注湯装置は、走行可能な台車と、台車に支持された上部ユニットと、台車と上部ユニットとの間に配置され、上部ユニットの重量を計測する計測部とを備え、上部ユニットは、溶湯を注湯するための取鍋と、ユニット基台と、ユニット基台に設けられ、上下方向に延びる1又は複数の第1フレームと、第1フレームに支持され、取鍋を支持する第2フレームと、第2フレームを上下方向に移動させる移動機構と、移動機構を駆動させる駆動源とを有し、移動機構は、上下方向に延びる移動軸と、第2フレーム及び移動軸に取り付けられ、駆動源による動力によって移動軸を上下方向に移動する移動部材とを含み、駆動源は、移動軸の下端に接続される。
【発明を実施するための形態】
【0016】
以下、図面を参照して、本開示の実施形態について説明する。なお、以下の説明において、同一又は相当要素には同一符号を付し、重複する説明は繰り返さない。図面の寸法比率は、説明のものと必ずしも一致していない。「上」「下」「左」「右」の語は、図示する状態に基づくものであり、便宜的なものである。
【0017】
[第1実施形態]
図1は、実施形態に係る注湯システムの一例を示す平面図である。図中のX方向及びY方向が水平方向であり、Z方向が垂直方向である。X方向、Y方向及びZ方向は、3次元空間の直交座標系における互いに直交する軸方向である。以下ではZ方向を上下方向ともいう。
図1に示す注湯システム100は、注湯装置1と、鋳型移動装置200と、取得部300とを備える。注湯システム100において、注湯装置1は、取得部300により得られた情報に基づき、鋳型移動装置200により送り出された鋳型Mに追従して取鍋内の溶湯を注湯する。注湯装置1は、Y方向に延びるレール110上を走行する。
【0018】
注湯システム100は、鋳型Mを順次搬送する直線状の搬送ラインを有する。一例として、注湯システム100は、第1搬送ラインL1と、第2搬送ラインL2と、第3搬送ラインL3とを備える。ここでは、鋳型移動装置200の一例として、鋳型移動装置200a,200bが設けられる。
【0019】
第1搬送ラインL1は、不図示の鋳型Mの造型機から鋳型移動装置200aまで造型された鋳型Mを搬送する。第2搬送ラインL2は、注湯装置1により鋳型Mに注湯させるため、鋳型移動装置200aにより第1搬送ラインL1から移送された鋳型Mを鋳型移動装置200bまで搬送する。第2搬送ラインL2は、Y方向に延び、注湯装置1の走行するレール110に沿って設けられる。第3搬送ラインL3は、鋳型移動装置200bにより第2搬送ラインL2から移送された鋳型Mを次の工程のために搬送する。
【0020】
鋳型移動装置200は、搬送ライン同士を接続する箇所に設けられ、ある搬送ラインの終点からもう1つの搬送ラインの始点に鋳型Mを移動させ、鋳型Mを列状に送り出す。鋳型移動装置200aは、例えば第1搬送ラインL1の終点に設けられ、第1搬送ラインL1から搬送された鋳型Mを第2搬送ラインL2の始点に移動させ、鋳型Mを送り出す。鋳型移動装置200bは、例えば第2搬送ラインL2の終点に設けられ、第2搬送ラインL2から搬送された鋳型Mを第3搬送ラインL3の始点に移動させ、鋳型Mを送り出す。
【0021】
取得部300は、鋳型Mの移動に関する情報である鋳型移動情報を取得する。鋳型移動情報は、鋳型Mの移動するタイミング、速度又は移動量などを含む。取得部300は、鋳型移動装置200により第2搬送ラインL2に送り出された鋳型Mの鋳型移動情報を取得する。取得部300は、例えば鋳型移動装置200に設けられ、鋳型移動装置200から鋳型Mの鋳型移動情報を取得する。取得部300は、例えばセンサを有する。取得部300は、注湯装置1と通信可能に接続する。
【0022】
図2は、実施形態に係る注湯装置の正面図である。
図3は、実施形態に係る注湯装置の側面図である。
図4は、実施形態に係る注湯装置の平面図である。
図2、
図3及び
図4に示す注湯装置1は、鋳型に溶湯を注湯する自動注湯装置である。注湯装置1は、台車3と、計測部5と、上部ユニット7と、制御部70とを備える。台車3は、レール110上を走行可能である。台車3は、例えば第2搬送ラインL2に沿って走行する。台車3は、上部ユニット7を支持する本体3aと、走行手段である走行移動機構9と車輪とを有する。走行移動機構9は、台車3に設けられ、台車3を走行方向(Y方向)に移動させる。走行移動機構9は、例えばモータを含む。
【0023】
