【実施例1】
【0015】
図1Aに実施例1に係る空気清浄器の構成例を示す。本実施例では光透過部品として、紫外線透過材料としての石英又はガラスで形成された丸棒を使用する例を説明する。まず、発光ダイオードが導光部品の両端面に配置される例について説明する。
図1Aにおいて、左側に(a)断面図、右側に(b)側面図を示す。空気清浄器1は、丸棒状の紫外線2次光源(以下、棒状又は筒状の紫外線2次光源を線状UVランプともいう)2の周りを光触媒チタンメッシュフィルタ(以下、光触媒シートともいう)30が取り囲む構成をしている。
【0016】
光触媒チタンメッシュフィルタ30は、光触媒であるアナターゼ型酸化チタンを強固に担持させたメッシュ型の光触媒シートである。メッシュ型であるため、空気の流路に光触媒シート30を置けば、光触媒シート30のメッシュを通過して空気が流れる。紫外線2次光源2から散乱された紫外光がメッシュに固着したアナターゼ型酸化チタンに照射されると触媒反応が誘起され、促進されて、メッシュに触れた空気中の有機ガスが分解され、空気が清浄化される。
光触媒による分解をより効率的に行わせるためには、光触媒と光源との距離及び流路を考慮する必要があるが、光触媒チタンメッシュフィルタ30は球状や円筒状が効率的である。しかし、球状の場合は製作が困難なので、円筒状が理想的といえる。円筒状フィルタの場合は棒状(円柱状)又は円筒状の2次光源に適合するので、光触媒シート30は円筒形に加工しやすいことが必要である。
【0017】
本発明に係る光触媒シート30は、周期的パターンを有する網状チタンシートの表面に酸化チタン被膜が形成され、当該酸化チタン被膜にアナターゼ型酸化チタン粒子が担持されていることを特徴とする。また、本発明に係る光触媒シート30の製造方法は、チタンからなる金属基板に複数の傷を形成し、さらに、金属基板の両端を引き延ばして周期的パターンを有する網状のエキスパンドチタンメッシュシートとし、エキスパンドチタンメッシュシートに陽極酸化処理及び/または加熱処理を施して表面に酸化チタン被膜を形成し、酸化チタン皮膜にアナターゼ型酸化チタン粒子を担持させることを特徴とする。この場合、引っ張ってエキスパンドメタルにしたときに、穴が横になるように形成され、空気抵抗が大きくなる。これにより、空気浄化のための接触面積が大きくなり、浄化効率がより向上する。又は、本発明に係る光触媒シート30の製造方法は、チタンのワイヤーを編み込み周期的パターンを有する網状のチタンワイヤーメッシュシートとし、チタンワイヤーメッシュシートに陽極酸化処理及び/又は加熱処理を施して表面に酸化チタン被膜を形成し、酸化チタン被膜にアナターゼ型酸化チタン粒子を担持させることを特徴とする。
【0018】
エキスパンドチタンメッシュシートの厚みは、例えば0.05〜3mmが好ましく、0.2〜2mmがより好ましい。エキスパンドチタンメッシュシートの開口率は、10〜80%が好ましく、30〜60%がより好ましい。また、酸化皮膜の厚みは、例えば70〜150nmが好ましい。酸化チタン被膜と光触媒層は、酸化チタン同士が結合することになるので、その結合性が極めて強くなり、その結果、光触媒層が剥がれ難くなる。
【0019】
導光部品10の長さW,光触媒シート30の長さL、導光部品10と光触媒シート30間の間隔をdとすると、W=(L−2d)±20%が好適である。ただし、導光部品10と光触媒シート30間の間隔が大きくなると(例えば、d>導光部品の半径)、光漏れが生じるので、W=(L−2d)±30%が好適となる。
また、棒状又は筒状の導光部品の表面に光触媒を配置する場合に比して、導光部品10から離れた光触媒チタンメッシュフィルタ30に光触媒を配置する場合には、光触媒を配置できる表面積をかなり広くとれるので、多数の光触媒を配置でき、触媒反応を促進できる。また、光触媒に触れる空気量も増えるので空気の清浄化を促進できる。
