【実施例1】
【0018】
以下、本発明の実施例1について
図1〜
図10に基づいて説明する。
図1に示すように、エンジンEは、オイルパン3の上部に連結されたアルミ合金製シリンダブロック1と、このシリンダブロック1の上部に連結されたアルミ合金製シリンダヘッド2と、このシリンダヘッド2の上部を覆う合成樹脂製ヘッドカバー4等を備えた、直列6気筒レシプロエンジンである。そして、このシリンダブロック1とシリンダヘッド2は、アルミ鋳造法によって製造されている。
【0019】
シリンダブロック1には、前端に位置する第1気筒#1に対応したシリンダ(図示略)から後端に位置する第6気筒#6に対応したシリンダ(図示略)まで前後方向(気筒配列方向)に6個のシリンダが形成されている。各シリンダの内部には、ピストン(図示略)が夫々摺動自在に挿入され、これらピストンとシリンダヘッド2の下側部分とが協働して6個の第1〜第6燃焼室c1〜c6(
図3参照)が夫々設けられている。
尚、以下、図において、矢印F方向を前方、矢印L方向を左方、矢印U方向を上方として説明する。また、符号#1〜#6は、第1気筒〜第6気筒を示している。
【0020】
図3に示すように、燃焼室c1〜c6には、右側上部に前後1対の吸気バルブ孔5と、左側上部に前後1対の排気バルブ孔6と、点火プラグ穴7とが夫々形成されている。
燃焼室c1〜c6に臨む各吸気バルブ孔5は、動弁系により駆動される吸気バルブ(図示略)によって開閉され、各排気バルブ孔6は、動弁系により駆動される排気バルブ(図示略)によって開閉されている。各点火プラグ穴7は、燃焼室c1〜c6の略中央部分に開口され、点火プラグ(図示略)が装着されている。
エンジンEは、燃焼サイクルにおいて、点火順序が第1気筒#1→第5気筒#5→第3気筒#3→第6気筒#6→第2気筒#2→第4気筒#4とされている。
これにより、排気行程が時期的に連続する気筒が隣接しないように配置されているため、排気脈動に伴う正圧波と負圧波とが互いに打ち消し合っている。
【0021】
図2,
図3に示すように、シリンダヘッド2は、右側部分に形成され且つ燃焼室c1〜c6に夫々連なる6つの吸気ポート8と、左側部分に形成され且つ燃焼室c1〜c6に夫々連なる6つの排気ポート11〜16と、第1排気ポート機構Paと、第2排気ポート機構Pbとを一体的に備えている。
各吸気ポート8は、気筒毎に、シリンダヘッド2の右側壁部に形成された6つの開口と1対の吸気バルブ孔5とを連通するように略Y字状に夫々形成されている。6つの開口には吸気マニホールド(図示略)が連結されている。
【0022】
第1排気ポート機構Paは、第1〜第3気筒#1〜#3の燃焼室c1〜c3から排出された排気ガスを集合する第1集合部10aと、燃焼室c1から第1集合部10aまでを連通する第1ポート11(第1排気ポート)と、燃焼室c2から第1集合部10aまでを連通する第2ポート12(第3排気ポート)と、燃焼室c3から第1集合部10aまでを連通する第3ポート13(第2排気ポート)等を主な構成要素としている。
第2排気ポート機構Pbは、第4〜第6気筒#4〜#6の燃焼室c4〜c6から排出された排気ガスを集合する第2集合部10bと、燃焼室c4から集合部10bまでを連通する第4ポート14と、燃焼室c5から第2集合部10bまでを連通する第5ポート15と、燃焼室c6から第2集合部10bまでを連通する第6ポート16等を主な構成要素としている。
【0023】
第2排気ポート機構Pbは、前後中央位置において前後方向に直交する面に対して第1排気ポート機構Paと面対称になっているため、第1ポート11と第6ポート16、第2ポート12と第5ポート15、第3ポート13と第4ポート14が夫々同様の構成である。
また、第1,第2排気ポート機構Paはシリンダヘッド2内に形成された空間によって構成されているため、以下、便宜上、主にシリンダヘッド2から第1排気ポート機構Paに対応した空間を取り出したモデル図によって説明する。
【0024】
図1〜
図3に示すように、集合部10a及び10bは、シリンダヘッド2の左側壁部に夫々設けられ、縦断面が略円形に夫々形成されている。これら集合部10a,10bの左端部分には、夫々排気マニホールド(図示略)が連結され、最終的に共通排気管にて集合されている。
【0025】
図4〜