計測部5は、上部ユニット7の重量を計測する。計測部5は、例えばロードセルである。計測部5は、台車3と上部ユニット7との間に配置される。計測部5は、例えば台車3の本体3aの上面に複数載置される。計測部5の上部は、防振ゴムを介して上部ユニット7の下面と接続する。計測部5は、例えば上部ユニット7の安定化のため、上部ユニット7の下面の四隅に設けられる。
【0024】
上部ユニット7は、防振ゴム及び計測部5を介して台車3の本体3aに支持される。上部ユニット7は、取鍋10と、ユニット基台20と、第1フレーム30と、第2フレーム40と、傾動部41と、移動機構50と、駆動源60とを有する。
【0025】
取鍋10は、鋳型Mに注湯するための溶湯を貯留する。取鍋10は、本体部11及びノズル部12を有する。本体部11の内側には、ノズル部12に連通し溶湯を貯留する空間が画成される。ノズル部12は、その先端にノズル先端12aを有する。ノズル部12の内側には、本体部11に連通し溶湯を貯留する空間が画成される。本体部11の内面及びノズル部12の内面により、溶湯を貯留する空間が画成される。ノズル部12は、本体部11に貯留される溶湯をノズル先端12aに導くと共に、ノズル先端12aを介して溶湯を注湯する。
【0026】
ユニット基台20は、第1フレーム30を載置する。取鍋10、第2フレーム40、移動機構50、及び駆動源60は、第1フレーム30を介してユニット基台20の上方に配置される。ユニット基台20は、取鍋10、第1フレーム30、第2フレーム40、傾動部41、移動機構50、及び駆動源60の全ての荷重を受けて支持する。ユニット基台20の下面は、防振ゴムを介して計測部5と接続される。計測部5は、ユニット基台20の直下に設けられることにより、上部ユニット7全体の重量を計測できる。
【0027】
ユニット基台20は、前後移動機構8を有する。前後移動機構8は、ユニット基台20を水平方向で且つ鋳型Mに対して近接及び離間する方向であるX方向に移動させる。前後移動機構8は、例えばモータを含む。前後移動機構8は、ユニット基台20をX方向に移動させることで、鋳型Mに対する取鍋10のX方向の位置を調整する。
【0028】
第1フレーム30は、ユニット基台20上に設けられ、上下方向(Z方向)に延びる。第1フレーム30は、1又は複数のフレームである。第1フレーム30は、例えば柱状を呈する。第1フレーム30には、ガイド部材31が設けられる。ガイド部材31は、例えば少なくとも1つのガイドレールである。ガイド部材31は、第1フレーム30の側面に設けられ、上下方向に延び、第2フレーム40を支持し、上下方向に案内する。ガイド部材31の上下方向の長さは、取鍋10の大きさによって適宜設定される。
【0029】
第2フレーム40は、第1フレーム30に支持され、取鍋10を支持する。第2フレーム40は、第1フレーム30に設けられたガイド部材31に沿って上下方向に案内される。第2フレーム40は、例えば、第1フレーム30を囲むように設けられる。第2フレーム40は、2枚の板部材、及び、それらを連結する連結板部材、及び、昇降部材を有する。2枚の板部材は、上面視にてY方向に対向し、第1フレーム30を挟み込むように設けられる。X方向における2枚の板部材の先端は、第1フレーム30よりも第2搬送ラインL2に近くなるように突出する。2枚の板部材は、突出した部分で傾動部41を支持する。連結板部材は、X方向における2枚の板部材の末端を接続する。昇降部材は、2枚の板部材の内側に固定され、ガイド部材31に取り付けられる。
【0030】
傾動部41は、第2フレーム40に設けられ、取鍋10を傾動させる。傾動部41は、回転軸を中心に取鍋10を傾動させる。回転軸は、Y方向に平行で、かつ、取鍋10の重心を通る。すなわち、傾動部41は、台車3の進行方向であるレール110の延在方向に平行な回転軸を中心に取鍋10を傾動させる。回転軸の回転角度θが傾動角度となる。取鍋10は、傾動部41により傾動することで本体部11からノズル部12へと溶湯を導くことができ、ノズル先端12aを介して鋳型Mに溶湯を注湯できる。
【0031】
傾動部41は、傾動軸部42、傾動駆動モータ43、及び傾動フレーム44を有する。傾動軸部42は、第2フレーム40に支持され、ガイド部材31及び移動機構50によって上下方向に移動する。傾動軸部42のY方向の先端には、傾動フレーム44が傾動可能に連結される。傾動軸部42のY方向の末端には、傾動駆動モータ43が設けられる。傾動駆動モータ43を作動させることにより、傾動軸部42を介して傾動フレーム44が傾動する。傾動フレーム44には、取鍋10が着脱可能に固定される。
【0032】
ここで、取鍋10と傾動部41との接続について説明する。
図5は、実施形態に係る注湯装置の取鍋とフックとの詳細を示す平面図である。
