【解決手段】信号処理装置は、複数のアンテナの受信信号に基づき電波の到来方位を推定する方位推定部と、前記受信信号と比較するための推定受信信号を、前記到来方位の推定結果に基づき算出する推定受信信号算出部と、前記受信信号と前記推定受信信号との差分である残差信号を算出する残差信号算出部と、前記到来方位の推定結果が正しいか否かを、前記残差信号に基づき判定する判定部と、を備える。
前記判定部は、前記到来方位の推定結果が正しいか否かを、前記受信信号に基づき算出される所定のパワー値と、前記残差信号から算出される残差電力との比較により判定する、請求項1に記載の信号処理装置。
前記複数のアンテナは、複数の送信アンテナと複数の受信アンテナとの組み合わせにより生成される複数の仮想アンテナである、請求項1から4のいずれか1項に記載の信号処理装置。
【発明を実施するための形態】
【0016】
以下、本発明の例示的な実施形態について、図面を参照しながら詳細に説明する。
【0017】
<1.レーダ装置の構成>
図1は、本発明の実施形態に係るレーダ装置1の構成を示す図である。レーダ装置1は、例えば車両、ロボット、航空機、船舶などの移動体に搭載することができる。本実施形態では、レーダ装置1は、例えば自動車などの車両に搭載される。以下、レーダ装置1が搭載されている車両のことを自車両と表現する。
【0018】
レーダ装置1は、他の車両、標識、ガードレール、人などの、自車両の周囲に存在する物標を検知するために用いられる。物標の検知結果は、自車両の記憶装置や、自車両の挙動を制御する車両ECU(Electronic Control Unit)5などに対して出力される。物標の検知結果は、例えば、PCS(Pre-crash Safety System)やAEBS(Advanced Emergency Braking System)などの車両制御に用いられる。
【0019】
図1に示すように、レーダ装置1は、複数の送信部2と、受信部3と、信号処理装置4とを備える。本実施形態では、レーダ装置1は、好ましい形態として、いわゆるMIMO(Multiple-Input and Multiple-Output)レーダ装置である。また、レーダ装置1は、好ましい形態として、周波数が連続的に増加または減少するチャープ波を送信して検出範囲内に存在する各物標の距離および相対速度を検出するFCM(Fast Chirp Modulation)方式のレーダ装置である。
【0020】
送信部2は、信号生成部21と発振器22とを備える。信号生成部21は、ノコギリ波状に電圧が変化する変調信号を生成し、発振器22へ供給する。発振器22は、信号生成部21で生成された変調信号に基づいてチャープ信号である送信信号を生成して、送信アンテナ23へ出力する。
【0021】
レーダ装置1は、複数の送信アンテナ23を備える。本実施形態では、送信アンテナ23の数は3個である。送信アンテナ23の数に合わせて送信部2の数も3個である。ただし、送信アンテナ23の数は、3個以外の複数であってよい。送信アンテナ23の数に応じて送信部2の数も変更されてよい。また、送信アンテナ23の数と送信部2の数は、必ずしも一致しなくてよい。例えば、3つの送信アンテナ23に対して1つの送信部2が設けられ、各送信アンテナ23と送信部2との接続がスイッチで切り替えられてもよい。
【0022】
3個の送信アンテナ23は、それぞれ別々の送信部2から送信信号を受け取り、その送信信号を送信波TWに変換して出力する。3個の送信部2それぞれから出力される送信信号は、互いに直交した信号(直交信号)である。直交とは、例えば時間、位相、周波数、符号等の違いよって互いに干渉しないことである。
【0023】
受信部3は、複数の受信アンテナ31と、複数の個別受信部32とを備える。すなわち、レーダ装置1は、受信信号を取得する複数のアンテナ31を備える。各受信アンテナ31に対して、個別受信部32が1つずつ接続される。各受信アンテナ31は、物標からの反射波RWを受信して受信信号を取得し、各個別受信部32に出力する。本実施形態では、受信部3は、2個の受信アンテナ31と、2個の個別受信部32とを備える。ただし、受信アンテナ31の数は、複数であれば2個以外であってよい。また、個別受信部32の数は、スイッチを導入することにより、受信アンテナ31の数よりも少なくしてよい。
【0024】
