「雪氷状態解析用コンピュータ」は解析装置30に相当する。また図中の「雪氷状態及び管理指針表示機」は、
図1に示すディスプレイ50に相当する。
【0093】
本実施形態では、ステップ0として、まずモニタリング装置10による測定が実行される。具体的には、透過部材12の第1の面12aに堆積する雪3の測定画像データが生成される。本実施形態では、
図3A〜Cに例示するような、第1〜第3の波長λ1〜λ3の第1の電磁波E1が出射さることで得られる3種類の測定画像データが生成され、解析装置30に送信される。送信された測定画像データは、
図4に示す測定データ取得部31により取得される。本実施形態において、測定データ取得部31は、取得部として機能する。
【0094】
次にステップ1として、解析装置30により、測定画像データの特徴に基づいて、透過部材12の第1の面12aに堆積する雪(滑走路1の表面2に堆積する雪)に関する雪氷情報が生成される。
図5に示すように、本実施形態では、
図4に示す雪氷情報生成部32により、まず雪3の種類(雪質)及び雪3の厚み(雪厚)が算出される。
【0095】
雪質としては、例えば「霜(FROST)」「乾いた雪(DRY SNOW)」「スラッシュ(SLUSH)」「湿った雪(WET SNOW)」「圧雪(COMACTED SNOW)」「氷(ICE)」「新雪(FRESH)」「ざらめ雪(GRANULAR)」等の任意の雪の状態を含む。また雪に関する雪氷情報として、雪がない状態である「乾いている(DRY)」という情報や、「濡れている(DRY)」「水たまり(STANDING WATER)」等の情報が生成されてもよい。これらの情報が、雪質の情報と同列に扱われてもよい。
【0096】
雪厚としては、例えばmm単位の情報が生成される。もちろん5mm、10mm、50mm等、任意の厚みを単位として、雪厚の情報が生成されてもよい。
【0097】
図3A〜Cに例示する測画像定データの特徴に基づいて、雪質及び雪厚を算出する方法について説明する。
【0098】
図6は、積雪の放射伝達モデルの一例を示すグラフである。積雪の放射伝達モデルに基づけば、アルベド(入射光に対する反射光の比)は波長によって変化する(図中のre=50μmは新雪に相当、1000μmはざらめ雪に相当)。このことにより、反射・散乱する光の量は、雪質と波長に対して大きく変化し、雪厚と雪質は、光の波長に対する反射・散乱強度の関係から算出が可能である。
【0099】
従って複数の異なる波長の第1の電磁波E1を照射して、波長毎の第2の電磁波E5の二次元的な強度分布を検出することで、透過部材12上に存在する雪(氷、水を含む)3の質や厚みを分離して高精度に求めることが可能である。この結果、雪3に関する状態を詳細にモニタリングすることが可能となる。
【0100】
例えば透過部材12上に堆積する雪3の雪厚が厚くなるほど、雪3により反射・散乱される散乱波E2の量が多くなる。従って透過部材12から受信ユニット14に向けて出射される散乱波E2の量は多くなり、その第2の偏波方向の成分である第2の電磁波E5の量も多くなる。従って、第2の電磁波E5の測定画像データに含まれる、第2の電磁波E5の最大径(受光領域の最大径)が大きくなる。すなわち雪厚に応じて第2の電磁波E5の最大径が変化するので、測定画像データの特徴に基づいて、雪厚を高精度にモニタリングすることが可能となる。
【0101】
また透過部材12上に堆積する雪3の水分量(含水率)及び粒径の変化に応じて、雪3により反射・散乱される散乱波E2の量が変化することも分かった。従って測定画像データの特徴に基づいて、雪厚のみならず、水分量及び粒径を高精度にモニタリングすることが可能である。この水分量及び粒径に基づいて、上記した「乾いた雪(DRY SNOW)」等の雪質を同定することが可能である。
【0102】
本実施形態では、雪厚の変化に応じて反射・散乱される光の量が大きく変化する波長の電磁波、水分量の変化に応じて反射・散乱される光の量が大きく変化する波長の電磁波、粒径の変化に応じて反射・散乱される光の量が大きく変化する波長の電磁波の、3種類の第1の電磁波E1が測定波として用いられる。
【0103】
そしてこれらの3種類の第1の電磁波E1に対応する複数の測定画像データ、すなわち
図3A〜Cに例示す3つの測定画像データの特徴に基づいて、雪厚、水分量、及び粒径が高精度にモニタリングすることが可能である。なお受信機21の各画素において輝度値に関する閾値が設定されてもよい。そして閾値以下の輝度値に関しては、輝度ゼロとして画像信号が生成されてもよい。これにより、第2の電磁波E5の最大径に基づいたモニタリングの精度を向上させることが可能である。
【0104】
本実施形態において、雪厚、水分量、及び粒径は、複数の測定画像データに対応する種類の異なる複数の堆積物情報に相当する。なお雪厚、水分量、及び粒径の各々を高精度にモニタリングするための具体的な波長の値は、キャリブレーション等により適宜設定することが可能である。
【0105】
雪氷情報として算出される情報は、雪厚、水分量、及び粒径に限定されず、密度、温度、粒子の均一性等の他のパラメータが算出されてもよい。第1の電磁波E1の波長を適宜設定することで、雪3の吸収特性や散乱特性を変化させるような任意のパラメータを、測定画像データの特徴に基づいて算出することが可能である。
【0106】
測定画像データの特徴としては、第2の電磁波E5の最大径のみならず、第2の電磁波E5の位置、面積(受光領域の面積)、形状(扁平度、真円度等)、受光領域内における強度の傾き(輝度の傾き)、受光領域の中心部分の強度、強度の平均等、強度(輝度)等の二次元分布に関する任意の特徴が採用されてよい。これにより雪厚、水分量、及び粒径を高精度にモニタリングすることが可能となる。
【0107】