図5に示すように、取鍋10は、接続部13と当接部14とを有する。接続部13は、取鍋10の側面に設けられ、傾動部41に接続する。接続部13は、例えば腕部13a及び載置接続部13bを含む。腕部13aは、取鍋10の側面に設けられ傾動部41の傾動フレーム44に向かって突出する。載置接続部13bは、腕部13aの先端に設けられる。当接部14は、取鍋10の側面の接続部13よりも下方に設けられ傾動部41と接する(
図2参照)。当接部14は、傾動部41の傾動フレーム44に向かって延在し、傾動部41の傾動フレーム44と接する面である当接面14aを有する。接続部13又は当接部14は、複数設けられてもよい。
【0033】
傾動部41は、フック45を有する。フック45は、例えば傾動フレーム44に設けられる。フック45は、取鍋10の側面に対向して設けられ、接続部13を着脱可能に支持する。フック45は、例えば下方向に突出するように湾曲された棒状部材であり、湾曲された部分が接続部13の載置接続部13bを載置する載置部45aとなる。フック45は、接続部13の個数と同数になるように複数設けられてもよい。
【0034】
接続部13の載置接続部13bは、フック45からの着脱を容易とするため、例えば円柱状を呈する。接続部13の載置接続部13bの円の中心線を結んだ中心軸は、例えば水平方向、かつ、フック45に直交する向きに設けられる。具体的には、フック45が第2搬送ラインL2に平行な方向(Y方向)に延在する場合、接続部13の載置接続部13bの中心軸はX方向に延在する。接続部13の載置接続部13bは、その外周面がフック45の載置部45aに接するように載置される。フック45は、接続部13と掛かり合うことで、第2搬送ラインL2に平行な方向への接続部13の移動が規制される。フック45の延在方向における載置部45aの長さは、例えば接続部13の径方向の長さ以上である。フック45の形状によって、接続部13の載置接続部13bは、載置部45aから上方向に着脱可能である。
【0035】
接続部13の載置接続部13bは、円柱状を呈するため、フック45の載置部45a上で回転する。この場合、取鍋10が回転する可能性がある。取鍋10の当接部14の当接面14aが傾動部41の傾動フレーム44に接することで、取鍋10の回転が規制される。当接部14が傾動部41の傾動フレーム44に向かって延在する長さは、取鍋10が傾動部41に設けられた際に取鍋10内の溶湯の上面が水平となるように適宜設定される。
【0036】
再び
図2、
図3及び
図4を参照する。移動機構50は、第2フレーム40を上下方向に移動させる。移動機構50は、例えばボールねじである。移動機構50は、移動軸51と移動部材52とを有する。移動軸51は、上下方向に延びる軸である。移動軸51は、例えば長尺なねじ軸である。移動軸51は、第1フレーム30の上端及び下端において、軸受によって中心軸回りに回転可能に支持される。
【0037】
移動部材52は、第2フレーム40及び移動軸51に取り付けられる。移動部材52は、例えば第2フレーム40の連結板部材に接続する。移動部材52は、駆動源60による動力によって移動軸51が回転することによって上下方向に移動する。移動部材52は、例えば、雌ねじ又はナットブラケットである。移動軸51が左右何れか一方向に回転したときに、その回転に伴って、移動部材52が第2フレーム40とともに上方向に移動する。また、移動軸51が左右何れか他方向に回転したときには、その回転に伴って、移動部材52が第2フレーム40とともに下方向に移動する。移動部材52が上下方向に移動することにより、第2フレーム40に支持された傾動部41及び傾動部41と接続する取鍋10は、上下方向に移動できる。
【0038】
駆動源60は、移動機構50を駆動させる。駆動源60は、例えばモータである。駆動源60を作動させることにより移動機構50の移動軸51が回転し、第2フレーム40及び移動部材52が上下方向に移動する。駆動源60は、移動機構50の移動軸51の下端に接続される。駆動源60は、水平方向において取鍋10と離間して配置される。駆動源60は、他の部材と干渉しない位置であって、取鍋10からの熱の影響が小さくなるように配置される。一例として、駆動源60は、取鍋10との間に移動軸51が位置するように配置される。すなわち、駆動源60のモータ軸の先端は、移動軸51及び取鍋10に向けて配置される。このような配置により、取鍋10付近に駆動源60を配置する場合と比較して、メンテナンス性が向上する。
【0039】
制御部70は、注湯装置1の全体を制御するハードウェアである。