各個別受信部32は、対応する受信アンテナ31で得られた受信信号を処理する。個別受信部32は、ミキサ33とA/D変換器34とを備える。受信アンテナ31で得られた受信信号は、ローノイズアンプ(図示省略)で増幅された後にミキサ33に送られる。ミキサ33には、各送信部2の各発振器22からの送信信号が入力され、ミキサ33において各送信信号と受信信号とがミキシングされる。これにより、各送信信号の周波数と受信信号の周波数との差となるビート周波数を有するビート信号が生成される。ミキサ33で生成されたビート信号は、A/D変換器34でデジタルの信号に変換された後に、信号処理装置4に出力される。
【0025】
信号処理装置4は、各A/D変換器34を介して取り込んだ各ビート信号に基づいて各種の処理を実行する。信号処理装置4は、CPU(Central Processing Unit)及びメモリ41などを含むマイクロコンピュータを備える。信号処理装置4は、演算の対象とする各種のデータを、記憶装置であるメモリ41に記憶する。メモリ41は、例えばRAM(Random Access Memory)などである。信号処理装置4は、マイクロコンピュータでソフトウェア的に実現される機能として、送信制御部42、変換部43、および、データ処理部44を備える。送信制御部42は、各送信部2の信号生成部21を制御する。
【0026】
変換部43は、受信アンテナ31において複数の物標からの反射波が重なり合った状態で受信されるために、受信信号に基づいて生成されたビート信号から、各物標の反射波に基づく周波数成分を分離する処理を行う。本実施形態では、変換部43は、高速フーリエ変換(FFT:Fast Fourier Transform)処理により、周波数成分の分離を行う。FFT処理では、所定の周波数間隔で設定された周波数ポイント(周波数ビンという場合がある)ごとに受信レベルや位相情報が算出される。変換部43は、FFT処理の結果をデータ処理部44に出力する。
【0027】
変換部43は、詳細には、各A/D変換器34から出力されるビート信号に対してそれぞれ2次元FFT処理を行う。1回目のFFT処理を行うことで、物標との距離に対応する周波数ビン(以下、距離ビンと記載する場合がある)にピークが出現する周波数スペクトルが得られる。1回目のFFT処理により得られた周波数スペクトルを時系列に並べて2回目のFFT処理を行うことで、ドップラー周波数に対する周波数ビン(以下、「速度ビン」と記載することがある)にピークが出現する周波数スペクトルが得られる。変換部43は、2次元FFT処理により、距離ビンと速度ビンとを軸とする2次元パワースペクトルを得る。
【0028】
データ処理部44は、ピーク抽出部45、距離・相対速度演算部46、方位推定部47、および、正誤判定部48を備える。すなわち、信号処理装置4は方位推定部47を備える。
【0029】
ピーク抽出部45は、変換部43におけるFFT処理等の結果からピークを抽出する。本実施形態では、ピーク抽出部45は、2次元FFT処理によって得られた距離ビンと速度ビンとを軸とする2次元パワースペクトルに基づいて、所定以上のパワー値を示すピークを抽出する。また、本実施形態では、ピーク抽出部45は、ピーク抽出の結果を仮想アンテナごとの結果に分類する。仮想アンテナは、複数の送信アンテナ23と複数の受信アンテナ31との組合せにより生成される。仮想アンテナについては後述する。
【0030】
距離・相対速度演算部46は、ピーク抽出部45によってピークが存在するとして特定された距離ビンおよび速度ビンの組み合わせに基づいて物標との距離および相対速度を導出する。
【0031】
方位推定部47は、複数のアンテナの受信信号に基づき電波の到来方位を推定する。本実施形態では、複数のアンテナは、複数の送信アンテナ23と複数の受信アンテナ31との組合せにより生成される複数の仮想アンテナである。これによれば、受信アンテナ31の数を超える仮想アンテナを得ることができ、アンテナ素子の数の増加を抑制しつつ方位推定の精度を向上することができる。
【0032】
方位推定部47は、仮想アンテナごとにピーク抽出部45で抽出された同一周波数ビンのピークに注目し、それらのピークの位相情報に基づいて物標が存在する方位を推定する。方位推定部47は、周波数ビンが異なる複数のピークが存在する場合、ピークごとに方位推定を行う。方位推定には、例えばMUSIC(Multiple Signal Classification)やESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques) 等の公知の手法が用いられる。