図6に示すように、第1ポート11は第1集合部10aに接近するように後方に湾曲し、第2ポート12は第1集合部10aに接近するように左右に略直線状に延び、第3ポート13は第1集合部10aに接近するように前方に湾曲するように形成され、各々のポート長が略等しくなるように設定されている。
これにより、各気筒#1〜#6の出力特性を均等化している。
また、第1〜第3ポート11〜13の上流端部分は、夫々の排気バルブ孔6に向かって下方に屈曲形成されている。
【0026】
前述したように、第1排気ポート機構Paの燃焼室c1〜c3の排気行程は、連続しないように形成されている。つまり、第1排気ポート機構Paの排気行程と第2排気ポート機構Pbの排気行程は、交互に実行されている。
図4に示すように、第1ポート11の中心軸延長線L1と第3ポート13の中心軸延長線L3の平面視における交差角θは鈍角(90°<θ)となるように構成されている。
本実施例では、シリンダヘッド2のコンパクト化を狙いとして、延長線L1と延長線L3の交差角θを平面視にて120°以上に設定している。
【0027】
延長線L1と延長線L3の交差角θが鈍角であるため、第1ポート11の下流端と第3ポート13の下流端とが対向する位置関係になっている。
排気行程において第1ポート11を流れる排気ガスが交差角θよりも進行方向角度が小さい第1集合部10aの下流方向に流れ難いため、第1ポート11に対向する第3ポート13に進行(逆流)する成分が発生し、第3ポート13の排気バルブ上に排気ガスが滞留する。それ故、第3ポート13の排気行程は、滞留排気ガスが存在する状態で行われることから、第3ポート13の排気効率は低下している。
これに対し、第1ポート11の排気バルブ上に滞留した排気ガスは、第1ポート11の排気行程の前に、第2ポート12の排気行程に起因した排気ガスの流動負圧により掃気されている。
【0028】
図6に示すように、第1ポート11が第1集合部10aの上側にオフセット接続され、第3ポート13が第1集合部10aの下側にオフセット接続されている。
具体的には、第1ポート11の延長線L1と第1集合部10aの中心Cを通る鉛直線との交点が中心Cよりも高く設定され、第3ポート13の延長線L3と第1集合部10aの中心Cを通る鉛直線との交点が中心Cよりも低く設定されている。
また、
図7に示すように、第1ポート11と第1集合部10aとの連結下端部には、第1集合部10aの中心Cに向かって湾曲した段差部10sが形成され、第3ポート13と第1集合部10aとの連結上端部には、第1集合部10aの中心Cに向かって湾曲した段差部10tが形成されている。
【0029】
第1ポート11を流れる排気ガスは高温であるため、排気ガスの主流は第1ポート11の上半部に形成される。それ故、
図7の矢印に示すように、排気ガスの主流が第1集合部10aの壁部形状に沿って誘導されるため、排気ガスの第3ポート13に向かう進行方向成分が第1集合部10aの中心Cを旋回中心とした旋回方向成分に変換されている。
これにより、第3ポート13の排気バルブ上に滞留する排気ガスを低減している。
【0030】
次に、上記エンジンの排気構造の作用、効果について説明する。
作用、効果の説明にあたり、検証実験を行った。
この検証実験では、実施例1と同仕様の第1排気ポート機構Paと比較例の排気ポート機構Mとの三次元CFD(Computational Fluid Dynamics)モデルを準備し、例えば、有限要素法、有限体積法又は差分法等によるNavier-Stokes方程式の数値解析を用いて排気ポート内の排気ガスの圧力分布等を演算している。
図8に示すように、比較例の排気ポート機構Mは、第1ポートの延長線Laと第3ポートの延長線Lbが第1集合部10aの中心Cを通るように構成され、その他の仕様は第1排気ポート機構Paと同じである。エンジンの回転数は3000rpm、燃焼室内は一定圧力として、第1ポートの排気行程について検証した。
【0031】
図9、
図10に各々の検証結果を示す。
図9(a)は、第1排気ポート機構Paの圧力分布の平面図、
図9(b)は、第1排気ポート機構Paの圧力分布の正面図である。
図10(a)は、排気ポート機構Mの圧力分布の平面図、
図10(b)は、排気ポート機構Mの圧力分布の正面図である。
図9、