図6は、実施形態に係る注湯装置の制御部のブロック図である。
図6に示すように、前後移動機構8の前後軸サーボモータ8a、走行移動機構9の走行サーボモータ9a、傾動部41の傾動駆動モータ43の回動軸サーボモータ43a、及び駆動源60の昇降軸サーボモータ60aは、制御部70の中央処理部71からの指令に基づいて駆動する。具体的には、電源75に接続された、前後軸サーボアンプ8b、横行軸サーボアンプ9b、回動軸サーボアンプ43b及び昇降軸サーボアンプ60bと、D/A変換ユニット78とを介して、中央処理部71は、各サーボモータ8a、9a、43a、60aを駆動する。尚、パルス出力ユニットなどによるパルス指令であってもよい。また、各サーボアンプ8b、9b、43b、60bは、高速カウンタユニット77を介して中央処理部71にX方向、Y方向及びZ方向の位置情報又は回転角度θなどをフィードバックする。また、中央処理部71は、計測部5(ロードセル5a)からの情報をロードセル変換器5b及びA/D変換ユニット79を介して受け取る。さらに、中央処理部71は、操作部(操作盤)72に接続され、各種操作を可能とするとともに、必要な情報を操作表示部72aに表示させる。各種サーボモータは、インダクションモータにエンコーダを取り付けてもよい。
【0040】
上述のように、制御部70は、台車3、計測部5、前後移動機構8、走行移動機構9、第2フレーム40の傾動部41、駆動源60及び取得部300と通信可能に接続される。制御部70は、台車3、計測部5、前後移動機構8、走行移動機構9、第2フレーム40の傾動部41及び駆動源60へ制御信号を出力し、動作を制御する。制御部70は、取得部300から鋳型移動情報を取得する。制御部70は、予め用意されたプログラムを読み込み、台車3、計測部5、前後移動機構8、走行移動機構9、第2フレーム40の傾動部41及び駆動源60を動作させる。制御部70は、操作部(操作盤)72によって受け付けられた作業員のコマンド操作に応じて、台車3、計測部5、前後移動機構8、走行移動機構9、第2フレーム40の傾動部41及び駆動源60を動作させてもよい。
【0041】
制御部70は、計測部5において計測された上部ユニット7の重量に基づいて取鍋10内の溶湯の重量、又は取鍋10から流出した溶湯の重量を算出する。制御部70は、例えば、計測部5により、取鍋10内に溶湯を貯留された状態における上部ユニット7の重量から、取鍋10内に溶湯を貯留していない状態における上部ユニット7の重量を減算することにより、そのときの取鍋10内の溶湯の重量を算出できる。
【0042】
制御部70は、例えば注湯システム100の制御部からその鋳型の情報(注湯重量、注湯パターン)を受信し、その情報に基づいて注湯制御を行う。また、制御部70は、取鍋10内の溶湯の重量に基づいて傾動部41及び駆動源60を制御する。具体的には、注湯装置1による注湯中において、制御部70は、取鍋10内の溶湯の重量が注湯し始める前から予め定められた重量だけ減少した重量となった場合には、傾動部41及び駆動源60を制御し注湯を終了する。また、取鍋10から溶湯を注湯し始める前と注湯し始めた後とにおける取鍋10内の溶湯の重量をそれぞれ算出し、互いの差分を算出することで、取鍋10から流出した溶湯の重量を取得できる。制御部70は、取得した取鍋10から流出した溶湯の重量に基づいて、傾動部41及び駆動源60を制御してもよい。制御部70は、例えば、上部ユニット7の上方を除く、台車3の本体3aの上面に設けられる。制御部70は、注湯装置1の外部に設けられてもよい。
【0043】
次に、この注湯装置1による注湯方法について説明する。注湯システム100においては、鋳型Mが連続する鋳型群の状態で搬送される。注湯装置1は、不図示の鋳型Mの造型機から第1搬送ラインL1を介して第2搬送ラインL2に搬送された鋳型Mに注湯する。要求される造型サイクルを実現するために、注湯装置1による注湯中においても造型工程を中断することなく、連続して鋳型Mを造型することが必要になる場合がある。このような場合、複数台の注湯装置を用意し、注湯装置1台あたりの処理対象の鋳型Mを減少させる対応が考えられるが、設備コストは増大する。一台の注湯装置を走行可能に構成し、鋳型Mの搬送中においても鋳型Mの搬送速度に同期して走行及び注湯させることにより、設備コストを抑えつつ、要求される造型サイクルを実現することができる。
【0044】
