【解決手段】所望の三次元造形物が形成される造形領域をそれぞれ有する複数の造形テーブルと、複数の造形テーブルをそれぞれ独立して鉛直方向に移動させる造形テーブル駆動装置と、複数の造形テーブルをそれぞれ独立して所定の加熱温度に加熱または加熱温度よりも低い所定の冷却温度に冷却する温度調整装置と、造形領域に所定厚みの材料層を形成する材料層形成装置と、材料層にレーザ光または電子ビームを照射して焼結または溶融させ固化層を形成する照射装置と、造形テーブル駆動装置、温度調整装置、材料層形成装置および照射装置を制御する制御装置と、を備え、制御装置は、複数の造形テーブルのうちの所定の造形テーブルの冷却を行う間に、所定の造形テーブルとは異なる他の造形テーブルの造形領域において固化層の形成を行うよう制御する、積層造形装置が提供される。
前記材料層形成装置は、前記複数の造形テーブルの前記造形領域上を往復移動し材料粉体を吐出する1つのリコータヘッドと、前記リコータヘッドに取り付けられ前記造形領域に吐出された前記材料粉体を均すブレードと、を含む、請求項1から請求項5のいずれか1項に記載の積層造形装置。
前記照射装置は、前記レーザ光または前記電子ビームを出力する1つの出力源と、前記出力源から出力された前記レーザ光または前記電子ビームを前記複数の造形テーブル上の前記材料層の所望の位置に走査させる1つの走査手段と、を含む、請求項1から請求項6のいずれか1項に記載の積層造形装置。
鉛直方向にそれぞれ独立して移動する複数の造形テーブル上にそれぞれ設けられ所望の三次元造形物が形成される造形領域上に所定厚みの材料層を形成する材料層形成工程と、
前記材料層にレーザ光または電子ビームを照射して焼結または溶融させ固化層を形成する固化層形成工程と、
前記複数の造形テーブルをそれぞれ独立して所定の加熱温度に加熱する加熱工程と、前記複数の造形テーブルをそれぞれ独立して所定の冷却温度に冷却する冷却工程と、を含む温度調整工程と、を備え、
前記複数の造形テーブルのうちの所定の造形テーブルにおいて前記冷却工程を行う間に、前記所定の造形テーブルとは異なる他の造形テーブルの前記造形領域において前記固化層形成工程が行われる、積層造形方法。
【発明を実施するための形態】
【0012】
以下、図面を用いて本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。
【0013】
1.構成例
図1は、本発明の実施形態に係る積層造形装置1の構成を示した図である。
図1に示すように、積層造形装置1は、第1の造形テーブル2a、第2の造形テーブル2b、第1の造形テーブル駆動装置3a、第2の造形テーブル駆動装置3b、材料層形成装置4、照射装置5、第1の温度測定装置6a、第2の温度測定装置6b、汚染防止装置7、チャンバ11、ウインドウ12、粉体保持壁13および断熱部14を有している。
【0014】
第1の造形テーブル2aは、所望の三次元造形物が形成される第1の造形領域Raを有するものであり、
図1には示していない第1の温度調整装置26aを内蔵する。また、三次元造形物を形成する際には、第1の造形テーブル2a上に第1のベースプレート21aが載置されてもよい。このとき、第1のベースプレート21a上に1層目の材料層Mと1層目の固化層とが形成される。
【0015】
第2の造形テーブル2bは、第1の造形テーブル2aと同様に、所望の三次元造形物が形成される第2の造形領域Rbを有するものであり、
図1には示していない第2の温度調整装置26bを内蔵する。また、三次元造形物を形成する際には、第2の造形テーブル2b上に第2のベースプレート21bが載置されてもよい。このとき、第1のベースプレート21a上に1層目の材料層Mと1層目の固化層とが形成される。本実施形態では、第2の造形テーブル2bは、第1の造形テーブル2aと同様の構成を有するものである。ただし、三次元造形物が積層造形される複数の造形テーブルは、独立して温度調整が可能である限りにおいて、それぞれの具体的な構成は異なっていてもよい。例えば、第1の造形テーブル2aおよび第2の造形テーブル2bにおいて、その大きさは異なるものであってよい。つまり、第1の造形領域Raと第2の造形領域Rbは、それぞれを任意の大きさとすることができる。