図10に示すように、第1排気ポート機構Paは、排気ポート機構Mに比べて、集合部での中心部回りの縦渦状の旋回傾向が強く、集合部から排気マニホールドに向けて流れる排気ガス量が多いことが分かる。また、演算結果によれば、排気ポート機構Mでは、第1ポートから排出された排気ガスの37.9%が第3ポートに逆流したのに対し、第1排気ポート機構Paでは、第1ポートから排出された排気ガスの9.7%が第3ポートに逆流していることが確認された。
【0032】
このエンジンEの排気構造によれば、第1,第3ポート11,13の延長線L1,L3が平面視にて鈍角で交差するように形成されているため、シリンダヘッド2内に第1,第3ポート11,13を一体的に配設することができ、エンジンEのコンパクト化を図ることができる。第1ポート11の延長線L1が第1集合部10aの上半部に接続され且つ第3ポート13の延長線L3が第1集合部10aの下半部に接続されたため、第1集合部10aに対する合流形状を利用して第1,第3ポート11,13を流れる排気ガスの進行方向成分を第1集合部10aの中心Cを回転中心とした旋回方向成分に変換し、一方のポートから他方のポートに逆流する排気ガスを抑制している。
【0033】
気筒配列方向において第1,第3燃焼室c1,c3の間に設置された第2燃焼室c2であって、燃焼サイクルの中で第1,第3燃焼室c1,c3よりも排気行程が遅い第2燃焼室c2を設け、第1排気ポート機構Paが、第1,第3ポート11,13の間に配置され且つ第2燃焼室c2から第1集合部10aまでを連通する第2ポート12を有し、第1,第3ポート11,13のうち排気行程が早い第1ポート11の延長線L1が第1集合部10aの上半部に接続され且つ第1,第3ポート11,13のうち排気行程が遅い第3ポート13の延長線L3が第1集合部10aの下半部に接続されている。
この構成によれば、排気行程の順序に拘らず、排気効率を改善することができる。
即ち、第2ポート12の排気行程によって第1,第3ポート11,13に滞留する排気ガスが掃気されるため、第2ポート12の排気行程の後に行われる第1ポート11には、滞留排気ガスが然程存在していない。これに対し、第3ポート13は、排気効率が低い状況で排気行程が行われる。
また、排気ガスの上側速度成分は下側速度成分よりも大きくなり、流れの主流は上側部分に形成されている。それ故、第1集合部10aの上半部に延長線L1が接続された第1ポート11は、第1集合部10aの下半部に延長線L3が接続された第3ポート13よりも排気ガスの進行方向成分を旋回方向に変換する旋回方向変換効率が高くなっている。
それ故、第3ポート13の滞留排気ガスを低減することができる。
【0034】
エンジンEは、排気ポート機構Pa,Pbを複数備えたため、気筒数に拘らずエンジンEの小型化と排気効率とを確保することができる。
【0035】
第1集合部10aの縦断面が略円形に形成されたため、旋回方向変換効率を一層高くすることができる。
【0036】
複数の排気ポート機構Pa,Pbのうち同一排気ポート機構Pa内の燃焼室c1,c2,c3の排気行程は、連続しないように形成されているため、排気脈動に伴う正圧波と負圧波を相殺でき、排気効率を向上することができる。
【0037】
次に、前記実施形態を部分的に変更した変形例について説明する。
1〕前記実施形態においては、直列6気筒の縦置きレシプロエンジンの例を説明したが、横置きレシプロエンジンでも良く、V型エンジンでも良い。
また、少なくとも向かい合う排気ポートを備えていれば良く、2気筒エンジン、3気筒エンジン、4気筒エンジンに適用しても良く、それ以外の多気筒エンジンにも適用可能である。
【0038】
2〕前記実施形態においては、直列6気筒エンジンにおいて、第1(第6)ポートの延長線が集合部の上半部に接続され、第3(第4)ポートの延長線が集合部の下半部に接続された例を説明したが、第1(第4)ポートの延長線が集合部の上半部に接続され、第3(第6)ポートの延長線が集合部の下半部に接続されても良い。
また、点火時期に応じて、上記接続パターンを逆にすることも可能である。
【0039】
3〕前記実施形態においては、各気筒において、ポートに2つの排気バルブ孔を設けた例を説明したが、単一の排気バルブ孔を設けても良く、3つ以上の排気バルブ孔を設けることも可能である。
【0040】
4〕その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施形態に種々の変更を付加した形態や各実施形態を組み合わせた形態で実施可能であり、本発明はそのような変更形態も包含するものである。