まず、注湯装置1による注湯方法では、鋳型Mへの注湯前において、注湯装置1の取鍋10は、水平にされる。取鍋10内には、溶湯搬送装置(不図示)により、必要量の溶湯が供給される。次に、注湯装置1による注湯中に鋳型Mが搬送されない場合を説明する。注湯装置1による注湯前において、鋳型移動装置200aにより、第2搬送ラインL2において鋳型Mの鋳型群が1鋳型分(1ピッチ分)、Y方向に間欠搬送される。これにより、注湯すべき鋳型Mが注湯装置1の取鍋10の正面に搬送される。
【0045】
必要に応じて、制御部70は、走行移動機構9により台車3を予め定められた位置まで移動させ、前後移動機構8により取鍋10を対象の鋳型Mに接近させる。続いて、制御部70は、傾動部41により溶湯を注湯する方向に取鍋10を傾動させ、取鍋10内の溶湯を鋳型Mに注湯する(
図3参照)。この際、制御部70は、傾動駆動モータ43を作動させて傾動させるだけでなく、前後移動機構8及び駆動源60も同時に作動させて取鍋10の前後方向及び上下方向の位置を調整する。
【0046】
鋳型Mへの注湯量の制御は、重量によって行う。計測部5は、上部ユニット7の注湯前の取鍋10内の溶湯の重量から予め定められた鋳型Mへ注湯する溶湯の重量を減算することにより、注湯後に残留すべき取鍋10内の溶湯の重量を算出する。取鍋10内の溶湯の重量が注湯後に残留すべき取鍋10内の溶湯の重量に到達したら、制御部70は傾動駆動モータ43を逆作動させることにより、傾動部41は溶湯を湯切りする方向に取鍋10を逆転傾動させ、湯切りして注湯を完了させる。
【0047】
続いて、鋳型移動装置200aにより、鋳型Mの鋳型群が1鋳型分(1ピッチ分)、Y方向に間欠搬送される。続いて、注湯装置1により次の鋳型Mへの注湯が行われる。注湯装置1は、取鍋10内の溶湯の残量が1つの鋳型Mに対して注湯する重量以下の量になるまで、これらを繰り返す。そして、注湯装置1は、取鍋10内の溶湯の残量が1つの鋳型Mに対して注湯する重量以下の量になったら、取鍋10を水平に戻す。そして、走行移動機構9により台車3を移動させ、図示されない溶湯搬送装置により、取鍋10内に必要量の溶湯が供給され、再び注湯装置1による鋳型Mへの注湯が開始される。
【0048】
次に、注湯装置1による注湯中に鋳型Mが搬送される場合を考える。この場合、注湯装置1による注湯中に、鋳型移動装置200aにより、第2搬送ラインL2において鋳型Mの鋳型群が1鋳型分(1ピッチ分)、Y方向に間欠搬送される。これにより、注湯装置1が注湯する対象である鋳型Mは、取鍋10の正面からY方向に搬送される。
【0049】
取得部300は、鋳型Mの鋳型移動情報を取得する。このとき、取得部300により得られる鋳型Mの鋳型移動情報は、例えば鋳型Mの送り出しのタイミングと、任意の時間における鋳型Mの移動量を含む。取得部300は、注湯装置1の制御部70に鋳型移動情報を送信する。制御部70は、鋳型Mの移動に関する情報に基づいて、走行移動機構9により第2搬送ラインL2に沿って台車3をY方向に走行させる。これにより、注湯装置1は鋳型Mに追従して移動するため、取鍋10のノズル部12のノズル先端12aと鋳型Mとの相対位置は固定される。このため、注湯装置1は、連続して効率的に鋳型Mに注湯できる。注湯装置1による注湯中に鋳型Mが搬送される場合の注湯装置1による注湯方法は、注湯装置1の移動中又は移動後においても、注湯装置1による注湯中に鋳型Mが搬送されない場合と同一である。
【0050】
従来の注湯装置においては、取鍋の熱の影響を受けない位置に駆動源を配置する必要があったため、例えば、第1フレームの上端など、取鍋より高い位置に設けられていた。しかし、本実施形態の注湯装置1によると、駆動源60は移動機構50の移動軸51の下端に接続される。ここで、駆動源60は、他の部材と干渉しない位置であって、取鍋10による熱の影響が小さくなるように、水平方向において取鍋10から離間して配置される。これにより、取鍋10による駆動源60への熱の影響が抑えられ、駆動源60の作動又は駆動源60の維持管理が円滑に行われる。
【0051】
また、駆動源60は移動機構50の移動軸51の下端に接続されるため、駆動源60が移動軸51の上端に設けられる場合と比べて、上部ユニット7の重心が低くなる。このため、この注湯装置1は、駆動源60が移動軸51の上端に設けられる場合と比べて、台車3の走行時の振動又は駆動源60による振動が計測部5の計測結果に与える影響を小さくできる。計測部5によって計測される上部ユニット7の重量は、溶湯の重量変化に応じて変化する。このため、上部ユニット7の重量の計測精度が向上することにより、取鍋10内の溶湯の重量がより正確に把握される。これにより、注湯装置1は、制御部70により溶湯の残量に応じた傾き及び位置になるように傾動部41及び駆動源60を制御することで所定量の溶湯を正確に鋳型Mに注湯できる。さらに、注湯装置1は、鋳型Mに注湯する際に生じる溶湯の飲み込みを考慮したティーチングに基づき、適切な注湯流量を制御できる。よって、本実施形態の注湯装置1は、注湯製品の品質を向上させることができる。