【0016】
第1の造形テーブル駆動装置3aは、第1の造形テーブル2aを鉛直方向(矢印Ua方向)に移動させ、第2の造形テーブル駆動装置3bは、第2の造形テーブル2bを鉛直方向(矢印Ua方向に平行である矢印Ub方向)に移動させる。これら第1の造形テーブル駆動装置3aと第2の造形テーブル駆動装置3bにより、第1の造形テーブル2aと第2の造形テーブル2bは、それぞれが独立して鉛直方向に移動可能となる。
【0017】
第1の造形テーブル駆動装置3aおよび第2の造形テーブル駆動装置3bは、第1の造形テーブル2aおよび第2の造形テーブル2bをそれぞれ位置決め可能に構成されればよいが、例えば下記のように構成される。第1の造形テーブル駆動装置3aは、第1の造形テーブル2a下に設けられるスライドベースと、送りねじと、送りねじを支持するガイドベースと、を備える。第1の造形テーブル駆動装置3aの送りねじは、ねじ軸と、ねじ軸に螺合しスライドベースの側面に固定されるナットと、ねじ軸を回転させるモータ32aを含む。同様に、第2の造形テーブル駆動装置3bは、第2の造形テーブル2b下に設けられるスライドベースと、送りねじと、送りねじを支持するガイドベースと、を備える。第2の造形テーブル駆動装置3bの送りねじは、ねじ軸と、ねじ軸に螺合しスライドベースの側面に固定されるナットと、ねじ軸を回転させるモータ32bを含む。
【0018】
材料層形成装置4は、第1の造形領域Raと第2の造形領域Rbに所定厚みの材料層Mを形成する。具体的には、材料層形成装置4は、ベース台41と、ベース台41に配置され、水平1軸方向(矢印A方向)に往復移動するリコータヘッド42とを含む。なお、リコータヘッド42の詳細については後述する。
【0019】
本実施形態の積層造形装置1で使用される材料は、例えば、金属の材料粉体である。特に、所定数の固化層Sを形成する毎に固化層Sに対して温度調整を行って、意図的に固化層Sのマルテンサイト変態を進行させながら三次元造形物の造形を行う場合は、マルテンサイト系ステンレスや炭素鋼等のマルテンサイト系の材料が使用される。
【0020】
照射装置5は、材料層Mにレーザ光Lを照射して焼結または溶融させ固化層Sを形成する。なお、本実施形態では、材料層Mにレーザ光Lを照射して固化層Sを形成するものとする。また、照射装置5の詳細については後述する。
【0021】
好ましくは、固化層Sの温度を測定する第1の温度測定装置6aおよび第2の温度測定装置6bが設けられる。第1の温度測定装置6aは、第1の造形領域Raの固化層Sの温度を測定し、第2の温度測定装置6bは、第2の造形領域Rbの固化層Sの温度を測定する。第1の温度測定装置6aと第2の温度測定装置6bは、固化層Sの温度を測定可能であれば、どのような構成のものでもよい。例えば、第1の温度測定装置6aまたは第2の温度測定装置6bは、赤外線カメラを利用した赤外線サーモグラフィ等の、非接触式温度測定装置であってもよい。また、例えば、第1の温度測定装置6aまたは第2の温度測定装置6bは、熱電対等の接触式センサと、接触式センサを可動させる駆動装置と、を有する接触式温度測定装置であってもよい。なお、第1の温度測定装置6aと第2の温度測定装置6bは、その構成に応じて適宜配設する位置を変更してもよい。本実施形態では造形領域ごとに温度測定装置を1つずつ設けたが、1つの温度測定装置で複数の造形領域における固化層Sの温度を測定するように構成してもよい。
【0022】
汚染防止装置7は、固化層Sの形成の際に生じるヒュームからレーザ光Lの経路を保護するもので、ウインドウ12を覆うように設けられる。汚染防止装置7は、不活性ガスをウインドウ12の下に充満させてウインドウ12の汚染を防止し、不活性ガスを下方に噴出させてレーザ光Lの経路からヒュームを排除する。不活性ガスは、使用する材料と実質的に反応しないガスであり、例えば窒素またはアルゴンである。
【0023】
チャンバ11は、第1の造形領域Raおよび第2の造形領域Rbを覆うように構成される。チャンバ11内には、不活性ガスが充満されていることが望ましい。
【0024】
ウインドウ12は、レーザ光Lを透過させる素材、例えば、ガラス等であり、照射装置5をヒューム等から保護するものである。