【0020】
図1Bに、発光素子が1個の例を示す。図中、空気清浄器を1sで示す。発光ダイオード20が1個でも、発光ダイオード20からの光が導光部品10に入射されれば、導光部品10の表面から光触媒シート30の方向に散乱されるので、光触媒シート30で触媒反応を誘起させ、空気を清浄化できる。
【0021】
図2に本実施例に係る紫外線2次光源2の構成例を示す。左側に(a)断面図、右側に(b)側面図を示す。
紫外線2次光源2は、石英又は紫外線透過ガラスで形成された丸棒状の導光部品10の両端に紫外線を発光する発光ダイオード(LED)20を配置して構成される。LED20は発光素子を内包する発光部20Aが放熱器20Bに搭載され、放熱器20Bを介して外側(空中)に放熱すると共に、発光部20Aから導光部品10の鏡面研磨された端面に向けて紫外光を出射し、導光部品10に紫外線を導入する。紫外光の波長は例えば150nmないし375nmである。現時点では、波長<150nmでは透光に適する材料を適用するのが困難であり、波長>375nmでは光触媒反応が困難だからである。
【0022】
導光部品10の側面(外周面)にはブラスト、エッチング等により、紫外光を散乱させる散乱層11を設ける。側面が滑らかな導光部品10では屈折率が空気より大きいので紫外線は導光部品10内に閉じ込められ外に出ない。散乱層11を設けることにより、散乱層11から外側に向けて紫外光が発散される。また、長い丸棒状の導光部品10を用いることにより、数少ない(2個の)LED20で広範囲に紫外光を発散させられる。
これにより、数少ないLEDで広範囲に光を発散させられ、効率的に光触媒シートで触媒反応を誘起させられる。
【0023】
図3に導光部品の散乱層11(外周に設けられた)に微細パターンのグラデーションを付した例を示す。中央部での凹凸の度合いを蜜に、端部近傍での凹凸の度合いを粗とした例である。導入された紫外線は端部近傍で強く、中央部で弱いと考えられるので、中央部での散乱光を多く、端部近傍での散乱光を少なくするように、凹凸の度合いに勾配を付することにより、導光部品10Aからの散乱光を長さ方向に均一化するものである。
【0024】
図4に光触媒チタンメッシュフィルタ30の例を示す。光触媒チタンメッシュフィルタ30は円筒状に形成され、フィルタ担持冶具31を用いて壁面等に取り付けられる。そして、光触媒チタンメッシュフィルタ30の筒中に紫外線2次光源2の導光部品10が収納される。導光部品10側面の散乱層11から散乱された紫外線が光触媒チタンメッシュフィルタ30に担持されたアナターゼ型酸化チタンに照射されて、光触媒反応が誘起される。このようにして、空気清浄器1が構成される。
【0025】
図5に光触媒チタンメッシュフィルタのメッシュ構造を示す。SEM写真を模写したものである。チタンの網目構造が形成されていることが解る。
【0026】
図6に本実施例に係る空気清浄器1全体(制御装置を含む)の構成例を示す。導光部品10の両端にそれぞれLED20が配置され、導光部品10表面の散乱層11から紫外線が発散される。すなわち、導光部品10と2個のLED20で線状UVランプ2が構成されている。そして、線状UVランプ2の周りを光触媒チタンメッシュフィルタ30が取り囲んでいる。線状UVランプ2から射出された紫外線が光触媒チタンメッシュフィルタ30に照射されて、光触媒反応が誘起される。
【0027】