【0033】
正誤判定部48は、ピークごとに、方位推定部47における到来方位の推定結果が正しいか否かを判定する。ここで、到来方位の推定結果が正しいとは、推定した方位に物標が存在する場合を指す。到来方位の推定結果が誤っているとは、推定した方位に物標がいない(ゴーストを検出した)場合を指す。正誤判定部48の詳細については後述する。
【0034】
なお、距離・相対速度演算部46および方位推定部47により求められた、物標までの距離、物標の相対速度、物標の存在する方位を含む物標データは、車両ECU5に出力される。
【0035】
<2.仮想アンテナ>
図2は、本発明の実施形態に係るレーダ装置1が備えるアンテナについて説明するための図である。
【0036】
本実施形態では、
図2(a)に示すように、3個の送信アンテナ23は、水平方向に沿って同一のアンテナ間隔dで配置される。また、
図2(b)に示すように、2個の受信アンテナ31は、水平方向に沿ってアンテナ間隔3dで配置される。なお、隣り合う送信アンテナ23のアンテナ間隔は、複数の組(3個の送信アンテナ23では二組)の間で厳密に同一でなくてもよく、設計上の誤さやばらつきなどを考慮した上で複数の組の間で同一とみなすことができればよい。また、隣り合う2つの受信アンテナ31のアンテナ間隔は、厳密に隣り合う2つの送信アンテナ23のアンテナ間隔の3倍でなくてもよく、設計上の誤さやばらつきなどを考慮した上で隣り合う2つの送信アンテナ23のアンテナ間隔の3倍とみなすことができればよい。
【0037】
図2(a)に示す3個の送信アンテナ23と、
図2(b)に示す2個の受信アンテナ31との組み合わせにより、
図2(c)に示す仮想アレーアンテナが生成される。
図2(c)に示す仮想アレーアンテナは、6個の仮想アンテナVRx1〜VRx6によって構成される。6個の仮想アンテナVRx1〜VRx6は、水平方向に沿って同一のアンテナ間隔dで配置される。
【0038】
詳細には、第1仮想アンテナVRx1は、第1送信アンテナTx1と第1受信アンテナRx1とを組み合わせて生成される。第2仮想アンテナVRx2は、第2送信アンテナTx2と第1受信アンテナRx1とを組み合わせて生成される。第3仮想アンテナVRx3は、第3送信アンテナTx3と第1受信アンテナRx1とを組み合わせて生成される。第4仮想アンテナVRx4は、第1送信アンテナTx1と第2受信アンテナRx2とを組み合わせて生成される。第5仮想アンテナVRx5は、第2送信アンテナTx2と第2受信アンテナRx2とを組み合わせて生成される。第6仮想アンテナVRx6は、第3送信アンテナTx3と第2受信アンテナRx2とを組み合わせて生成される。
【0039】
すなわち、第1受信アンテナRx1の受信信号は、互いに直交する第1仮想アンテナVRx1の受信信号、第2仮想アンテナVRx2の受信信号、および、第3仮想アンテナVRx3の受信信号を含む。第2受信アンテナRx2の受信信号は、互いに直交する第4仮想アンテナVRx4の受信信号、第5仮想アンテナVRx5の受信信号、および、第6仮想アンテナVRx6の受信信号を含む。
【0040】
<3.方位推定結果の正誤判定>
図3は、往路と復路の一致および不一致について説明するための図である。
図3において、前方の車両6は自車両であり、後方の車両7はレーダ装置1によって検知される物標である。
図3において、符号8はガードレールである。なお、往路は、送信アンテナ23から送信される送信波TWが物標(
図3では車両7)に至る経路である。復路は、物標(
図3では車両7)で反射された反射波RWが受信アンテナ31に至る経路である。往路と復路とが一致するという状態には、往路と復路とが完全に一致している状態だけでなく、ばらつき等を考慮して往路と復路とが一致していると見なせる状態が含まれてよい。
【0041】
図3(a)においては、自車両6の送信アンテナ23から送信された送信波TWが他車両7に至る往路Raと、他車両7で反射された反射波RWが自車両6の受信アンテナ31に至る復路Rbとが一致している。レーダ装置1では、このように往路Raと復路Rbとが一致していることを前提として物標データを求める。
【0042】