【0025】
粉体保持壁13は、第1の造形テーブル2aおよび第2の造形テーブル2bの周りに設けられ、粉体保持壁13と第1の造形テーブル2aおよび第2の造形テーブル2bによって囲まれる空間に、未固化の材料粉体が保持される。
【0026】
断熱部14は、各造形テーブルの間、具体的には、第1の造形テーブル2aと第2の造形テーブル2bの間に設けられ、第1の温度調整装置26aによる温度調整処理を行う場合や、第2の温度調整装置26bによる温度調整を行う場合に、第1の造形テーブル2aと第2の造形テーブル2bの相互間における熱の影響を低減するものである。特に、所定の造形テーブルにおいて当該造形テーブルの加熱を行い、他の造形テーブルにおいて当該造形テーブルの冷却を行っているときにおいて、断熱部14は、加熱中の造形テーブルの熱が冷却中の造形テーブルに奪われることを防止する。このため、第1の造形テーブル2aと第2の造形テーブル2bは、それぞれ断熱部14を挟んで離間して設けられることとなる。断熱部14は、例えば、断熱材を含む構成としたり、内部を真空に構成したり、所定の温度の液体を循環させる配管を含む構成とする等、様々な構成を採用可能である。第1の温度調整装置26aと第2の温度調整装置26bによる温度調整については、後述する。
【0027】
以上に説明したとおり、本実施形態の積層造形装置1は、第1の造形テーブル2aと第2の造形テーブル2bを有し、第1の造形領域Raおよび第2の造形領域Rbにおいて、それぞれ積層造形が行われる。ただし、第1の造形テーブル2aと第2の造形テーブル2bとに加え、造形領域を有する別の造形テーブルを1つ以上さらに設けてもよい。このとき、3台目以降の造形テーブルについても、独立して鉛直方向に移動可能であり、独立して温度調整可能に構成される。具体的には、3台目以降の造形テーブルに対応して、造形テーブル駆動装置および温度調整装置がさらに設けられる。なお、本実施形態においてはリコータヘッド42の移動方向である矢印A方向に沿って第1の造形テーブル2aおよび第2の造形テーブル2bを配設したが、造形テーブルの配設方向はこの限りではない。例えば、造形テーブルは、矢印A方向に直交する水平1軸方向である矢印B方向に沿って配設されてもよい。
【0028】
2.温度調整装置
次に、第1の温度調整装置26aおよび第2の温度調整装置26bの詳細について説明する。
図2は、第1の造形テーブル2aの構成を示した図である。
【0029】
図2に示すように、第1の温度調整装置26aは、加熱器261aと冷却器262aを有している。また、第1の造形テーブル2aは、天板22a、支持板23a、支持板24aと支持板25aを有しており、これらが重ね合わされて、造形テーブル2aが構成される。
【0030】
加熱器261aは、第1の造形テーブル2aを所定の加熱温度に加熱するもので、例えば、電熱器の発熱体または熱媒体が流通される管路であり、支持板23aに配設される。熱媒体としては、水や油等の種々の流体を用いることができる。
【0031】
冷却器262aは、第1の造形テーブル2aを加熱温度よりも低い所定の冷却温度に冷却するもので、例えば、熱媒体が流通される管路であり、支持板25aに配設される。熱媒体としては、水や油、液化窒素等の種々の液体を用いることができる。
【0032】
また、詳細な説明は省略するが、第2の温度調整装置26bも、第1の温度調整装置26aと同様に、第2の造形テーブル2bを加熱温度に加熱する加熱器と、冷却温度に冷却する冷却器を有する。
【0033】
これら、第1の温度調整装置26aと第2の温度調整装置26bにより、第1の造形テーブル2aと第2の造形テーブル2bをそれぞれ独立して所定の加熱温度に加熱または当該加熱温度よりも低い所定の冷却温度に冷却する。
【0034】
第1の温度調整装置26aと第2の温度調整装置26bにより、第1の造形テーブル2aおよび第2の造形テーブル2bの加熱および冷却が繰り返されながら積層造形が行われる。造形テーブルの温度調整を繰り返しながら造形を行う積層造形方法の一例として、本実施形態においては、固化層Sに対して所定の温度条件で加熱および冷却を行いながら造形を行うことで、意図的にマルテンサイト変態を進行させて三次元造形物の応力制御を行う積層造形方法を実施する。