線状UVランプ2は制御装置40に接続される。制御装置40は、例えば、UVランプ安定器又はLEDドライバーを含む。UVランプ安定器またはLEDドライバーは、LED20の駆動を制御し、発光を安定化させる。制御装置40は、電源入力部41を介して外部より電力を供給される。またIoT(物のインターネット)チップ42を有し、IoTチップ42はスマートフォン43Aやパーソナルコンピュータ43Bからの指示により、ワイヤレス通信により遠隔から線状UVランプ2を制御する。例えば、光源情報(玉切れ、運転時間等)を取得して、LEDの交換を通知し、また、運転時間の設定を行う。また、機器制御(ON/OFF制御、電流調整、光強度調整)を行う。
【0028】
図7に本実施例に係る空気清浄化フローの例を示す。
まず、LED20からの紫外光を導光部品10に導入する(S101)。次に、導光部品10に導入された紫外光が、表面に形成された散乱層11から散乱される(S102)。次に、散乱された紫外光が、導光部品10を取り巻く光触媒チタンメッシュフィルタ30に照射される(S103)。次に、光触媒チタンによる光触媒反応が誘起、促進される(S104)。これにより、空気が清浄される(S105)。
【0029】
以上により、本実施例によれば、光触媒を用いる空気清浄器において、数少ないLEDで広範囲に光を発散させ、効率的に光触媒シートで触媒反応を誘起させる空気清浄器を提供できる。
【実施例2】
【0030】
実施例1では光透過部品として石英又は紫外線透過ガラスで形成された丸棒状の部品を使用する例を説明したが、本実施例では。石英又は紫外線透過ガラスで形成された円筒状の部品を使用する例を説明する。
【0031】
図8に本実施例に係る空気清浄器の紫外線2次光源2Aの構成例を示す。
紫外線2次光源2Cは、石英又は紫外線透過ガラスで形成された円筒状の導光部品10Cの両端に紫外線を発光する発光ダイオード(LED)20を配置して構成される。LED20は発光素子を内包する発光部20Aが放熱器20Bに搭載され、放熱器20Bを介して外側(空中)に放熱すると共に、発光部20Aから導光部品10の鏡面研磨された端面に向けて紫外光を出射し、導光部品10Cに紫外線を導入する。紫外光の波長は例えば150nmないし375nmである。導光部品10Cの側面(外周面)にはブラスト、エッチング等により、紫外光を散乱させる散乱層を設ける。側面が滑らかな導光部品10Cでは屈折率が空気より大きいので紫外線は基本的には、導光部品10Cの円筒状の固体部分に閉じ込められ、外側及び中空側に出ない。散乱層を設けることにより、散乱層から外側に向けて紫外光が発散される。また、長い円筒棒状の導光部品10Cを用いることにより、数少ない(2個の)LEDで広範囲に紫外光を発散させられる。
これにより、数少ないLEDで広範囲に光を発散させられ、効率的に光触媒シートで触媒反応を誘起させられる。LEDが片側1個に配置の場合も、同様に数少ない(1個の)LEDで広範囲に紫外光を発散させられる。
【実施例3】
【0032】
実施例2では光透過部品として石英又は紫外線透過ガラスで形成された円筒状の部品を使用する例を説明したが、本実施例では。石英又は紫外線透過ガラスで形成された円筒状の部品の中を樹脂で埋め込む例を説明する。
【0033】
図9に本実施例に係る空気清浄器の紫外線2次光源2Dの構成例を示す。
紫外線2次光源2Dは、石英又は紫外線透過ガラスで形成された円筒状の導光部品10Dの中に樹脂で埋め込み、両端に紫外線を発光する発光ダイオード(LED)20を配置して構成される。LED20は発光素子を内包する発光部20Aが放熱器20Bに搭載され、放熱器20Bを介して外側(空中)に放熱すると共に、発光部20Aから導光部品10Dの鏡面研磨された端面に向けて紫外光を出射し、導光部品10Dに紫外線を導入する。紫外光の波長は例えば150nmないし375nmである。導光部品10Dの側面(外周面)にはブラスト、エッチング等により、紫外光を散乱させる散乱層を設ける。側面が滑らかな導光部品10Dでは屈折率が空気より大きいので紫外線は導光部品10D内に閉じ込められ外に出ない。ただし、中空部を樹脂で埋め込むので、中空部にも紫外光が出る。樹脂の屈折率で円筒内部の紫外線の導光の状況が変化するので、樹脂の屈折率で調光可能である。また、樹脂に小ビーズ等を分散させると内部散乱層として使用できる(