図3(b)においては、自車両6の送信アンテナ23から送信された送信波TWは、
図3(a)と同様に、まず、他車両7に至る(実線で示す経路Ra)。一方、他車両7で反射された反射波RWは、ガードレール8で反射された後に自車両6の受信アンテナ31に至る(実線で示す経路Rb)。すなわち、反射波RWは、往路Raと異なる経路(復路)Rbで受信アンテナ31に至る。
図3(b)においては、往路Raと復路Rbとが一致しない。
【0043】
他車両7で反射される反射波RWの中には、
図3(b)に示すように往路Raと一致しない経路Rbを通って受信アンテナ31に受信されるものがある。このような往路Raと異なる経路Rbを通る反射波RWの受信信号は、信号処理の前提となる条件から外れたものであり、誤った物標データの算出原因となる不要な信号であり、除去する必要がある。信号処理装置4は、正誤判定部48を備えることにより、このような不要な信号を除去して物標を正しく検出することが可能になっている。
【0044】
なお、往路Raと復路Rbとが一致しない例としては、自車両6の送信アンテナ23から送信された送信波TWが
図3(b)に実線で示す反射波RWと反対向きに進み、他車両7で反射された反射波RWが
図3(b)に実線で示す送信波TWと反対向きに進む場合も挙げられる。
【0045】
図4および
図5は、正誤判定部48の機能を説明するための図である。
図4は、往路と復路とが一致している場合の図である。
図5は、往路と復路とが一致していない場合の図である。
図4および
図5に示す信号のベクトル図において、横軸は実数軸、縦軸は虚数軸である。
図4(a)および
図5(a)は、或る到来方位から来る電波(到来波)を受信した各仮想アンテナVRx1〜VRx6の受信信号のベクトル図である。
図4(b)および
図5(b)は、各仮想アンテナVRx1〜VRx6の推定受信信号のベクトル図である。
図4(c)および
図5(c)は、各仮想アンテナVRx1〜VRx6における残差信号のベクトル図である。なお、
図4および
図5において、受信信号および推定受信信号の大きさは、説明の便宜上、全て同じ大きさであると仮定している。
【0046】
まず、
図4について説明する。
図4においては、往路と復路とが一致している。このために、
図4(a)に示すように、第1仮想アンテナVRx1を基準として、各仮想アンテナVRx2〜VRx6で受信される受信信号の位相は、第1仮想アンテナVRx1とのアンテナ間距離に応じて規則的に変化している。
図4(a)に示す例では、第1仮想アンテナVRx1の受信信号の位相は0°、第2仮想アンテナVRx2の受信信号の位相は45°、第3仮想アンテナVRx3の受信信号の位相は90°、第4仮想アンテナVRx4の受信信号の位相は135°、第5仮想アンテナVRx5の受信信号の位相は180°、第6仮想アンテナVRx6の受信信号の位相は225°である。すなわち、位相が45°ずつ変化している。
【0047】
図4(b)に示す推定受信信号は、
図4(a)に示す受信信号に基づいて方位推定部47で推定された到来方位の推定結果に基づき算出された信号である。推定受信信号の算出方法の詳細については後述する。
図4に示す例においては、往路と復路とが一致したMIMOの前提条件を満たす正しい到来波に基づいて到来方位を推定している。このために、到来方位の推定結果は、通常正しい結果となる。この結果、到来方位の推定結果に基づき算出された各仮想アンテナVRx1〜VRx6の推定受信信号は、
図4(b)に示すように、
図4(a)に示す受信信号と同様のベクトルとなる。
【0048】
図4(c)に示す残差信号は、
図4(a)に示す受信信号と、
図4(b)に示す推定受信信号との差分を示す信号である。
図4(c)は、各仮想アンテナVRx1〜VRx6に対して、
図4(a)に示す受信信号から
図4(b)に示す推定受信信号を差し引いた結果を示している。
図4においては、方位推定部47の到来方位の推定結果が正しい結果であるために、受信信号と推定受信信号とに差はなく、残差信号はゼロになっている。なお、到来方位の推定結果が正しくても、実際にはノイズの存在により、残差信号は完全にゼロにならない場合もある。ここでは、理解しやすいように、ノイズは存在しないものとしている。
【0049】
次に、
図5について説明する。