【0035】
第1の造形テーブル2aおよび第2の造形テーブル2bは、所定の加熱温度に温度調整され固化層Sを加熱する。このとき、加熱温度は、固化層Sのマルテンサイト変態終了温度以上に設定される。また、第1の造形テーブル2aおよび第2の造形テーブル2bは、所定の冷却温度に温度調整され、加熱温度に温度調整された固化層Sを冷却する。このとき、冷却温度は、加熱温度よりも低い温度であって、固化層Sのマルテンサイト変態開始温度以下に設定される。このようにすれば、マルテンサイト変態開始温度とマルテンサイト変態終了温度の間の温度帯で固化層Sが冷却されるため、固化層Sに含まれるオーステナイト相の少なくとも一部がマルテンサイト相へと変態する。
【0036】
なお、加熱温度および冷却温度は、前述の温度条件が満たされる範囲で、造形中一定でなくてもよい。換言すれば、加熱温度に加熱された固化層Sを冷却温度に冷却する際において、都度前述の温度条件を満足していればよい。例えば、造形中に固化層Sやベースプレートに発生した反りを測定し、マルテンサイト変態による膨張に起因する圧縮応力と、温度変化による収縮に起因する引張応力とが均衡するように、加熱温度または冷却温度を変更してもよい。
【0037】
また、第1の造形テーブル2aおよび第2の造形テーブル2bの加熱は、材料層Mを固化に適した温度に予熱する目的でも行われるが、予熱温度は必ずしもマルテンサイト変態終了温度以上である必要はない。ただし、第1の造形テーブル2aおよび第2の造形テーブル2bをマルテンサイト変態終了温度以上の加熱温度とすることで、材料層Mの予熱と固化層Sの加熱を平行して行うことができ、好適である。
【0038】
なお、本願発明は、造形テーブルの温度調整を繰り返しながら造形を行う積層造形方法に好適に適用可能であり、本実施形態のような意図的にマルテンサイト変態を進行させる積層造形方法に限定されない。加熱温度および冷却温度は、実施される積層造形方法に応じて適当な値が設定される。
【0039】
3.照射装置
次に、照射装置5について説明する。
図3は、照射装置5の構成の概略を示した図である。
【0040】
照射装置5は、レーザ光Lを出力する1つの出力源51と、出力源51から出力されたレーザ光Lを第1の造形テーブル2a上と第2の造形テーブル2b上の材料層Mの所望の位置に走査させる1つの走査手段と、を含む。より、具体的には、照射装置5は、出力源51と、コリメータ52と、フォーカス制御ユニット53と、走査手段と、をそれぞれ1つずつ有している。
【0041】
出力源51は、レーザ光Lを出力する。レーザ光Lは、材料層Mを焼結または溶融することが可能であり、例えば、CO2レーザ、ファイバーレーザ、またはYAGレーザである。コリメータ52は、出力源51から出力されたレーザ光Lを平行光に変換する。フォーカス制御ユニット53は、コリメータ52で平行光に変換されたレーザ光Lを集光し、所定のスポット径に調整する。
【0042】
走査手段は、具体的にはガルバノミラー54x、ガルバノミラー54yと、ガルバノミラー54x、ガルバノミラー54yをそれぞれ回転させるアクチュエータ56x、アクチュエータ56yと、を有するガルバノスキャナである。ガルバノミラー54xとガルバノミラー54yの回転角度を制御することでレーザ光Lの照射位置が制御される。
【0043】
ガルバノミラー54xとガルバノミラー54yにより照射位置が制御されたレーザ光Lは、ウインドウ12を通して第1の造形テーブル2a上の材料層Mと第2の造形テーブル2b上の材料層Mに照射され、固化層Sを形成する。
【0044】
本実施形態の照射装置5はレーザ光Lを照射して固化層Sを形成するように構成されるが、照射装置は電子ビームを照射するものであってもよい。例えば、照射装置は、電子を放出するカソード電極と、電子を収束して加速するアノード電極と、磁場を形成して電子ビームの方向を一方向に収束するソレノイドと、被照射体である材料層Mと電気的に接続されカソード電極との間に電圧を印加するコレクタ電極と、を有するよう構成されてもよい。このとき、カソード電極およびアノード電極が電子ビームを出力する出力源の役割を果たし、ソレノイドが電子ビームを走査する走査手段の役割を果たす。なお、ウインドウ12および汚染防止装置7を省略し、カソード電極がチャンバ11内に突出するように設けられてもよい。また、電子ビームを照射する照射装置を用いる場合は、チャンバ11内の雰囲気を、真空に近い状態の貴ガス雰囲気下においてもよい。