また本実施形態では、雪氷情報生成部32により、所定の機械学習アルゴリズムに従って雪氷情報が生成される。例えばRNN(Recurrent Neural Network:再帰型ニューラルネットワーク)、CNN(Convolutional Neural Network:畳み込みニューラルネットワーク)、MLP(Multilayer Perceptron:多層パーセプトロン)等のDNN(Deep NeuralNetwork:深層ニューラルネットワーク)を用いた機械学習アルゴリズムが用いられる。その他、教師あり学習法、教師なし学習法、半教師あり学習法、強化学習法等を実行する任意の機械学習アルゴリズムが用いられてよい。
【0108】
例えばディープラーニング(深層学習)を行うAI(人工知能)を構築することで、非常に精度の高い雪氷情報を生成することが可能となる。なお機械学習アルゴリズムによる学習を行わせるためにオペレータ等が定義する特徴量や、アルゴリズムにより抽出される特徴量も、本実施形態に係る測定画像データの特徴に含まれる。
【0109】
図5に戻り、本実施形態ではステップ1として、算出された雪質及び雪厚と、滑走路状態コードとの紐付けが実行される。すなわち雪氷情報として、滑走路状態コードが生成される。これらの情報を紐付ける方法は限定されない。例えば滑走路状態コードを導き出すために必要な雪質・雪厚が直接的に算出されてもよいし、ステップ1にて算出された雪質・雪厚が、滑走路状態コードを導き出すために適宜換算されてもよい。もちろん、滑走路状態コードを導き出すための、外気温等の他のパラメータが適宜参照されてもよい。
【0110】
次にステップ2として、解析装置30により、滑走路1の除雪の必要性が判定される。また滑走路1に対する離着陸の可否が決定される。これらの処理は、典型的には、ステップ1にて算出された雪質及び雪厚や滑走路状態コードに基づいて実行される。
【0111】
ステップ2の処理も、雪氷情報生成部32により実行される。すなわち本実施形態では、除雪作業の必要性の有無、及び離着陸が可能か否かを示す情報が、透過部材12に堆積する雪(滑走路1に堆積する雪)3に関する雪氷情報として生成される。このように管理指針に関する情報や、運航に関する判断情報等が、雪氷情報として生成されてもよい。
【0112】
なおステップ1にて生成された雪質及び雪厚や滑走路状態コードではなく、ステップ0にて取得された測定画像データに基づいて、直接的に、除雪作業が必要か否かを示す情報、及び離着陸が可能か否かを示す情報が生成されてもよい。もちろん所定の機械学習アルゴリズムが用いられてもよい。
【0113】
ステップ3として、解析装置30により、ステップ1及び2にて生成された雪氷情報を含む出力データが生成される。本実施形態では、モニタリング画像生成部33により、雪氷情報を含むモニタリング画像60が生成される。また音声データ生成部34により、雪氷情報を含む音声データが生成される。本実施形態において、モニタリング画像生成部33、及び音声データ生成部34は、出力部として機能する。
【0114】
図7は、モニタリング画像60の一例を示す模式図である。モニタリング画像60は、測定画像データ表示部61と、雪質(雪の種類)表示部62と、雪厚表示部63と、滑走路状態コード表示部64と、除雪必要性表示部65と、離着陸可否表示部66とを有する。
【0115】
測定画像データ表示部61には、モニタリング装置10から送信される測定画像データが表示される。本実施形態では、
図3A〜Cに例示する3種類の2次元光散乱画像が表示される。雪質表示部62には、ステップ1にて算出された雪質が表示される。雪厚表示部63には、ステップ1にて算出された雪厚が表示される。滑走路状態コード表示部64には、ステップ1にて生成された滑走路状態コードが表示される。
【0116】
除雪必要性表示部65には、ステップ2にて雪氷情報として生成された除雪作業の必要性の有無が表示される。離着陸可否表示部66には、ステップ2にて雪氷情報として生成された離着陸が可能か否かを示す情報が表示される。
【0117】
ステップ4として、モニタリング画像60が出力され、空港(滑走路1)の管理者5aが視聴可能なディスプレイ50aに表示される。またモニタリング画像60は、航空機のパイロット5bが視聴可能なディスプレイ50bに表示される。もちろん地上の運航管理者5cが視聴可能なディスプレイ50cに、モニタリング画像60が表示されてもよい。
【0118】
これにより管理者5a、パイロット5b、及び地上の運航管理者5cは、モニタリング画像60を確認することで、滑走路1の表面2の状態を容易に把握することが可能となり、管理指針等を容易に決定することが可能となる。例えば管理者5aは、除雪の必要性を容易に判断することが可能となり、滑走路状態コードに基づいた滑走路1の管理等を容易に行うことが可能となる。また航空機のパイロット5bは、滑走路1の表面2を直接確認することなく、滑走路1に対する離着陸の可否を容易に判断することが可能となる。もちろん滑走路状態コードに基づいた操作等を行うことが可能となる。また地上の運航管理者5cは、滑走路1に対する離着陸の可否等を容易に判断することが可能となり、例えば現場で直接確認した結果と合わせて、適切な対応を総合的に判断するといったことも可能となる。
【0119】
なおステップ4として、雪氷情報を含む音声データが生成されてもよい。管制室等や操縦室等、地上の管理室等にあるスピーカを介して、雪氷情報を含む音声が出力される。これにより管理者5aやパイロット5b、地上の運航管理者5cは、滑走路1の表面2の状態に応じた適切な対応を選択することが可能となる。
【0120】
なおモニタリング画像60の構成は限定されず、任意の画像(GUI)が生成されて表示されてもよい。またモニタリング画像60に含まれる雪氷情報は限定されず、任意の雪氷情報が表示されてよい。
【0121】
例えば同一のモニタリング画像60が生成される場合に限定されず、管理者5aに提供するための管理者用モニタリング画像と、パイロット5bに提供するためのパイロット用モニタリング画像と、地上の運航管理者5cに提供するための運航管理者用モニタリング画像とが、別個にそれぞれ構成されてもよい。もちろん管理者5a、パイロット5b、地上の運航管理者5cにより、モニタリング画像60が自由にカスタマイズ可能であってもよい。すなわち確認したい雪氷情報が適宜選択可能であってもよい。
