【解決手段】実施形態の半導体装置は、第1面を有する導電性の第1リード部と、前記第1リード部と離間した導電性の第2リード部と、前記第1リード部に電気的に接続された第1電極と、第2電極とを有し、前記第1面上に設けられた半導体チップと、前記第2電極に電気的に接触する第1接続部、及び前記第2リード部に電気的に接続された第2接続部を有する導電性の第1コネクタ部と、前記第2電極に電気的に接触する第3接続部と、前記第2接続部に電気的に接続された第4接続部とを有し、少なくとも一部が、前記第1面に垂直する第2方向において、前記第1コネクタ部よりも第1リード部から離れた位置で、前記第1コネクタと重なる導電性の第2コネクタ部と、を備える。
前記第1コネクタ部は、前記第1接続部と前記第2接続との間にあり前記第1接続部に接続する第1沿設部(4C)と、前記第1沿設部と前記第2接続部との間にあり、前記第1沿設部と前記第2接続部とに接し、前記第2方向に延在する第2沿設部(4D)と、をさらに有し、
前記第2コネクタ部は、前記第3接続部と前記第4接続部との間にあり前記第3接続部に接続する第3沿設部(5C)と、前記第3沿設部と前記第4接続との間にあり前記第3沿設部と前記第4接続部とに接し、前記第2方向に延在する第4沿設部(5D)をさらに備える、請求項1に記載の半導体装置。
前記第1接続部及び前記第3接続部は、前記半導体チップの前記第2電極が形成された面内で前記第1方向と交叉する第3方向(Y方向)において、複数の部分に分割される、請求項1から請求項3のいずれか1項に記載の半導体装置。
前記第2電極に電気的に接触する第5接続部、及び前記第2のリード部に電気的に接続された第6接続部を有し、前記第1コネクタ部から離間して設けられる第3コネクタ部と、
前記第1方向において前記第5接続部よりも前記第2リード部から離れた位置で、前記第2電極に電気的に接触する第7接続部を有し、前記第6接続部に電気的に接続された第8接続部を有し、少なくとも一部が、前記第2方向において前記第3コネクタ部よりも第1リード部から離れた位置で、第1コネクタ部と重なる導電性の第4コネクタ部と、をさらに備える請求項1から請求項3のいずれか1項に記載の半導体装置。
前記第1コネクタ部の前記第1接続部から前記第2接続部までの間、及び前記第2コネクタ部の前記第3接続部から前記第4接続部までの間は、同一の金属材料から形成された請求項1から請求項8のいずれか1項に記載の半導体装置。
【発明を実施するための形態】
【0007】
以下、図面を参照しつつ、実施形態について説明する。以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。
【0008】
なお、図面での部分の厚みと幅との関係、部分間の大きさの比率などは、模式的に示したものであり、必ずしもこれに限定されない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
【0009】
(第1の実施形態)
第1実施形態の半導体装置100について、
図1及び
図2を参照して説明する。
【0010】
図1(a)及び(b)は、第1の実施形態に係る半導体装置100の構成及び第1コネクタ部を模式的に示す斜視図である。
図2は、第1の実施形態に係る半導体装置の構成を模式的に示す断面図である。
【0011】
尚、以降に参照する図面の斜視図において、別途参照する断面図で後述するダイボンド材6A、6B、6C及び封止部材7は省略して示すこととする。
【0012】
図1及び
図2に示すように、第1の実施形態による半導体装置は、第1リード部1、第2リード部2、第3リード部12、半導体チップ3、第1コネクタ部4、第2コネクタ部5、ゲートパッド10、ボンディングワイヤ11、ダイボンド材6A、6B、6C、6D、及び封止部材7を備える。
【0013】
第1リード部1は、板状に形成されるダイパッドである。第1リード部1は、一方の面と、一方の面に対向する他方の面とを有する。第1リード部の一方の面及び他方の面と水平な一つの方向をX方向とし、第1リード部の面に平行でX方向と直交する方向をY方向とする。また、X方向及びY方向と直交する方向をZ方向とする。
【0014】
第2リード部2は、板状に形成されるリードである。第2リード部2は、一方の面と、一方の面に対向する他方の面とを有する。第2リード部2の他方の面は、第1リード部の他方の面と同一平面上に位置する。第2リード部2は、X方向において、第1リード部1と離間して設けられる。