【0052】
一般に、計測部5が測定する上部ユニット7の重量に対して取鍋10内の溶湯の重量の割合は小さいため、計測部5による取鍋10内の溶湯の重量の測定精度が低下するおそれがある。しかしながら、本実施形態の注湯装置1において、取鍋10を支持させる構造がフック45のみになるため、傾動部41は軽量化される。駆動源60が移動軸51の下端に接続され、傾動部41が軽量化されることで、第1フレーム30は、1つのフレームで構成される場合であっても、取鍋10、第2フレーム40及び傾動部41を支持できる。傾動部41が軽量化されることで、ガイド部材31は、1つのガイド部材で構成される場合であっても、取鍋10、第2フレーム40及び傾動部41を上下方向に案内できる。第1フレーム30、ガイド部材31又は傾動部41の軽量化により、上部ユニット7の重量に対する取鍋10内の溶湯の重量の割合が増大するため、この注湯装置1は、取鍋10内の溶湯の重量の計測の精度を向上させることができる。上部ユニット7が軽量化することで、計測部5は、計測する重量の上限を下げることができ、分解能を向上させることができる。また、上部ユニット7が軽量化することにより、注湯装置1の全体構成を従来に比べて小さくまとめることができる。
【0053】
[第2実施形態]
次に、第2実施形態に係る注湯システムについて説明する。第2実施形態に係る注湯システムは、第1実施形態に係る注湯システム100の取得部300における鋳型Mの鋳型移動情報の詳細な取得手法及びそれを実現する構成について説明する。本実施形態の説明では、第1実施形態と重複する説明を省略する。
【0054】
再び
図1を参照する。鋳型移動装置200は、トラバーサ210と、プッシャシリンダ220と、クッションシリンダ230とを有する。鋳型移動装置200aのトラバーサ210は、第1搬送ラインL1の終点と第2搬送ラインL2の始点とに接続する。鋳型移動装置200aのトラバーサ210は、第1搬送ラインL1からクッションシリンダ230の位置まで搬送された鋳型Mを第2搬送ラインL2の始点であるプッシャシリンダ220の位置まで移動させる。
図1においては、第1搬送ラインL1の始点におけるプッシャシリンダ220の図示は省略する。なお、第1搬送ラインL1と第2搬送ラインL2とが連続に繋がる場合は、プッシャシリンダ220は、第1搬送ラインL1の始点に設けられる。この場合、トラバーサ210は設けられなくてもよい。
【0055】
鋳型移動装置200bのトラバーサ210は、第2搬送ラインL2の終点と第3搬送ラインL3の始点とに接続する。鋳型移動装置200bのトラバーサ210は、第2搬送ラインL2からクッションシリンダ230の位置まで搬送された鋳型Mを第3搬送ラインL3の始点であるプッシャシリンダ220の位置まで移動させる。
図1においては、第3搬送ラインL3の終点におけるクッションシリンダ230の図示は省略する。なお、第2搬送ラインL2と第3搬送ラインL3とが連続に繋がっている場合は、クッションシリンダ230は、第3搬送ラインL3の終点に設けられる。この場合、トラバーサ210は設けられなくてもよい。
【0056】
プッシャシリンダ220は、直線状の搬送ラインの始点に設けられ、鋳型Mを送り出す。プッシャシリンダ220は、例えばトラバーサ210に設けられる。プッシャシリンダ220は、例えばサーボシリンダである。プッシャシリンダ220は、シリンダ部222及びロッド224を有する。シリンダ部222は、ロッド224を移動可能に支持する。プッシャシリンダ220は、鋳型Mをロッド224により送り出す。プッシャシリンダ220は、ロッド224の先端をトラバーサ210により移動した鋳型Mに当接させた上で、ロッド224を伸張させることにより、搬送ラインに並べられた後端の鋳型Mを1鋳型分だけ押して、並べられた鋳型Mを1鋳型分ずつ間欠的に搬送する。プッシャシリンダ220がロッド224を縮めることにより、次に送り出される鋳型Mがトラバーサ210によりロッド224の先端に移動する。
【0057】
鋳型移動装置200aのプッシャシリンダ220は、ロッド224が第2搬送ラインL2に沿って伸縮するように配置される。鋳型移動装置200aにおけるプッシャシリンダ220のロッド224は、トラバーサ210により第1搬送ラインL1から移動してきた鋳型Mを第2搬送ラインL2上に送り出す。鋳型移動装置200bのプッシャシリンダ220は、ロッド224が第3搬送ラインL3に沿って伸縮するように配置される。鋳型移動装置200bにおけるプッシャシリンダ220のロッド224は、トラバーサ210により第2搬送ラインL2から移動してきた鋳型Mを第3搬送ラインL3上に送り出す。