図9はこの状態を示す)。側面及び内部に散乱層を設けることにより、散乱層から外側に向けて紫外光が発散される。また、長い円筒棒状の導光部品10Dを用いることにより、数少ない(2個の)LEDで広範囲に紫外光を発散させられる。
これにより、数少ないLEDで広範囲に光を発散させられ、効率的に光触媒シートで触媒反応を誘起させられる。LEDが片側1個に配置の場合も、同様に数少ない(1個の)LEDで広範囲に紫外光を発散させられる。
【実施例4】
【0034】
実施例2では光透過部品として石英又は紫外線透過ガラスで形成された円筒状の部品を使用する例を説明したが、本実施例では、その石英又は紫外線透過ガラス層に光反射鏡を挟み込んで、入射光全てを石英又は紫外線透過ガラス層の表面から光触媒シートの方向に向かわせる例を説明する。
図10Aに本実施例に係る紫外線2次光源の構成例を示す。空気清浄器を1Eで示す。導光部品10Eをおよそ光触媒チタンメッシュフィルタ30に対向する長さに相当する部分を斜め方向に切断して、両面反射鏡22を挟み込む。これにより、左側の発光ダイオード20からの光は全て両面反射鏡22で上方向に反射されるので、導光部品10Eの表面から上半分の光触媒シート30の方向に向かって出力され、右側の発光ダイオード20からの光は全て両面反射鏡22で下方向に反射されるので、導光部品10Eの表面から下半分の光触媒シート30の方向に向かって出力される。すなわち、光源からの入射光の全てが光触媒シートの方向に向かって出力される。ここにおいて、光触媒チタンメッシュフィルタ30に対向する長さに相当する部分の長さは、およそ光触媒チタンメッシュフィルタ30の長さ±20%とする。長過ぎるとフィルタに当たらない光が多くなり、短すぎると、光があまり当たらないフィルタ部分が多くなるからである。
その他の構成は実施例1と同様であり、実施例1と同様に、数少ないLEDで広範囲に光を発散させられ、効率的に光触媒シートで触媒反応を誘起させられる。
【0035】
図10Bに、発光ダイオードが1個の例を示す。空気清浄器を1F、紫外線2次光源を2F、導光部品を10Fで示す。両面反射鏡22に変えて、発光ダイオード20の反対側の端面に反射板21を設ける。LED20が1個でも、反射板21の形状を凸面鏡や乱反射鏡など適切に設計することにより、LED20からの光が導光部品10Fに入射されれば、導光部品10Fの表面からより均一な光を取り出せる。この場合でも紫外光が光触媒シート30の方向に散乱されるので、光触媒シートで触媒反応を誘起させ、空気を清浄化できる。
【実施例5】
【0036】
本実施例では、空気清浄器の近傍にファンを設けて、多くの空気を空気清浄機内を通過させるようにしたものである。
図11に実施例5に係る空気清浄器(空気清浄器の前にファン23を設けたもの)の概念を示す。例えば、実施例1の空気清浄器1の近傍にファン23を設けて、近傍の空気24を空気清浄器1に吹き付けて、空気清浄器1を通過させる。これにより、室内に空気の循環が起こり、多くの空気が空気清浄器1を通る。これにより、空気清浄器1の利用効率が増加する。ファンに代えて、吸引器を用いても同様の効果を奏する。
【0037】
以上、本発明の実施の形態について説明したが、実施の形態は以上の例に限られるものではなく、本発明の趣旨を逸脱しない範囲で、種々の変更を加え得ることは明白である。
例えば、以上の実施例では、導光部品が丸棒状、円筒状の例を説明したが、導光可能であれば、多角形棒状、多角形筒状等の他の形状でも良い。また、使用する紫外線の波長スペクトル、散乱光量、空気清浄器の寸法、形状、取り付け位置等を適宜変更可能である。