【0122】
また環境や状況に応じて、表示する雪氷情報の内容(文字・記号・画像)やその配置・大きさ・配色等が手動又は自動で変更可能であってもよい。音声データについても、環境や状況、生成された雪氷情報等に基づいて、音声内容が適宜変更可能であってもよい。例えば警告や伝達するべき情報等が適宜判断され、出力される音声データが適宜生成されてもよい。
【0123】
なお、
図1に例示するように、滑走路1の複数の箇所に、複数のモニタリング装置10が設置される場合も多い。このような場合、例えば各々のモニタリング装置10について、
図7に例示するモニタリング画像60が生成されてもよい。これにより滑走路1の各ポイントにおける表面状態を把握することが可能となる。
【0124】
また各々のモニタリング装置10により測定された測定データに基づいて生成された雪氷情報を統合し、その統合された雪氷情報を含むモニタリング画像60が生成されてもよい。例えば各々のポイントにおける表面状態(雪氷情報)を統合して、雪質、雪厚、滑走路状態コード、除雪の必要性の有無、及び離着陸の可否が生成されて表示されてもよい。これにより、滑走路1の全体の状態を把握することが可能となる。
【0125】
複数の雪氷情報を統合する方法は限定されず、各ポイントの雪質や雪厚を平均的に見積もった情報が表示される。あるいはモニタリング装置10が設置されているポイントに応じて、重み付けが実行されてもよい。例えば滑走路1の中心に設置されたモニタリング装置10の測定データやそこから生成される雪氷情報は重み付けが大きくされる。一方滑走路1の端部の位置に設置されたモニタリング装置10の測定データ等は、重み付けが小さくされる。このような処理も可能である。
【0126】
また滑走路1のエリアごとに雪氷情報が生成されて表示されてもよい。各エリアにモニタリング装置10が1つずつ設置される場合には、当該モニタリング装置10から送信される測定データに基づいて雪氷情報を生成し、モニタリング画像60に表示する。各エリアに複数のモニタリング装置10が設置される場合には、例えば測定データや雪氷情報が統合されて、モニタリング画像60に表示される。
【0127】
あるいは、各ポイントにて生成された雪氷情報のうち、最も状態が悪い情報が選択されてモニタリング画像60に表示されてもよい。例えば1つのポイントについて、除雪の必要性があり、離着陸が不可能であるという旨の雪氷情報が生成されたとする。この場合、他の複数のポイントについて、除雪の必要性なし、離着陸が可能、の旨の雪氷情報が生成されたとしても、除雪の必要性があり、離着陸が不可能の旨の雪氷情報が表示される。このような処理も可能である。
【0128】
[測定データ及び雪氷情報の予測]
本実施形態では、モニタリング装置10から取得した測定データ(測定画像データ)、及び生成した雪氷情報の少なくとも一方に基づいて、測定対象表面である滑走路1の表面2の状態を予測する予測情報を生成することが可能である。例えば今後、雪質、雪厚、滑走路状態コード、除雪作業の必要性の有無、及び離着陸の可否がどのように推移しているかを予測する予測情報を生成することが可能である。
【0129】
予測情報は、例えば
図1に示すデータベース40に格納された測定データや雪氷情報等の現在までの履歴情報、所定の予測モデルや予測データ等に基づいて生成される。例えば空港に設置された気象レーダー等を介して取得される気象情報等に基づいて、10分後、30分後、60分後等の雪質や雪厚を含む予測情報を生成することが可能である。もちろん予測情報の生成に、任意の機械学習アルゴリズムが用いられてよい。予測情報を生成することで、空港の管理指針や運航計画等を精度よく決定することが可能である。
【0130】
なおモニタリング装置10から取得された測定データの特徴に基づいて、測定対象表面である滑走路1の表面2に関する予測測定データが生成されてもよい。例えば
図3A〜Cに例示するような2次元光散乱画像がどのように変化するかを予測する予測測定データが生成される。そしてこの予測測定データに基づいて、予測情報が生成されてもよい。
【0131】
図8は、雪厚と測定画像データ内の受光領域の最大径との関係を示すグラフである。本発明者は、積雪量(雪厚)の差異を、測定画像データ内の受光領域の最大径により検出する実験を行った。
【0132】
具体的には、−20℃に調温された実験室の中に、
図2に例示する筐体部11及び透過部材12を構成するガラス製の水槽を準備する。水槽の上面を透過部材12として、その下部に、偏波板(ポラライザ)19を含む発信ユニット13、及び偏波板(アナライザ)22を含む受信ユニット14を設置する。
【0133】
発信ユニット13及び受信ユニット14は専用のステージに設置され、各々の距離、角度を手動で変更できる機構を備えている。なお偏波板(ポラライザ)19と偏波板(アナライザ)22は、その偏波方向を略直交の関係に配置される。すなわち略直交ニコルの関係が実現されるように各偏波板が配置される。
【0134】
発信機18にはレーザ光源を用い、発信ユニット13は鉛直に対し15°の角度で直線偏波状態の第1の電磁波E1を出射する。受信機21にはCCDカメラを用い、その散乱波E2を鉛直方向で受信し、偏波板(アナライザ)22を透過する第2の電磁波E5の二次元的な強度分布を検出可能なように配置する。
【0135】
上記の条件にて、水槽に入れる雪の厚みを5mmから40mmに変化させ、検出された第2の電磁波E5の最大径を計測した結果が
図8Aに示す通りである。雪の厚さに応じて第2の電磁波E5の最大径が変化し、雪の厚さを検出できることがわかる。
【0136】
図8Bは、発信ユニット13の偏波板(ポラライザ)19、及び受信ユニット14の偏波板(アナライザ)22を取り外した場合の検出結果である。ここでは、透過部材12の第2の面12bから出射される全電磁波(散乱波E2や反射波E3を含む電磁波E4)の最大径が検出される。偏波板(ポラライザ)19、及び偏波板(アナライザ)22が備えられる場合と比べて、雪の厚さの検出精度が低くなっているのがわかる。