【0058】
クッションシリンダ230は、直線状の搬送ラインの終点に設けられ、プッシャシリンダ220により送り出された鋳型Mを受け止める。クッションシリンダ230は、例えばトラバーサ210に設けられる。クッションシリンダ230は、例えばサーボシリンダである。クッションシリンダ230は、ロッド232を有する。クッションシリンダ230は、プッシャシリンダ220により後端の鋳型Mが送り出されるのに合わせてロッド232を1鋳型分だけ縮めるように動作する。このように構成することで、プッシャシリンダ220とクッションシリンダ230とは、搬送中にも一列の鋳型Mを両端から押さえることができる。
【0059】
鋳型移動装置200aのクッションシリンダ230は、ロッド232が第1搬送ラインL1に沿って伸縮するように配置される。鋳型移動装置200aにおけるクッションシリンダ230のロッド232は、造型機により第1搬送ラインL1から移動してきた鋳型Mを縮めることで受け止める。鋳型移動装置200bのクッションシリンダ230は、ロッド232が第2搬送ラインL2に沿って伸縮するように配置される。鋳型移動装置200bにおけるクッションシリンダ230のロッド232は、鋳型移動装置200aにより第2搬送ラインL2から移動してきた鋳型Mを縮めることで受け止める。
【0060】
図7は、実施形態に係る注湯システムの詳細を示す正面図である。
図8は、実施形態に係る注湯システムの詳細を示す側面図である。
図9は、実施形態に係る注湯システムの詳細を示す平面図である。
図7、
図8及び
図9に示すように、取得部300は、例えばプッシャシリンダ220に設けられる。取得部300は、プッシャシリンダ220のロッド224の伸縮量を取得する。取得部300は、検出器310と、反射器320と、コントローラ330とを有する。
【0061】
検出器310は、例えば光センサである。検出器310は、発光器312及び受光器314を含む。発光器312及び受光器314は、プッシャシリンダ220のシリンダ部222に設けられる。発光器312及び受光器314は、例えば、プッシャシリンダ220の基台(シリンダ部222の一例)に設けられた支持部の端部に配置される。発光器312は、プッシャシリンダ220のロッド224の伸縮方向(Y方向)に向けて、予め定められた所定の時間間隔で光を照射する。発光器312からの光は、例えば水平面に平行である。発光器312は、例えば発光素子であり、反射器320に照射面を向けて光を照射する。受光器314は、発光器312からの光を受光する。受光器314は、例えば受光素子である。
【0062】
反射器320は、発光器312から照射される光を受光器314に向けて反射する。反射器320は、例えば反射鏡である。反射器320は、プッシャシリンダ220のロッド224の伸縮方向に位置し、反射面を発光器312及び受光器314側に向けて設けられる。反射器320は、例えばプッシャシリンダ220のロッド224に設けられる。反射器320は、例えば、発光器312に対してプッシャシリンダ220のロッド224の伸縮方向(Y方向)に位置する。反射器320は、プッシャシリンダ220のロッド224の伸縮方向に向けて光を反射する。反射器320からの反射光は、例えば水平面に平行である。
【0063】
クッションシリンダ230のロッド232がプッシャシリンダ220のロッド224と同時に同一の速度、かつ同一の伸縮量で作動する場合、反射器320はプッシャシリンダ220のロッド224に設けられなくてもよい。この場合、発光器312及び受光器314はクッションシリンダ230のシリンダ部に設けられ、反射器320は、クッションシリンダ230のロッド232に設けられてもよい。
【0064】
コントローラ330は、注湯システム100の全体を制御するハードウェアである。コントローラ330は、例えばCPU(Central Processing Unit)などの演算装置、ROM(Read Only Memory)、RAM(Random Access Memory)などの記憶装置、及び通信装置などを有する制御装置である。コントローラ330は、照射制御部331、演算制御部332及び送信制御部333を含む。コントローラ330は、例えば鋳型移動装置200の外部に設けられる。照射制御部331は、発光器312と通信可能に接続される。照射制御部331は、発光器312の光の照射のタイミングを制御する。照射制御部331は、予め定められたタイミングにおいて、発光器312に光を照射させる。