図5(a)においては、第1仮想アンテナVRx1の受信信号の位相は0°、第2仮想アンテナVRx2の受信信号の位相は45°、第3仮想アンテナVRx3の受信信号の位相は90°である。すなわち、
図4(a)と同様に、第1仮想アンテナVRx1、第2仮想アンテナVRx2、および、第3仮想アンテナVRx3の受信信号の位相は、第1仮想アンテナVRx1を基準とするアンテナ間距離に応じて45°ずつ規則的に変化している。
【0050】
一方、第4仮想アンテナVRx4の受信信号の位相は270°であり、第1仮想アンテナVRx1〜第3仮想アンテナVRx3の受信信号における規則的な位相変化とは異なる位相変化を示している。ただし、第5仮想アンテナVRx5の受信信号の位相は315°、第6仮想アンテナVRx6の受信信号の位相は0°(360°)であり、第4仮想アンテナVRx4、第5仮想アンテナVRx5、および、第6仮想アンテナVRx6の受信信号の位相は、アンテナ間距離に応じて45°ずつ規則的に変化している。
【0051】
図5(a)では、仮想アンテナVRx1〜VRx6を構成する受信アンテナ31が同じ組においては、
図4(a)と同様の位相変化(45°ずつ変化)を示している。一方、仮想アンテナVRx1〜VRx6を構成する受信アンテナ31が変わると、
図4(a)とは異なる位相変化(180°変化)を示す。すなわち、
図5に示す例は、往路は
図4と同じ経路、復路は
図4とは異なる経路となっていると判断できる。
図5に示す例は、例えば、
図3(b)に実線で示す形態で、往路と復路とが不一致になっている。
【0052】
なお、第1仮想アンテナVRx1、第2仮想アンテナVRx2、および、第3仮想アンテナVRx3は、仮想アンテナを構成する受信アンテナがいずれも第1受信アンテナRx1であり、仮想アンテナVRx1〜VRx6を構成する受信アンテナ31が同じ組である。第4仮想アンテナVRx4、第5仮想アンテナVRx5、および、第6仮想アンテナVRx6は、仮想アンテナを構成する受信アンテナがいずれも第2受信アンテナRx2であり、仮想アンテナVRx1〜VRx6を構成する受信アンテナ31が同じ組である。
【0053】
往路と復路とが一致していない場合、MIMOの前提条件が満たされていないために、方位推定を正しく行うことができない。往路と復路とが一致していない場合、
図5(a)に示すように、位相変化がアンテナ間距離とは関係のない不規則な変化を示す。一方で、方位推定部47は、アンテナ間距離に応じて位相が線形的に変化することを前提として方位演算を行う。このために、方位推定部47は、電波の到来方位について間違った推定を行う。この結果、
図5(a)に示す受信信号に基づいて方位推定部47で推定された到来方位の推定結果に基づき算出された各仮想アンテナVRx1〜VRx6の推定受信信号(
図5(b)参照)と、
図5(a)に示す各仮想アンテナVRx1〜VRx6受信信号とを比較するとずれが生じる。
【0054】
図5(c)に示すように、往路と復路とが一致していない到来波においては、往路と復路とが一致している場合(
図4(c)参照)と比べて、大きな残差信号を示す。換言すると、残差信号が大きな値を示せば、方位推定部47で推定された推定結果は正しくない可能性が高いと言える。正誤判定部48は、この考え方を利用して、方位推定部47における到来方位の推定結果が正しいか否かを判定する。なお、残差信号は、到来方位の推定結果が不適切な場合に大きくなる傾向がある。このために、正誤判定部48は、往路と復路とが一致していない場合に限らず、方位推定部47における方位推定に誤りがある場合を広く検出することができる。
【0055】
図6は、本発明の実施形態に係る正誤判定部48の機能を示すブロック図である。
図6に示すように、正誤判定部48は、推定受信信号算出部481と、残差信号算出部482と、判定部483とを備える。すなわち、信号処理装置4は、推定受信信号算出部481と、判定部483とを備える。信号処理装置4は、残差信号算出部482を更に備える。
【0056】
推定受信信号算出部481は、到来方位の推定結果に基づき推定受信信号を算出する。推定受信信号は、受信信号と比較するための信号である。本実施形態では、受信信号は6個の仮想アンテナVRx1〜VRx6から得られる。推定受信信号は、周波数ビンが異なる複数のピークが存在する場合、ピークごとに算出される。推定受信信号の算出方法の詳細については後述する。
【0057】