【0045】
造形領域が2つ設けられる本実施形態においては、所定の造形領域で固化層Sの形成が行われているときは、他の造形領域では固化層Sの形成は行わない。そのため、1つの照射装置により全ての造形領域に対してレーザ光Lまたは電子ビームの走査が可能であれば、複数の照射装置を設ける必要はない。
【0046】
4.リコータヘッド
次に、材料層形成装置4のリコータヘッド42について説明する。
図4は、リコータヘッド42を上方から見た斜視図である。また、
図5は、リコータヘッド42を下方から見た斜視図である。
【0047】
図4および
図5に示すように、リコータヘッド42は、材料収容部421と材料供給部422と材料吐出部423とを有する。材料収容部421は、材料粉体を収容する。材料供給部422は、材料収容部421の上面に配設され、図示しない材料供給装置から材料収容部421に供給される材料粉体の受口となる。材料吐出部423は、材料収容部421の底面に配設され、材料収容部421内の材料粉体を吐出する。また、材料吐出部423はスリット形状であり、その長手方向は、リコータヘッド42の移動方向(矢印A方向)に直交する水平1軸方向(矢印B方向)である。
【0048】
ブレード424は、リコータヘッド42の側面に配設され、リコータヘッド42から吐出された材料粉体を第1の造形領域Raまたは第2の造形領域Rb上に撒布する。本実施形態ではリコータヘッド42の両側面に1つずつブレード424が設けられるが、少なくとも1つのブレード424がリコータヘッド42に取り付けられればよい。また、ブレード424としては、平板状のもの、可撓性のあるもの、ブラシ状のもの、ローラ状のもの等、所定厚みの材料層Mを形成可能なものであれば、種々の形態が採用可能である。
【0049】
このような構成により、材料層形成装置4は、リコータヘッド42が第1の造形テーブル2aの第1の造形領域Ra上または第2の造形テーブル2bの第2の造形領域Rb上を往復移動しながら材料吐出部423から材料粉体を吐出し、ブレード424がリコータヘッド42の往復移動に伴って第1の造形領域Ra上または第2の造形領域Rb上に吐出された材料粉体を均すことで、材料層Mを形成する。換言すれば、ブレード424が取り付けられた1つのリコータヘッド42により、複数の造形領域に対して材料層Mの形成が行われる。ただし、リコータヘッド42は複数設けられてもよく、例えば各造形領域にリコータヘッド42が設けられてもよい。
【0050】
5.制御装置
次に、積層造形装置1を制御する制御装置について説明する。
図6は、制御装置の構成を示すブロック図である。
【0051】
図6に示すように、制御装置8は、CAM装置81、数値制御装置82、表示装置83、材料層形成制御装置84、第1のテーブル制御装置85a、第2のテーブル制御装置85b、第1の温度制御装置86a、第2の温度制御装置86b、照射制御装置87、第1のミラー制御装置871xおよび第2のミラー制御装置871yを有している。この制御装置8は、積層造形装置1の第1の造形テーブル駆動装置3aと第2の造形テーブル駆動装置3bと第1の温度調整装置26aと第2の温度調整装置26bと材料層形成装置4と照射装置5とを制御するものである。
【0052】
CAM(Computer Aided Manufacturing)装置81は、所望の三次元造形物を形成するためのメインプログラムと、造形プログラムとを含むプロジェクトファイルを作成する。メインプログラムは、シーケンス番号をふられた複数のプログラム行で構成され、各プログラム行には、所定の層における焼結または溶融の指令等を含む。また、造形プログラムは、照射プログラムファイルであり、レーザ光Lの照射位置等の指令を含む。
【0053】