【0015】
第3リード部12は、板状に形成されるリードである。第3リード部12は、一方の面と、一方の面に対向する他方の面とを有する。第3リード部12の他方の面は、第1リード部の他方の面と同一平面上に位置する。第3リード部12は、X方向において、第1リード部1と離間して設けられる。第3リード部12は、Y方向において、第1リード部1と離間して設けられる。
【0016】
第1リード部1、第2リード部2、及び第3リード部12は、例えば、Cu、Ni、Al、Agなどの金属材料もしくはこれらのうち少なくともいずれか2つの金属材料を含む合金等により構成されている。尚、第1リード部1及び第2リード部2の表面にメッキが施されていてもよい。
【0017】
半導体チップ3は、第1リード部1の一方の面上に設けられる。半導体チップ3は、例えば、Si、SiC、GaNなどにより構成される絶縁ゲート型バイポーラトランジスタ(Insulated−Gate−Bipolar Transistor:IGBT)や絶縁ゲート型MOSトランジスタ(Metal−Oxide−Semiconductor−Field−Effect Transistor:MOSFET)である。
【0018】
ダイボンド材6A〜6Dは、部材同士を接着させる導電性の物質であり、例えばハンダやAgペーストである。
【0019】
半導体チップ3は、2つの面を有し、一方の面にトランジスタのドレイン電極3A、他方の面にソース電極3Bが設けられる。図示していないトランジスタのゲート電極は、半導体チップ3のソース電極3Bと同じ面側に設けられ、ゲートパッド10と電気的に接続される。
【0020】
ゲートパッド10は、導電性のボンディングワイヤ11によって、第3リード部12と電気的に接続される。
【0021】
半導体チップ3の一方の面に設けられたドレイン電極3Aは、第1リード部1の一方の面と対向し、ダイボンド材6Aによって接着される。ドレイン電極3Aは、第1リード部1と電気的に接触する。このように、半導体チップ3は、第1リード部1上のZ方向に積層される。
【0022】
ここで、半導体チップ3は、例えばZ方向の厚みが50μm〜100μmの薄いチップである。
【0023】
第1コネクタ部4と第2コネクタ部5は、ソース電極3Bと第2リード部2を電気的に接続するソースコネクタとして機能する。第1コネクタ部4と第2コネクタ部5は、例えば、Cuなどの金属材料の板材(銅板)により構成されるが、金属材料の種類はCuに限定されない。また、第1コネクタ部4と第2コネクタ部5の厚みは、半導体チップ3よりも厚く、ここでは例えば、100μm〜300μm程度であるがこの厚さには限定されない。
【0024】
第1コネクタ部4は、一体的に形成された、第1接続部4A、第1離間部4B、第1沿設部4C、第2沿設部4D、及び第2接続部4Eを有する。これら第1接続部4A、第1離間部4B、第1沿設部4C、第2沿設部4D、及び第2接続部4Eは、
図2のXZ断面図において示されるように、ソース電極3Bに接する第1接続部4Aから第2リード部2と接する第2接続部4Eに向かって順に設けられる。
【0025】
なお、本明細書において、沿設とは、対象に沿って設けられることを指す。第1沿設部4Cは、後述する第2コネクタ部5のX方向に延在する部分に近接して沿設される部分である。また、第2沿設部4Dは、第2コネクタ部5のY方向に延在する部分と近接して沿設され、前記第1沿設部4Cから第2リード部2に向かう部分を指す。第2沿設部4Dは、後述する第2コネクタ部5と近接して沿設される部分である。
【0026】
第1接続部4Aは、半導体チップ3の他方の面と水平な方向に延在する。第1接続部4Aの半導体チップ3と対向する面は、X方向においてソース電極3Bの中央から第2リード部2側の領域を覆うように位置し、半導体チップ3とダイボンド材6Bによって接着される。すなわち、第1接続部4Aは、半導体チップ3のソース電極3Bと電気的に接する。
【0027】
第1離間部4Bは、第1接続部4AのX方向における第2リード部2側の端部から、第1リード部1から半導体チップ3に向かう方向(Z方向)に延出して、半導体チップ3から離間する。なお、第1離間部4Bは、半導体チップ3の他方の面と垂直方向に限らず、垂直方向からずれた方向に延出することもできる。