【0137】
以上、本実施形態に係る雪氷モニタリングシステム100では、モニタリング装置10により、透過部材12の第2の面12bに直線偏波の第1の電磁波E1が出射される。また第2の面12bから出射される電磁波E4のうち直線偏波の第2の電磁波E5が検出される。そして、第1の電磁波E1の第1の偏波方向と、第2の電磁波E5の偏波方向とが略直交ニコルの関係となるように設定される。
【0138】
これにより、透過部材12の第2の面12bから出射される電磁波E4のうち、透過部材12の第1の面12aや第2の面12bにより反射された反射波E3ををカットすることが可能となり、透過部材12の第1の面12aに堆積する雪3の情報を有する第2の電磁波E5のみを検出することが可能となる。この結果、第2の電磁波E5に基づいて雪3の状態を高精度に検出することが可能となり、測定対象表面である滑走路1の表面2を高精度にモニタリングすることが可能となる。
【0139】
また本実施形態では、波長の異なる複数の第1の電磁波E1を出射することで得られる複数の測定画像データに基づいて、雪3のモニタリングを実行可能である。これによりさらにモニタリング精度を向上させることが可能である。例えば透過部材12に存在する雪3の有無を判定のみならず、雪3の形状、分布、大きさ、量などに関する情報を高精度に抽出することが可能となる。また雪3の深さ(厚み)や質を分離してより高精度に求めることできる。
【0140】
図8Bに示すように、透過部材12により反射される正反射(鏡面反射)成分をカットできない場合には、雪3のモニタリング精度が低下してしまう。発信ユニット13及び受信ユニット14の位置や姿勢を適宜設計することで、透過部材12からの正反射成分を避けることも考えられる。しかしならがこの場合、発信ユニット13及び受信ユニット14の設置設計が非常に制限されてしまい、装置の小型化が難しい。
【0141】
本実施形態では、偏波板(ポラライザ)19、及び偏波板(アナライザ)22を備えることにより、透過部材12により反射される正反射(鏡面反射)成分をカットすることが可能である。従って、発信ユニット13及び受信ユニット14の配置の自由度を向上させることが可能となり、装置の小型化を実現することが可能となる。これにより装置の設置場所の選択の自由度を向上させることが可能となり、また路面や構造物の内部等の必要な箇所に装置を埋め込むことが容易となる。さらに、透過部材12の形状、材質の選択の自由度も向上させることが可能である。
【0142】
また、例えば略直交ニコルの関係を維持したまま第1の電磁波E1の第1の偏波方向と、第2の電磁波E5の偏波方向とをそれぞれ変更する。すなわち略直交ニコルの関係を維持したまま偏波板(ポラライザ)19及び偏波板(アナライザ)22をそれぞれ回転させる。その際に得られる第2の電磁波E5の検出結果(測定データ)に基づいて、雪3の状態等を高精度にモニタリングすることも可能である。
【0143】
なお本技術は、第1の電磁波E1の第1の偏波方向と、第2の電磁波E5の偏波方向とを略直交ニコルの関係に設定する場合に限定される訳ではない。第1の偏波方向と第2の偏波方向とが互いに交差するように設定することで、透過部材12からの正反射成分を抑制することが可能となり、モニタリング精度を向上させることが可能である。所望とするモニタリング精度が発揮されるように、第1の偏波方向及び第2の偏波方向の交差角度を適宜設定すればよい。
【0144】
また本実施形態に係るモニタリング装置10では、発信ユニット13の位置及び姿勢を適宜変更することが可能である。これにより設置環境や、雪3等の状態に応じて、直線偏波の第1の電磁波E1を最適に照射することが可能となる。この結果、高精度な計測分解能を得ることができ、詳細な雪3の深さや質に関する状態を、高精度にモニタリングすることが可能となる。
【0145】
また受信ユニット14の位置及び姿勢も適宜変更可能である。これにより設置環境や、雪3等の状態に応じて、第2の電磁波E5の一次元あるいは二次元的な強度分布を最適に検出することが可能となる。この結果、高精度な計測分解能を得ることができ、詳細な雪3の深さや質に関する状態を、高精度にモニタリングすることが可能となる。
【0146】
また本実施形態に係る雪氷モニタリングシステム100では、測定対象表面である滑走路1の表面2の測定データの特徴に基づいて、雪氷情報が生成される。これにより、滑走路1の表面2の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することが可能となる。
【0147】
例えばモニタリング結果として、雪質、雪厚、滑走路状態コード、除雪作業の必要性の有無、及び離着陸の可否等、種々の分析結果を提供することが可能であるので、滑走路1の表面2の状態を非常に精度よく把握することが可能となる。
【0148】
またモニタリング画像60を介して、滑走路1の表面2の積雪状態、離着陸可否、除雪の必要性等をリアルタイムで空港の管理者5aやパイロット5b、地上の運航管理者5c等に表示することで、積雪によるオーバーラン事故や運航遅延及び欠航を防ぐことができるため、運航安全性の向上および運航効率性の向上を図ることができる。また滑走路面状態の予測を表示することによって航空運航の効率化をさらに図ることができる。
【0149】
また本実施形態では、モニタリング装置10が、滑走路1の内部に埋め込まれるので、航空機の障害となることを回避することが可能である。また外部の自然環境によるモニタリングの精度に対する影響を排除し、外部からの異物の衝突等による破損等を防止しつつ、滑走路全体の詳細な積雪の深さや質に関する状態をモニタリングすることが可能となる
【0150】
<第2の実施形態>