残差信号算出部482は、仮想アンテナVRx1〜VRx6の受信信号と推定受信信号との差分である残差信号を算出する。残差信号は、各推定受信信号に対して求められるために、推定受信信号と同様にピークごとに求められる。残差信号の算出方法の詳細については後述する。
【0058】
判定部483は、方位推定部47の到来方位の推定結果が正しいか否かを、仮想アンテナVRx1〜VRx6の受信信号と推定受信信号とに基づき判定する。詳細には、判定部483は、方位推定部47の到来方位の推定結果が正しいか否かを、残差信号に基づき判定する。残残差信号はピークごとに求められるために、判定部483はピークごとに方位推定部47による到来方位の推定結果が正しいか否かを判定する。判定部483は、ピークごとに複数の方位が推定された場合には、各方位について推定結果が正しいか否かを判定する。到来方位の推定結果が正しいか否かを残差信号に基づいて判定する手法の詳細について後述する。
【0059】
本実施形態によれば、方位推定部47による方位推定が行われた後に、到来方位の推定結果を利用した演算処理を行うことで、推定結果が正しいか否かを確認することができる。すなわち、本実施形態によれば、本来存在しない物標(ゴースト)を検出する事態が生じているか否かを確認するために、特許文献1のように電波の送受信の回数を特別に増やす必要がなく、処理負荷の増大を抑制しつつ物標の誤検出を抑制することができる。また、本実施形態では、電波の到来方位の推定結果を利用して、その正誤を判定する構成であるために、電波の到来方位の推定の誤りを広く検出することができる。すなわち、本実施形態によれば、例えば位相折り返しによる到来方位の誤判定や、ピークに重なって出現するサイドローブに由来する到来方位の誤判定等があった場合にも到来方位の推定結果が正しくないことを検出することができ、物標の誤検出を広く抑制することができる。
【0060】
図7は、本発明の実施形態に係るレーダ装置1の概略動作を示すフローチャートである。
図7は、方位推定部47による到来方位の推定結果が正しいか否かを判定する動作を中心に示したものである。すなわち、
図7においては、物標までの距離や相対速度を求める処理については省略されている。レーダ装置1は、
図7に示す処理を一定時間ごとに周期的に繰り返す。
【0061】
まず、送信アンテナ23が送信波TWを出力する(ステップS1)。次に、受信アンテナ31が物標で反射された反射波RWを受信して受信信号を取得する(ステップS2)。次に、信号処理装置4が所定数のビート信号を取得する(ステップS3)。次に、変換部43が取得したビート信号を対象にFFT処理を行う(ステップS4)。
【0062】
次に、ピーク抽出部45が、FFT処理の結果に基づきピーク抽出を行う(ステップS5)。ピーク抽出部45は、ピーク抽出の結果を仮想アンテナVRx1〜VRx6ごとの結果に分類する。方位推定部47は、仮想アンテナVRx1〜VRx6ごとにピーク抽出部45で抽出された同一周波数ビンのピークに注目し、それらのピークの位相情報に基づいて物標が存在する方位(電波の到来方位)を推定する(ステップS6)。
【0063】
次に、推定受信信号算出部481が、方位推定部47による方位推定の結果に基づき、ピークごとに推定受信信号を算出する(ステップS7)。推定受信信号の算出方法の説明の前に、複数の仮想アンテナで構成される仮想アレーアンテナの受信信号に関する説明を簡単に行っておく。
【0064】
時刻tにおける仮想アレーアンテナ(複数の仮想アンテナで構成される)の受信信号ベクトルX(t)は、以下の式(1)で表現できる。
X(t) = AS(t) + N(t) (1)
ここで、S(t)は到来波の複素振幅ベクトル、N(t)は雑音ベクトルである。
【0065】
式(1)において、
X(t)=[x
1(t),・・・,x
M(t)]
T (2)
A=[a(θ
1),・・・,a(θ
K)] (3)
a(θ
k)=[1,exp{-jΛdsin(θ
k)},・・・,exp{-jΛ(M-1)dsin(θ
k)}]
T (4)
Λ=2π/λ (5)
S(t)=[s
1(t),・・・,s
K(t)]
T (6)
N(t)=[n
1(t),・・・,n
M(t)]
T (7)
である。
x
m(t)は、m番目の仮想アンテナの受信信号を示す。Mは仮想アンテナの数であり、本実施形態では6である。Tは転置行列を示す。θは到来波の到来角である。a(θ