【0028】
第1沿設部4Cは、第1離間部4Bの端部から、第1リード部1から第2リード部2に向かう方向に延出する。第1沿設部4Cは、X方向から傾いた方向に延出することも可能である。
【0029】
第2沿設部4Dは、第1沿設部4CのX方向における端部から、半導体チップ3から第2リード部2に向かう方向に延出する。なお、第2沿設部4Dは、半導体チップ3の他方の面と垂直方向に限らず、垂直方向からずれた方向に延出することもできる。
【0030】
第2接続部4Eは、第2沿設部4Dの第2リード部2側の端部からX方向に延出し、その下面がダイボンド材6Cによって第2リード部2と接着されるすなわち、第2接続部4Eは第2リード部2と対向し、電気的に接触する。
【0031】
第2コネクタ部5は、第3接続部5A、第2離間部5B、第3沿設部5C、第4沿設部5D、及び第4接続部5Eを有する。第3接続部5A、第2離間部5B、第3沿設部5C、第4沿設部5D、及び第4接続部5Eは、
図2のXZ断面図において示されるように、ソース電極3Bに接する第3接続部5Aから第2リード部2と接する第4接続部5Eに向かって順に設けられる。
【0032】
第3接続部5Aは、半導体チップ3の他方の面と平行な方向に延在する。第3接続部5Aの半導体チップ3と対向する面は、X方向において、ソース電極3Bの中央より第2リード部2から離れた領域を覆うように位置し、ダイボンド材6Bによって半導体チップ3と接着される。第3接続部5Aは、半導体チップ3のソース電極3Bと電気的に接触する。第3接続部5Aは、X方向において第1接続部4Aと離間する。
【0033】
第2離間部5Bは、第3接続部5AのX方向における第2リード部2側の端部から、第1リード部1から半導体チップ3に向かう方向に延出する。なお、第2離間部5Bは、半導体チップ3の他方の面と垂直方向に限らず、垂直方向からずれた方向に延出することもできる。第2離間部5Bは、X方向において第1離間部4Bと離間する。
【0034】
第3沿設部5Cは、第2離間部5Bの端部から、第1リード部1から第2リード部2に向かう方向に延出する。第3沿設部5Cは、Z方向において第1接続部4Aと離間する。第3沿設部5Cと第1接続部4Aとの距離は、後述する封止部材7が入り込むことが可能な距離であり、例えば0.1mm以上である。第3沿設部5Cは、第1沿設部4C上に平行に設けられる。第3沿設部5Cは、Z方向において、第1接続部4A及び第1沿設部4Cよりも第1リード部から離れて位置する。
【0035】
ここで、第1接続部4Aの一部と第3沿設部5C間の距離は、第1沿設部4Cの一部と第3沿設部5C間の距離よりも離れているが、第1接続部4Aの一部と第1沿設部4Cの一部は、Z方向から見て第3沿設部5Cと重なる位置関係となっている。
【0036】
第4沿設部5Dは、第3沿設部5CのX方向における第2リード部2側の端部から、半導体チップ3から第1リード部1に向かう方向に延出する。なお、第4沿設部5Dは、半導体チップ3の他方の面と垂直方向に限らず、垂直方向からずれた方向に延出することもできる。第4沿設部5Dは、第2沿設部4D上に平行に設けられる。
【0037】
第4接続部5Eは、第4沿設部5Dの第2リード部2側の端部からX方向に延出し、第2リード部2に電気的に接続される。
図1において、第4接続部5Eは、第1リード部1から第2リード部2に向かう方向に延出し、Z方向において第2接続部4Eよりも第2リード部から離れて位置する。第4接続部5Eは、第2接続部4E上に平行に設けられる。さらに
図1において、第4接続部5Eと第2接続部4Eとの間にダイボンド材6Dが設けられることで、第4接続部5Eと第2接続部4Eとは電気的に接続され、互いに固定される。第4接続部5Eは、第2接続部4Eを介して第2リード部2に電気的に接続される。ダイボンド材6Dは、第2接続部4Eと第4接続部5Eとの間に加えて、第1沿設部4Cと第3沿設部5Cとの間、及び第2沿設部4Dと第4沿設部5Dの間に設けられることができる。
【0038】
なお、半導体装置100の構成要素同士を固定し、電気的に接続する方法は、上記の説明に限られない。たとえば、半導体装置100にダイボンド材6A〜6Dを設けることなく、構成要素同士は、互いにかしめられることによって、または超音波ボンディングによって互いが電気的に接続され、固定されることができる。また、第4接続部5Eは第2接続部4Eを介さずに第2リード部2と、電気的に接触することができる。