本発明に係る第2の実施形態の雪氷モニタリングシステムについて説明する。これ以降の説明では、上記の実施形態で説明した雪氷モニタリングシステム100における構成及び作用と同様な部分については、その説明を省略又は簡略化する。
【0151】
図9は、本実施形態に係るモニタリング装置210の構成例を示す模式図である。モニタリング装置210は、筐体部211と、透過部材212と、発信ユニット213と、受信ユニット214と、保持機構271と、ハーフミラー272と、制御ブロック216とを有する。
【0152】
保持機構271は、筐体部211の内部空間Sにおいて、発信ユニット213、ハーフミラー272、及び受信ユニット214を、所定の位置及び姿勢にてそれぞれ保持する。
【0153】
図9に示すように本実施形態では、発信ユニット213は、透過部材212の第2の面212bの下方に、第2の面212bの面方向と略平行の向きとなるように保持される。従って発信ユニット213の発信機218からは、第2の面212bの面方向と略平行の方向に沿って測定波となる電磁波が出射される。そして同じ方向に沿って、偏波板(ポラライザ)219から直線偏波の第1の電磁波E1が出射される。
【0154】
ハーフミラー272は、発信ユニット213から出射される第1の電磁波E1の出射光軸O3上に保持される。ハーフミラー272は、第1の電磁波E1の出射光軸O2に対して略45°の角度で、上方に向けて第1の電磁波E1の一部を反射可能なように斜めに配置される。従ってハーフミラー272により上方に反射された第1の電磁波E1は、第2の面212bに対して略垂直となる方向に沿って、第2の面212bに入射する。この結果、第2の面212bに対する第1の電磁波E1の入射光軸O4は、第2の面212bに略垂直方向に沿って延在することになる。
【0155】
受信ユニット214は、ハーフミラー272を間に挟むように、第2の面212bに対向するように保持される。また受信ユニット214は、受信機221の光軸O2が、ハーフミラー272により反射された第1の電磁波E1の入射光軸O4と略同軸となるように配置される。従って本実施形態では、透過部材212の第2の面212bから出射された電磁波E4(散乱波E2及び反射波E3)は、光軸O2に沿って進みハーフミラー272に入射する。ハーフミラー272を透過した電磁波E4の一部は、偏波板(アナライザ)222に入射し、直線偏波の第2の電磁波E5が受信機221に入射する。
【0156】
このように本実施形態では、透過部材212の第2の面212bに対する第1の電磁波E1の入射光軸O4と、受信ユニット214の受信機221の光軸O2とが、互いに略同軸となる同軸構成が実現される。これにより装置の小型化を図ることが可能となり、装置の設置場所の選択の自由度を向上させることが可能となる。また路面や構造物の内部等の必要な箇所に装置を埋め込むことが容易となる。
【0157】
本実施形態では、保持機構271及びハーフミラー272により、同軸機構部が実現される。同軸機構部の構成は限定されず、他の種類のビームスプリッタや他の光学部材等が用いられてもよい。また
図9に示す発信ユニット213及び受信ユニット214が、互いに逆の位置に配置されてもよい。また保持機構271が、発信ユニット213の位置や姿勢、受信ユニット214の位置や姿勢を同軸構成が実現される範囲で変更可能に構成されてもよい。
【0158】
<第3の実施形態>
図10は、本発明の第3の実施形態に係る解析装置330の機能的な構成例を示すブロック図である。解析装置330は、機能ブロックとして、測定波長決定部335、及び外部制御部336を有する。
【0159】
測定波長決定部335は、モニタリング装置10から取得した測定データ(測定画像データ)、及び生成された雪氷情報の少なくとも一方に基づいて、モニタリング装置10の発信機18から出射される測定波の特性を決定することが可能である。本実施形態において、測定波長決定部335は、設定部に相当する。
【0160】
例えば、発信機18が複数の波長の第1の電磁波E1を出射可能である場合に、その複数の波長から、測定に用いられる波長が選択される。上記したように、吸収・散乱・反射特性が異なる第1〜第3の波長λ1〜λ3の第1の電磁波E1が出射される場合に、第1の波長λ1、第2の波長λ2、及び第3の波長λ3の各々を、複数の波長から適宜選択して決定することが可能である。
【0161】
あるいは、発信機18が所定の波長域内において、第1の電磁波E1の波長を連続的に変更可能である場合は、当該波長域内において、第1の波長λ1、第2の波長λ2、及び第3の波長λ3の各々が適宜決定される。
【0162】
また、測定された雪質や雪厚に応じて、第1の波長λ1、第2の波長λ2、及び第3の波長λ3の中から、測定に必要な波長が選択される場合もあり得る。例えば雪3の状態に応じて、所望とする雪氷情報を得られるように、第1の電磁波E1の波長が第1の波長λ1、第2の波長λ2、及び第3の波長λ3の中から適宜選択される。このような処理も可能である。
【0163】
またPC等の所定のコンピュータ等を介して入力される、管理者5aや専門のオペレータ等の操作により、第1の電磁波E1の波長等の発信機18から出射される測定波の特性が設定可能であってもよい。すなわち手動により、測定波の特性が変更可能であってもよい。
【0164】
第1の電磁波E1の波長の設定の具体例について説明する。例えば積雪予測に基づいて第1の電磁波E1の波長を設定することが可能である。例えば予測情報として、降雪量が増える旨の情報が生成された場合には、予め雪厚観測に適した波長を選択する(雪の層の中によりもぐっていける可視域波長等)。例えば雪が積もっている状態から何分後雨が降る旨の予測情報が生成された場合には、予め含水率(水分含有率)測定に適した波長を選択する。
【0165】
また、雪厚の結果に基づいて第1の電磁波E1の波長を設定することが可能である。例えば、ある波長で雪厚を最初に測定した場合に、雪厚が薄くしか積もっていないと判定されたとする。この場合には、雪厚よりむしろ表層の雪質を重点的に測定する必要があるため粒径判定に効果的な近赤外等の波長による測定にシフトする。雪厚がある程度厚いと判定された場合には、近赤外の波長よりもむしろ雪の層の中をもぐっていける可視域波長等を選択することで雪厚測定を重点に置く。