【0065】
演算制御部332は、発光器312及び受光器314と通信可能に接続される。演算制御部332は、発光器312の光を照射したタイミング及び受光器314の光を受光したタイミングを取得する。演算制御部332は、発光器312の光を照射したタイミングを照射制御部331から取得してもよい。
【0066】
演算制御部332は、発光器312の光を照射したタイミング及び受光器314の光を受光したタイミングに基づいて、そのタイミングにおけるプッシャシリンダ220のロッド224の伸縮量を演算する。発光器312から反射器320までの光路長と反射器320から受光器314までの光路長とを合わせた測定光路長は、プッシャシリンダ220のロッド224が最も縮んだ場合、最も短くなる。このとき、発光器312の光を照射したタイミングから受光器314が光を受光するまでのタイミングまでの時間である往復時間は最も短くなる。演算制御部332は、このときの往復時間を基準往復時間とする。
【0067】
プッシャシリンダ220のロッド224が伸張することで、測定光路長は長くなる。このとき、演算制御部332により演算される往復時間は長くなる。演算制御部332は、例えば基準往復時間と演算された往復時間との差分に基づいてプッシャシリンダ220のロッド224の伸縮量を演算する。具体的には、発光器312及び受光器314がプッシャシリンダ220のロッド224に設けられる場合、演算された往復時間から基準往復時間を減算した値に光の速さを掛け、さらに2で除した値がプッシャシリンダ220のロッド224のおおよその伸縮量となる。
【0068】
送信制御部333は、注湯装置1の制御部70と演算制御部332と通信可能に接続される。送信制御部333は、演算制御部332により演算されたに所定のタイミングにおけるプッシャシリンダ220のロッド224の伸縮量を注湯装置1の制御部70に送信する。なお、コントローラ330は、注湯装置1の制御部70内に設けられてもよい。
【0069】
注湯装置1の制御部70は、取得部300により取得されたプッシャシリンダ220のロッド224の伸縮量に基づいて注湯装置1を走行させる。例えば、制御部70は、所定のタイミングにおける鋳型Mの搬送される距離が、送信制御部333より送信された所定のタイミングにおけるプッシャシリンダ220のロッド224の伸縮量であると想定する。その場合、制御部70は、所定のタイミングにおいてプッシャシリンダ220のロッド224の伸縮量だけ鋳型Mに追従するように台車3の走行を制御する。
【0070】
以上、本実施形態の注湯システム100によると、注湯製品の品質を向上させることができる。また、この注湯システム100では、プッシャシリンダ220のロッド224の伸縮量は、プッシャシリンダ220のシリンダ部222に設けられた発光器312及び受光器314と、プッシャシリンダ220のロッド224に設けられた反射器320とによって、光を用いて取得される。すなわち、注湯システム100は、エンコーダを用いることなくプッシャシリンダ220のロッド224の位置を計測できるため、注湯システム100は、エンコーダの故障を回避できる。また、台車3は、取得されたプッシャシリンダ220のロッド224の伸縮量に基づいて走行でき、搬送された鋳型Mに追従して移動できる。すなわち、台車3は、プッシャシリンダ220のロッド224の伸縮に同期して走行できる。注湯装置1は、注湯の途中の鋳型Mに追従するため、台車3の移動中及び移動後も連続して鋳型Mに注湯できる。よって、この注湯システム100は、鋳型Mに対して正確な重量の溶湯を効率的に注湯できる。
【0071】
[変形例]
以上、種々の例示的実施形態について説明してきたが、上述した例示的実施形態に限定されることなく、様々な省略、置換、及び変更がなされてもよい。例えば、第2実施形態における注湯システム100は、第2搬送ラインL2と、鋳型移動装置200aのプッシャシリンダ220と、鋳型移動装置200bのクッションシリンダ230とを備えていればよい。この場合、注湯システム100は、第1搬送ラインL1と、第3搬送ラインL3と、鋳型移動装置200aのトラバーサ210及びクッションシリンダ230と、鋳型移動装置200bのトラバーサ210及びプッシャシリンダ220は備えなくても良い。第2実施形態における取得部300は、光ではなく音によって、プッシャシリンダ220のロッド224の伸縮量を演算するための値を取得してもよい。