数値制御装置82は、CAM装置81が作成したプロジェクトファイルにしたがって、所望の三次元造形物を形成すべく、材料層形成装置4、第1の造形テーブル2aの高さと温度、第2の造形テーブル2bの高さと温度および照射装置5を数値制御するもので、記憶装置821と演算装置822とメモリ823とを有している。
【0054】
記憶装置821は、通信線や可搬記憶媒体を介してCAM装置81から取得したプロジェクトファイルを記憶する。
【0055】
演算装置822は、記憶装置821に記憶したプロジェクトファイルにしたがって、材料層形成装置4、第1の造形テーブル2aの高さと温度、第2の造形テーブル2bの高さと温度および照射装置5を数値制御するための演算処理を実行する。
【0056】
メモリ823は、演算装置822による演算処理の過程で一時的に記憶する必要のある数値やデータを一時的に記憶する。
【0057】
表示装置83は、数値制御装置82に接続され、数値制御装置82が通知するデータやエラーメッセージ等を表示する。
【0058】
材料層形成制御装置84は、数値制御装置82からの指令に基づいて材料層形成装置4を制御する。材料層形成制御装置84からの指令は、材料層形成装置4の駆動電流供給装置43に入力され、当該指令に応じた電力を駆動電流供給装置43が出力することで材料層形成装置4のモータ44が回転し、リコータヘッド42がベース台41上を往復移動する。また、材料層形成制御装置84には、駆動電流供給装置43の出力に応じた信号やモータ44に取り付けられたエンコーダ等からの信号が入力され、これら入力された信号に基づいて材料層形成制御装置84は、フィードバック制御を行う。
【0059】
第1のテーブル制御装置85aは、数値制御装置82からの指令に基づいて第1の造形テーブル駆動装置3aを制御する。第1のテーブル制御装置85aからの指令は、第1の造形テーブル駆動装置3aの駆動電流供給装置31aに入力され、当該指令に応じた電力を駆動電流供給装置31aが出力することで第1の造形テーブル駆動装置3aのモータ32aが回転し、第1の造形テーブル2aが上方向または下方向に移動し、その高さが変化する。また、第1のテーブル制御装置85aには、駆動電流供給装置31aの出力に応じた信号やモータ32aに取り付けられたエンコーダ等からの信号が入力され、これら入力された信号に基づいて第1のテーブル制御装置85aは、フィードバック制御を行う。
【0060】
第2のテーブル制御装置85bは、数値制御装置82からの指令に基づいて第2の造形テーブル駆動装置3bを制御する。第2のテーブル制御装置85bからの指令は、第2の造形テーブル駆動装置3bの駆動電流供給装置31bに入力され、当該指令に応じた電力を駆動電流供給装置31bが出力することで第2の造形テーブル駆動装置3bのモータ32bが回転し、第2の造形テーブル2bが上方向または下方向に移動し、その高さが変化する。また、第2のテーブル制御装置85bには、駆動電流供給装置31bの出力に応じた信号やモータ32bに取り付けられたエンコーダ等からの信号が入力され、これら入力された信号に基づいて第2のテーブル制御装置85bは、フィードバック制御を行う。
【0061】
第1の温度制御装置86aは、数値制御装置82からの指令に基づいて第1の造形テーブル2aの温度を制御する。第1の温度制御装置86aからの指令は、第1の温度調整装置26aに入力され、第1の温度調整装置26aが第1の造形テーブル2aを加熱または冷却する。また、第1の温度制御装置86aには、第1の温度測定装置6aが測定した固化層Sの温度が入力され、この入力された信号に基づいて第1の温度制御装置86aは、フィードバック制御を行う。
【0062】
第2の温度制御装置86bは、数値制御装置82からの指令に基づいて第2の造形テーブル2bの温度を制御する。第2の温度制御装置86bからの指令は、第2の温度調整装置26bに入力され、第2の温度調整装置26bが第2の造形テーブル2bを加熱または冷却する。また、第2の温度制御装置86bには、第2の温度測定装置6bが測定した固化層Sの温度が入力され、この入力された信号に基づいて第2の温度制御装置86bは、フィードバック制御を行う。
【0063】