【0166】
また、含水率の結果に基づいて第1の電磁波E1の波長を設定することが可能である。例えば、ある波長で含水率を最初に測定した場合に、ある程度含水率が高いと判定されたとする。この場合には、雪質の光学的観測において含水率による誤差が生じる可能性があるため、含水率計測に効果的な波長と雪質計測に効果的な波長を同時に選択し誤差を補う。誤差の影響が出ないレベルの含水率であると判定された場合には、雪質観測に効果的な波長のみを選択して雪質を重点的に測定する。
【0167】
また、生成された雪氷情報の信頼度を判定し、信頼度が所定の閾値よりも低い場合に、第1の電磁波E1の波長を変更するといった処理も可能である。
【0168】
このように測定波の特性を設定可能とすることで、滑走路1の表面2の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することが可能となる。なお、測定波の特性は、第1の電磁波E1の波長に限定されず、第1の電磁波E1の強度、偏波状態、パルス間隔等、任意の特性が決定されてもよい。また測定波の特性の設定に、任意の機械学習アルゴリズムが用いられてよい。
【0169】
測定データや雪氷情報等に基づいて、第1の電磁波E1の強度や受信機21のゲインが手動又は自動で選定可能であってもよい。例えば測定データにレンジオーバー(サチュレーション)の部分が存在する場合は、第1の電磁波E1の強度(輝度)を下げるとともに、受信機21のゲインを小さくする。また測定データ全体が所定の閾値よりも小さければ、第1の電磁波E1の強度(輝度)を上げるとともに、受信機21のゲインを小さくする。このように、測定データの傾向から強度やゲインを適切に変更することで、最適な測定が可能となる。
【0170】
また外部の気象情報等に基づいて、第1の電磁波E1の強度や受信機21のゲインが変更されてもよい。例えば、外部の環境光が強く、測定データの値が大きくなるようであれば、第1の電磁波E1の強度(輝度)を上げるとともに、受信機21のゲインを小さくして、データのS/Nを向上させる。このような処理も可能である。
【0171】
外部制御部336は、モニタリング装置10から取得した測定データ(測定画像データ)、及び生成された雪氷情報の少なくとも一方に基づいて、外部の装置を制御するための制御情報を生成する。例えば外部制御部336は、環境や状況・解析装置230で処理した測定データや雪氷情報に応じて、外部の機器をコントロールするための信号を伝達することが可能である。
【0172】
これにより、例えば積雪による注意を喚起するための警報の開始や、除雪の必要性を報知するランプの点灯等を、リアルタイムで素早く実行することが可能となり、次のアクションを適切に起動させることが可能となる。本実施形態において、外部制御部336は、制御情報生成部に相当する。
【0173】
<その他の実施形態>
本発明は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
【0174】
直線偏波の第1の電磁波E1を照射することで得られる測定データに基づいた堆積物の同定方法の他の例について説明する。
【0175】
堆積物に向けて照射される直線偏波の第1の電磁波E1は、堆積物により反射・散乱され、偏波状態が変化する。この偏波状態の変化に基づいて、堆積物の種類等を同定することが可能である。すなわち透過部材から出射される電磁波E4の偏波状態に基づいて、堆積物に関する堆積物情報を生成することが可能である。
【0176】
例えば雪、氷、水の各々の散乱特性を考察すると、雪>氷>水の順で、多重散乱が発生する度合いが大きいのが分かった。すなわち雪が一番多く多重散乱を発生させ、水による多重散乱は一番少なかった。この考察に基づいて、透過部材から出射される電磁波E4の偏波成分の割合に基づいて、雪、氷、水の各々の状態を判別することが可能である。具体的には、以下の通りである。
電磁波E4の偏波成分が多い→多順散乱が少ない→水の状態
電磁波E4の偏波成分が中程度→多順散乱が中程度→氷の状態
電磁波E4の偏波成分が少ない→多順散乱が多い→雪
なお判別の基準となる偏波成分の量については、キャリブレーション等により予め設定することが可能である。
【0177】
また堆積物の粒子の均一性について考察すると、粒子の均一性が高いほど、電磁波E4の偏波成分が強くなる。従って偏波成分の割合に基づいて、堆積物の粒子の均一性を判別することが可能である。具体的には、以下の通りである。
電磁波E4の偏波成分が多い→偏波成分が強い→粒子の均一性が高い
電磁波E4の偏波成分が中程度→偏波成分が中程度→粒子の均一性は中程度
電磁波E4の偏波成分が少ない→偏波成分が弱い→粒子の均一性は低い
なお判別の基準となる偏波成分の量については、キャリブレーション等により予め設定することが可能である。
【0178】
透過部材から出射される電磁波E4の偏波成分の割合を検出する方法としては、例えば上記で説明したような偏波板(アナライザ)を用いる方法が挙げられる。すなわち偏波板(アナライザ)により抽出された直線偏波の第2の電磁波E5の割合に基づいて、電磁波E4の偏波成分の割合を検出することが可能である。
【0179】
例えば、受信機により生成される測定画像データの第2の電磁波E5の最大径が大きい場合には、電磁波E4の偏波成分の割合は多いと判定される。第2の電磁波E5の最大径が小さい場合には、電磁波E4の偏波成分の割合は少ないと判定される。第2の電磁波E5の強度に基づいて電磁波E4の偏波成分の割合が検出されてもよい。例えば測定画像データの第2の電磁波E5の平均輝度等に基づいて、電磁波E4の偏波成分の割合が算出されてもよい。
【0180】