k)はモードベクトルである。dは隣り合う仮想アンテナVRx1〜VRx6間の距離である。Lは推定された到来波の数である。λは到来波の波長である。
【0066】
推定受信信号算出部481は、推定受信信号を求めるにあたって、まず、式(1)の雑音ベクトルがないものとし、以下の式(8)により複素振幅ベクトルS(t)を算出する。
X(t) = AS(t) (8)
式(8)において、受信信号ベクトルX(t)は、仮想アレーアンテナの受信信号であるために既知である。行列Aは、方位推定部47による方位推定の結果により既知である。式(8)では、方程式の数に対して未知の数の方が少なくなるために、全ての方程式を満足できる解がない。このために、各複素振幅s
k(t)は、最小二乗法を用いて算出される。
【0067】
推定受信信号算出部481は、求めた複素振幅ベクトルS(t)を以下の式(9)に代入して推定受信信号ベクトルXE(t)を算出する。
XE(t) = AS(t) (9)
式(9)において、
XE(t)=[xe
1(t),・・・,xe
M(t)]
T (10)
である。
なお、xe
m(t)は、m番目の仮想アンテナの推定受信信号を示す。本実施形態では、上述のようにM=6である。
【0068】
次に、残差信号算出部482が、ピークごとに残差信号を算出する(ステップS8)。詳細には、残差信号算出部482は、受信信号ベクトルX(t)から推定受信信号ベクトルXE(t)を差し引いた残差信号ベクトルRE(t)をピークごとに算出する。
【0069】
次に、判定部483が、各残差信号に基づき各到来方位の推定結果が正しいか否かの判定(正誤判定)を行う(ステップS9)。本実施形態では、判定部483は、到来方位の推定結果が正しいか否かを、受信信号に基づき算出される所定のパワー値と、残差信号から算出される残差電力との比較により判定する。これによれば、受信信号の大きさの変動によらず、正誤判定を安定して行うことができる。
【0070】
詳細には、所定のパワー値は、推定された到来方位から来る電波の複素振幅s
k(t)から算出される方位電力である。方位電力は、式(8)で求められた複素振幅s
k(t)の絶対値を二乗した値である。各ピークにおいて、推定された到来方向が複数である場合には、方位電力の数も複数となる。
【0071】
残差電力は、残差信号ベクトルRE(t)を構成する6個の要素(複素数)を平均した平均値の絶対値を二乗した値である。本実施形態では、方位電力および残差電力の単位はデシベル[dB]である。方位電力に対して残差電力の値が大きくなると、方位推定部47で推定された推定結果は正しくない可能性が高くなる。
【0072】
判定部483は、方位電力と残差電力とが以下の式(11)を満たした場合には、到来波の方位推定結果が正しいと判定する。一方、判定部483は、方位電力と残差電力とが以下の式(12)を満たした場合には、到来波の方位推定結果が誤っていると判定する。 方位電力 > 残差電力+α (11)
方位電力 ≦ 残差電力+α (12)
なお、αはオフセット値であり、例えば実験やシミュレーション等によって適宜設定される。また、方位電力と残差電力との比較は、差分でなく比が利用されてもよい。
【0073】
到来方位が正しいと判定された場合には、その到来方位に物標が存在すると判断できる。一方、到来方位が誤っていると判定された場合には、その到来方位には物標は存在せず、検出された物標はゴーストであると判断できる。到来方位が誤っていると判定される場合には、電波の往路と復路とが不一致である場合や、位相折り返し等に由来する方位推定の誤りが発生した場合が含まれる。
【0074】
レーダ装置1は、ゴーストと判定された物標については、物標データの瞬時値を導出しない構成としてよい。また、レーダ装置1は、複数回にわたって到来方位が誤っていると判定された物標についてゴーストと判断してもよい。本実施形態のレーダ装置1によれば、本来存在しない位置に物標が存在すると誤って判断することを抑制することができ、誤トラッキング等を抑制することができる。
【0075】
ところで、距離ビンと速度ビンとが同じになる1つのピークについて、到来方位が複数推定されることがある。例えば、
図3において、他車両7とガードレール8とが接近した場合に、往路Raと復路Rbとが一致する到来波(
図3(a)参照)と、往路Raと復路Rbとが不一致となる到来波(