照射制御装置87は、数値制御装置82から造形プログラムを受信し、この造形プログラムに基づいて照射データの生成を行い、生成した照射データに基づいて第1のミラー制御装置871xと第2のミラー制御装置871yに指令を送出する。また、照射制御装置87は、出力源51に指令を送出し、レーザ光Lの強度やオン/オフの切り替えを制御する。
【0064】
第1のミラー制御装置871xは、照射制御装置87からの指令に基づいて照射装置5の走査手段を制御する。第1のミラー制御装置871xからの指令は、照射装置5の駆動電流供給装置55xに入力され、当該指令に応じた電力を駆動電流供給装置55xが出力することで照射装置5のアクチュエータ56xが動作し、ガルバノミラー54xが回転する。
【0065】
第2のミラー制御装置871yは、照射制御装置87からの指令に基づいて照射装置5の走査手段を制御する。第2のミラー制御装置871yからの指令は、照射装置5の駆動電流供給装置55yに入力され、当該指令に応じた電力を駆動電流供給装置55yが出力することで照射装置5のアクチュエータ56yが動作し、ガルバノミラー54yが回転する。
【0066】
6.動作説明
次に、積層造形装置1の造形に係る動作を説明する。
図7は、第1の造形領域Raと第2の造形領域Rbとにおける積層造形の各工程を示すアクティビティ図である。また、
図8Aから
図8Fは、造形中の第1の造形領域Raおよび第2の造形領域Rbの拡大図である。
【0067】
本実施形態では、第1の造形領域Raから先に固化層Sの形成を行う。当然、第2の造形領域Rbから先に固化層Sの形成を行うよう構成してもよい。
【0068】
まず、第1の造形領域Raにおいて、材料層形成工程が行われる(A101)。
図8Aに示されるように、第1の駆動テーブル駆動装置3aにより、第1の造形テーブル2aが材料層Mの厚み分下降される。そして、第1の造形テーブル2a上をリコータヘッド42が移動することで、材料粉体が第1の造形テーブル2a上に吐出され、ブレード424が吐出された材料粉体を均す。このようにして、
図8Bに示されるように、材料層Mが形成される。次に、第1の造形領域Raにおいて、固化工程が行われる(A102)。材料層Mに対し照射装置5によりレーザ光Lが照射され、
図8Cに示されるように、固化層Sが形成される。
図8Dに示されるように、このような材料層形成工程と固化層形成工程が、所定数の固化層Sが形成されるまで繰り返される。
【0069】
第1の造形領域Raにおいて材料層形成工程と固化層形成工程が繰り返されているとき、第1の造形テーブル2aは、第1の温度調整装置26aによって所定の加熱温度に加熱されている(A103)。換言すれば、第1の造形領域Raにおいては、材料層形成工程および固化層形成工程と、加熱工程とが平行して行われる。加熱工程により、材料層Mに対する予熱と、固化層Sに対する加熱とが行われる。
【0070】
このとき、第2の造形領域Rbで固化層Sの形成を行うのに備え、第2の造形領域Rbにおいて加熱工程が実施され、第2の造形テーブル2bが第2の温度調整装置26bによって所定の加熱温度に加熱されていることが望ましい(A104)。第2の造形領域Rbにおける加熱工程は、第2の造形領域Rbで固化層形成工程を実施するまでに第2の造形テーブル2bが加熱温度となるタイミングで開始されればよい。なお、本実施形態では、第1の造形領域Raで材料層形成工程および固化層形成工程を実施しているとき、第2の造形領域Rbにおいて材料層形成工程および固化層形成工程は実施されないが、第2の造形領域Rbにおいても材料層形成工程を実施し、先に1層分の材料層Mを形成しておいてもよい。
【0071】
第1の造形領域Raにおいて1層または複数層の所定数の固化層Sが形成された後、第1の造形領域Raにおいて冷却工程が行われる(A105)。第1の造形テーブル2aの温度は、第1の温度調整装置26aによって所定の冷却温度に冷却される。これにより、固化層Sが冷却される。本実施形態においては、冷却工程により、固化層Sのマルテンサイト変態終了温度とマルテンサイト変態開始温度の間の温度帯を含む範囲で、固化層Sの冷却が行われる。これにより、固化層Sに含まれるオーステナイト相の少なくとも一部が、マルテンサイト相へと変態する。第1の造形領域Raにおける冷却工程終了後、再度第1の造形領域Raで固化層Sの形成を行うのに備え、第1の造形領域Raにおいて加熱工程が実施されることが望ましい(A106)。