なお第2の電磁波E5の第2の電波方向をどの方向に設定するかは限定されない。すなわち偏波板(アナライザ)の回転角度は限定することなく、電磁波E4の偏波成分の割合を検出することが可能である。もちろん上記で説明したように、第1の電磁波E1の第1の偏波方向と、第2の電磁波E5の偏波方向とが略直交ニコルの関係となるように設定することで、透過部材により反射される正反射成分をカットすることが可能となり、検出精度を向上させることが可能となる。
【0181】
透過部材から出射される電磁波E4から直線偏波の第2の電磁波E5と、第2の電磁波E5と異なる偏波成分である直線偏波の第3の電磁波とがそれぞれ抽出されてもよい。そして第2の電磁波E5及び第3の電磁波に基づいて、堆積物情報が生成されてもよい。
【0182】
透過部材から出射される電磁波E4には、堆積物が堆積する側の空間の環境光(電磁波)が含まれる場合もあり得る。環境光は無偏波であるので、第2の電磁波E5に含まれる環境光の成分の量と、第3の電磁波に含まれる環境光の成分の量は、互いに略等しい。一方で、電磁波E4のうち堆積物により反射・散乱された散乱波E2は、直線偏波の第1の電磁波E1が反射・散乱された電磁波であるので、偏波成分に偏りがある。従って第2の電磁波E5に含まれる散乱波E2の成分の量と、第3の電磁波に含まれる散乱波E2の成分の量は、互いに異なってくる。従って第2の電磁波E5と第3の電磁波の差分をとることで、環境光の成分をキャンセルした測定データを得ることが可能となり、高い精度で堆積物の状態等を同定することが可能となる。
【0183】
互いに偏波方向が異なる第2の電磁波E5と第3の電磁波とを抽出する方法は限定されず、例えば偏波板(アナライザ)を回転させることで、2種類の直線偏波の電磁波を抽出することが可能である。あるいは互いに回転位置が異なる偏波板(アナライザ)が受信機の光軸上に交互に配置されてもよい。さらに、互いに回転位置が異なる偏波板(アナライザ)が設置された複数の受信機が設置されてもよい。
【0184】
あるいは偏波状態に応じて電磁波を分割する偏波ビームスプリッタ等を用いて、互いに偏波方向が異なる第2の電磁波E5と第3の電磁波とをともに抽出することも可能である。抽出された第2の電磁波E5の光軸上、及び第3の電磁波の光路上に、センサ部をそれぞれ配置することで、第2の電磁波E5及び第3の電磁波をともに検出することが可能である。
【0185】
透過部材から出射される電磁波E4から抽出される、互いに偏波方向が異なる複数の直線偏波の電磁波の数は限定されず、3以上の直線偏波の電磁波が抽出され測定データとして用いられてもよい。例えば所定の角度で順に偏波板(アナライザ)が回転され、各回転位置にて測定される電磁波が用いられてもよい。これらの複数の直線偏波の電磁波を用いることで、例えば環境光の成分をノイズ成分として抽出することも可能である。もちろん偏波ビームスプリッタ等の光学素子を用いて、3以上の直線偏波の電磁波を抽出することも可能である。
【0186】
なお、上記で例示した同定方法が実行される際に、所定の機械学習アルゴリズムが用いられてもよい。
【0187】
図11は、他の実施形態に係るモニタリング装置の構成例を示す模式図である。モニタリング装置410は、筐体部411と、透過部材412と、発信ユニット413と、複数の受信ユニット414と、制御ブロック416とを有する。
【0188】
複数の受信ユニット414は、発信ユニット413側から5列に並ぶように配置される。このように複数の受信ユニット414を設置することで、雪3の広い範囲に対して、雪質や雪厚を測定することが可能となり、滑走路1の表面2の状態を高精度にモニタリングすることが可能となる。また各受信ユニット414に含まれる偏波板(アナライザ)の回転位置を異ならせることで、互いに偏波方向の異なる電磁波を抽出することが可能である。
【0189】
発信ユニット及び受信ユニットの構成は限定されず、任意に構成されてよい。例えば上記では、直線偏波の第1の電磁波E1を出射するために、第1の抽出部として偏波板(ポラライザ)が用いられた。これに限定されず、第1の電磁波E1として、直線偏波のレーザ光を出射可能なレーザ光源が用いられてもよい。すなわち第1の抽出部を省略することも可能である。これにより容易に第1の電磁波E1を生成することが可能である。なお例えば、レーザ光源を回転させることで、第1の電磁波E1の第1の偏波方向を任意に制御することが可能である。
【0190】
また発信ユニット及び受信ユニットに、液晶可変波長板等の光学素子(液晶偏光子)等が設置されてもよい。そして第1の電磁波E1の第1の偏波方向、及び第2の電磁波E5の第2の偏波方向が電気的に制御されてもよい。その他、PLZT等の透過性を有する強誘電体を用いた光学素子等が用いられてもよい。
【0191】
所定の偏波状態の第1の電磁波E1として、円偏波又は楕円偏波が出射されてもよい。そして、透過部材から出射される電磁波E4の偏波状態に基づいて、堆積物の状態等が検出されてもよい。円偏波や楕円偏波を出射する方法は限定されず、円偏波や楕円偏波を出射可能な任意の光源が用いられてよい。又は、直線偏波を円偏波等に変換可能な1/4波長板等の光学素子等が適宜用いられてもよい。
【0192】
例えば、堆積物のない状態における電磁波E4の偏波状態を予め計測しておく。この偏波状態と、堆積物のモニタリング時に計測される電磁波E4の偏波状態との差異に基づいて、堆積物の状態等を含む種々の堆積物情報を生成することが可能である。
【0193】
電磁波E4の偏波状態は、例えば電磁波E4の所定の偏波成分の第2の電磁波や、これと異なる偏波成分である第3の電磁波に基づいて、計測することが可能である。例えば偏波板(アナライザ)が回転されることで得られる、互いに偏波方向が異なる第2及び第3の電磁波の割合等に基づいて、電磁波E4の偏波状態を計測することが可能である。もちろん偏波ビームスプリッタにより第2及び第3の電磁波が抽出されてもよい。電磁波E4の偏波状態を計測する方法は限定されず、所定の機械学習アルゴリズムが用いられてもよい。
【0194】