図3(b)参照)とについて、距離ビンおよび速度ビンを区別することができず、複数の到来波の情報を含む1つのピークが得られることがある。このような場合に、1つのピークに対して複数の到来方位が推定される。
【0076】
ここで、1つのピークに対して、往路と復路とが一致する第1到来波と、往路と復路とが不一致となる第2到来波との2つの到来波の情報が混じっている場合を考える。この場合、方位推定部47による方位推定により、2つの方位が推定される。1つのピークに対して2つの到来方位が推定された場合においても、式(9)により求められる推定受信信号ベクトルXE(t)は1つであり、求められる残差電力は1つである。一方、2つの到来方位が推定された場合には、到来方位ごとに複素振幅s
1(t)、s
2(t)が求まるために、方位電力は2つ求まる。このために、第1到来方位と第2到来方位とのそれぞれについて、方位電力と残差電力との比較を行うことができる。
【0077】
第1到来波と第2到来波と比べた場合、第1到来波の方が第2到来波よりもパワーが強く、方位電力が大きくなる。ピークには、物標が存在する正しい方位である第1到来波の他に物標が存在しない間違った方位の第2到来波の情報が含まれるために、残差電力は、ピークに正しい方位の到来波しか含まれていない場合に比べて大きくなる。
【0078】
このために、第1到来波の方位電力と、残差電力との比較においては、式(11)が満たされ、第2到来波の方位電力と、残差電力との比較においては、式(12)が満たされるという結果を得ることができる。この場合、第1到来波の到来方位には物標が存在し、第2到来波の到来方位には物標が存在しないと判断できる。このように、方位電力と残差電力とを比較する本実施形態の構成では、距離ビンと速度ビンとが同じとなる真の物標とゴーストとを区別することができ、物標の誤検出が発生する可能性を低減することができる。
【0079】
なお、以上においては、方位電力と残差電力とを比較する構成としたが、残差電力と比較される所定のパワー値は、方位電力に限定されない。例えば、所定のパワー値は、受信信号をフーリエ変換することにより得られるパワースペクトルから求まるパワー値であってよい。詳細には、パワースペクトルから求まるパワー値(FFTパワー)は、残差電力を求めたピークのパワー値である。この例では、各仮想アンテナVRx1〜VRx6についてFFTパワーが求まる。このため、残差電力と比較するFFTパワーは、例えば、複数の仮想アンテナVRx1〜VRx6から求まる複数のFFTパワーの平均値であってよい。
【0080】
このような構成では、各ピークについて、距離ビンと速度ビンとが同じになる真の物標とゴーストとを区別することができないが、このような区別が必要でない場合には、演算処理の負担を軽減できるために有用である。
【0081】
<4.留意事項>
本明細書における実施形態や変形例の構成は、本発明の例示にすぎない。実施形態や変形例の構成は、本発明の技術的思想を超えない範囲で適宜変更されてもよい。また、複数の実施形態及び変形例は、可能な範囲で組み合わせて実施されてよい。
【0082】
以上においては、レーダ装置1がMIMOレーダである構成としたが、これは例示にすぎない。本発明は、レーダ装置がMIMOレーダでない構成にも適用できる。すなわち、本発明が適用されるレーダ装置は、1つの送信アンテナと、複数の受信アンテナとを備える構成であってよい。このような構成の場合においても、例えば位相折り返しが原因となる方位推定の誤りで生じた場合に、推定方位の誤りを残差信号に基づき検出することができる。
【0083】
以上においては、車載レーダ装置について説明したが、本発明は、道路などに設置されるインフラレーダ装置、船舶監視レーダ装置、航空機監視レーダ装置等にも適用されてよい。
【0084】
以上においてプログラムの実行によってソフトウェア的に実現されると説明した機能の全部又は一部は電気的なハードウェア回路により実現されてもよい。また、ハードウェア回路によって実現されると説明した機能の全部又は一部はソフトウェア的に実現されてもよい。また、1つのブロックとして説明した機能が、ソフトウェアとハードウェアとの協働によって実現されてもよい。また、各機能ブロックは概念的な構成要素である。各機能ブロックが実行する機能を複数の機能ブロックに分散させたり、複数の機能ブロックが有する機能を1つの機能ブロックに統合したりしてよい。