【0072】
このとき、
図8Eに示されるように、第2の造形領域Rbでは、材料層形成工程と固化層形成工程が、所定数の固化層Sが形成されるまで繰り返される(A107、A108)。このとき、材料層形成工程および固化層形成工程と、加熱工程とが平行して行われ、第2の造形テーブル2bは、第2の温度調整装置26bによって所定の加熱温度に加熱されている(A109)。
【0073】
第2の造形領域Rbにおいて1層または複数層の固化層Sが形成された後、
図8Fに示されるように、第1の造形領域Raにおいて、再度材料層形成工程と固化層形成工程が、所定数の固化層Sが形成されるまで繰り返される(A110、A111)。このとき、材料層形成工程および固化層形成工程と、加熱工程とが平行して行われ、第1の造形テーブル2aは、第1の温度調整装置26aによって所定の加熱温度に加熱されている(A112)。
【0074】
このとき、第2の造形領域Rbでは冷却工程が行われる(A113)。第2の造形テーブル2bの温度は、第2の温度調整装置26bによって所定の冷却温度に冷却される。これにより、固化層Sが冷却される。第2の造形領域Rbにおける冷却工程終了後、再度第2の造形領域Rbで固化層Sの形成を行うのに備え、第2の造形領域Rbにおいて加熱工程が実施されることが望ましい(A114)。
【0075】
このようにして、固化層Sの形成と造形テーブルの冷却とが、第1の造形領域Raおよび第2の造形領域Rbとにおいて、所望の三次元造形物が形成されるまで交互に繰り返される。造形領域を3つ以上設ける場合も同様に、所定の造形領域において造形テーブルの冷却を行う間に、他の造形領域において固化層Sの形成が行われるように造形が進められる。以上のような構成により、造形テーブルの加熱および冷却を繰り返しながら積層造形を行う上で、効率よく三次元造形物を造形できる。
【0076】
ここで説明した各工程は、第1の温度調整装置26a、第2の温度調整装置26b、第1の造形テーブル駆動装置3a、第2の造形テーブル駆動装置3b、材料層形成装置4および照射装置5を制御装置8が制御することにより行われる。つまり、制御装置8は、複数の造形テーブルのうちの所定の造形テーブルの冷却を行う間に、所定の造形テーブルとは異なる他の造形テーブルの造形領域において固化層Sの形成を行うよう制御する。
【0077】
本実施形態では、リコータヘッド42は、材料層形成工程と固化層形成工程とを繰り返し実施している造形領域上のみを移動したが、他の造形領域上も含めて移動するよう構成してもよい。この場合は、他の造形領域においても造形テーブルの高さを材料層Mの厚み分下げておくことで、ベースプレートや既に形成された固化層Sとブレード424が衝突することを防止できる上、事前に材料層Mを形成できる。
【0078】
なお、所定の造形領域において冷却工程を終えた後に再度当該造形領域にて固化層Sの形成を行うにあたり、事前に当該造形領域における造形テーブルを材料層Mの厚み分下降させておいてもよい。具体的に、所定の造形領域において所定数の固化層Sを形成した後、当該造形領域における造形テーブルを下降させるタイミングは、当該造形領域において所定数の固化層Sを形成した直後であってもよいし、当該造形領域における冷却工程中であってもよいし、当該造形領域における冷却工程後であって他の造形領域で固化層Sを形成しているときであってもよいし、当該造形領域における冷却工程後であって他の造形領域で所定数の固化層Sの形成を終えた後であってもよい。
【0079】
積層造形装置1は、固化層Sを切削する切削装置をさらに備え、固化層Sを切削する切削工程をさらに実施してもよい。切削工程は、例えば、所定数の固化層Sが形成される毎に実施される。好ましくは、切削工程は、冷却工程が実施され、寸法が安定した固化層Sに対して行われる。また特に好ましくは、切削工程は、冷却工程後であって、常温に温度調整された固化層Sに対して行われる。このようにすれば、固化層Sの温度による膨張または収縮の影響を抑えて切削を行うことができる。