透過部材から出射される電磁波E4の所定の偏波成分である第2の電磁波E5や第3の電磁波も、直線偏波に限定されず円偏波や楕円偏波であってもよい。第2の電磁波E5と第3の電磁波の偏波状態が互いに異なる場合もあり得る。
【0195】
発信ユニットから指向性を有する第1の電磁波E1が出射されてもよい。これにより、発信ユニットから直接受信ユニットに到達する電磁波の影響を抑制し、詳細な堆積物の深さや質に関する状態を、さらに高精度にモニタリングすることが可能となる。指向性を有する電磁波の発信源としては、例えば指向性を持つレーザ光を出射可能なレーザ光源や、並行光化レンズ等の指向性フィルタを装着した光源等が挙げられる。このような光源の光軸上に偏波板(ポラライザ)等を設置することで、指向性を有する直線偏波の第1の電磁波E1を出射することが可能となる。
【0196】
本技術が適用可能な範囲は、空港の滑走路の雪氷モニタリングに限定される訳ではない。道路、橋梁、建築物等の他の構造物の表面状態のモニタリングに適用可能である。また航空機の離着陸に限定されず、車両等の他の移動体の走行等に関する判定に適用することも可能である。また堆積物に関しても、雪、氷、水、泥、火山灰、粉塵等、任意の堆積物に対して本技術を適用することが可能であり、これらの検出や付着パターンの解析等にも適用可能である。すなわち本技術は、様々な分野に適用可能である。
【0197】
例えば道路面にモニタリング装置を設置することで、道路面の積雪や砂等の表面状態を道路管理者に表示し、道路管理に生かすことができる。例えば道路の封鎖の必要性の判断や、迂回路の選定等を容易に実行することが可能となる。また一般自動車の表示パネルにモニタリング画像等を表示することで、例えばネットワーク等を通じてリアルタイムで路面の状態をドライバーに通知することが可能となり、事故の防止や交通の効率化を図ることができる。またリアルタイムの表面状態だけではなく、今後の降雪状況等の予測モデルと組み合わせた路面状態予測表示としても適応可能であり、交通の効率化をより一層図ることができる。
【0198】
また空港の滑走路の表面状態として、火山灰の堆積量や予測堆積量等に基づいて、滑走路の清掃の必要性や離着陸の可否を通知することも可能である。もちろん、空港の誘導路に対して、本技術を適用することも可能である。
【0199】
堆積物情報として、堆積物の層構造に関する情報が生成されてもよい。例えば雪や火山灰の厚み方向における質の変化や、積層される各々の層の状態等が、堆積物情報として生成されてもよい。
【0200】
上記では、測定対象表面に向けて波長の異なる複数の電磁波を照射することで、複数の電磁波に対応する複数の測定データが取得された。これに限定されず、測定対象表面に向けて波長帯域又は波長幅の異なる複数の電磁波が照射され、複数の電磁波に対応する複数の測定データが取得されてもよい。例えば、広帯域のレーザ光や狭帯域のレーザ光等が、複数の測定波(電磁波E1)として照射され、これらレーザ光に応じた複数の測定データが生成される。そして複数の測定データに対応する複数の堆積物情報が生成されてもよい。
【0201】
もちろん所定波長(単一波長)の電磁波、所定波長帯域の電磁波、所定波長幅の電磁波等、1種類の電磁波が照射されることで得られる1種類の測定データに基づいて堆積物情報を生成することも可能である。
【0202】
モニタリング装置が可搬可能に構成されてもよい。これにより例えば雪山や火山の近くの土地等に、モニタリング装置を運び込んで設置することが可能となる。そしてモニタリング装置から送信される測定データに基づいて、所望とする表面の状態を高精度にモニタリングすることが可能となる。例えば雪崩の発生の可能性や、噴火の可能性等の情報を、堆積物情報やその予測情報として生成することが可能となる。
【0203】
上記では、モニタリング装置として、電磁波を照射することで測定データを生成する装置が挙げられた。これに限定されず、外気温等を測定データとして測定可能な温度センサ等、他のセンサ装置等がモニタリング装置として用いられてもよい。この場合、測定データである温度が、雪氷情報としてそのまま用いられてもよい。
【0204】
またモニタリング装置として、テキストデータを測定データとして出力する装置が用いられてもよい。例えば任意の測定方法により得られた測定データに基づいて、テキストデータを生成し、そのテキストデータを測定テキストデータとして出力する構成が採用されてもよい。その他、測定データとして、任意のデータが出力されてよい。上記した複数の測定画像データと同様に、複数の測定テキストデータが出力され、複数の測定テキストデータに対応する複数の堆積物情報が生成されてもよい。
【0205】
上記では、本技術に係る情報処理装置の一実施形態として、解析装置を例に挙げた。これに限定されず、クラウドサーバにより、本技術に係る情報処理方法が実行されてもよい。あるいは互いに通信可能な複数のコンピュータが連動することで、本技術に係る情報処理方法が実行されてもよい。
【0206】
コンピュータシステムによる本技術に係る情報処理方法、及びプログラムの実行は、堆積物情報の生成等の処理が、単体のコンピュータにより実行される場合、及び各処理が異なるコンピュータにより実行される場合の両方を含む。また所定のコンピュータによる各処理の実行は、当該処理の一部または全部を他のコンピュータに実行させその結果を取得することを含む。
【0207】
すなわち本技術に係る情報処理方法及びプログラムは、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成にも適用することが可能である。
【0208】
以上説明した本発明に係る特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。すなわち各実施形態で説明した種々の特徴部分は、各実施形態の区別なく、任意に組み合わされてもよい。また上記で記載した種々の効果は、あくまで例示であって限定されるものではなく、また他の効果が発揮されてもよい。