【0039】
第1接続部4Aと第3沿設部5Cとが離間し、第1離間部4Bと第2離間部5Bとが離間しているため、これらの間に空間が形成される。以降、第1接続部4Aと第3沿設部5Cと間、かつ第1離間部4Bと第2離間部5Bとの間の空間を領域Rとする。
【0040】
封止部材7は、第1リード部1の一部と、第2リード部2の一部と半導体チップ3と、第1コネクタ部4、第2コネクタ部5と、を覆うように設けられる。封止部材7は、絶縁性の材料、例えば、エポキシ樹脂やシリコーン樹脂などの樹脂などで構成される。
図2は、第1リード部1の一方の面、第2リード部2の一方の面、及び第3リード部12の一方の面上に半導体チップ3、第1コネクタ4、第2コネクタ5、ゲートパッド10、ボンディングワイヤ12を覆うように封止部材7が設けられ、第1リード部1の他方の面、第2リード部2の他方の面、及び第3リード部12の一方の面は、封止部材7が設けられずに、露出させたハーフモールド構造の半導体装置100を示す。
【0041】
封止部材7は、第1コネクタ4と第2コネクタ5との間の離間した領域Rにも満たされる。このように封止部材7は、第1コネクタ部4の両面及び第2コネクタ部5の両面と接し、入り組んだ形状となるため、第1コネクタ部4及び第2コネクタ部5が封止部材7と強く固定される。さらに、第1コネクタ部4及び第2コネクタ部5は、封止部材7に固定された半導体チップ3と強く固定される。これにより、第1コネクタ部4及び第2コネクタ部5は、半導体チップ3及び封止部材7から剥離することが抑制される。
【0042】
次に、比較例の半導体装置900の構造について、
図8及び
図9を参照して説明する。
図8は比較例に係る半導体装置900の構成を模式的に示す斜視図であり、
図9は比較例に係る半導体装置の構成を模式的に示す断面図である。
【0043】
比較例の半導体装置900のソースコネクタは、実施形態の半導体装置100のように、第1コネクタ部4と第2コネクタ部5との2つのコネクタを組み合わせで構成されておらず、1つのコネクタ部40のみによって構成されている点が異なる。つまり、比較例の半導体装置900の半導体チップ3と接続されるコネクタ部40は、実施形態の第1コネクタ部4の第1接続部4A及び第2コネクタ部5の第3接続部5Aの平面図におけるそれぞれの面積を合わせた面積とほぼ同等の平面図における面積を有する部分40Aを有する。なお、
図8及び
図9に示すコネクタ部40の部分40A、40B、40C、40D、40Eは、それぞれ第1コネクタ部4の第1接続部4A、第1離間部4B、第1沿設部4C、第2沿設部4D、及び第2接続部4Eに対応する。
【0044】
半導体装置100及び半導体装置900の動作時に熱サイクルによって、半導体チップ3が受ける応力について、説明する。
【0045】
一般に、MOSFETやIGBTなどのパワー半導体素子のように耐圧が必要とされる素子においては、オン抵抗低減のため薄膜化する傾向がある。特に、数百ボルト以下の低耐圧系の半導体素子の場合、薄膜化する傾向が顕著である。このように薄膜化した半導体チップ3は、内部応力あるいは外部応力等何らかの力が加わることで容易にクラックが発生し、破損あるいは不良となりやすい。
さらに、半導体装置のオン抵抗を下げる為に、例えば、比較例の半導体装置900のように、コネクタの半導体チップ3のソース電極3Bと接触する部分(コンタクト部)の面積を大きくすることが考えられる
【0046】
一般に、半導体装置900の動作時に、特に半導体チップ3において熱が発生する。半導体チップ3とコネクタ部を含む部材とでそれぞれの膨張率が異なり、発熱による温度上昇時などに半導体チップ3は応力を受ける。ここで、コンタクト部が大きいほど、半導体チップ3とコネクタの膨張量の差が大きくなり、半導体チップ3が受ける応力が大きくなる。さらに、コンタクト部が大きいほど、生じた応力を逃がしにくい。半導体チップ3への応力が大きいことは、半導体チップ3のクラック発生の原因となりうる。さらに、半導体チップ3への応力が大きいことは、コネクタ部と半導体チップ3のソース電極3Bが剥離し、オープン故障を引き起こす原因となりうる。
【0047】
温度低下時、半導体装置900の半導体チップ3には、半導体チップ3の膨張率とコネクタの膨張率の差によって応力が生じる。温度低下時に生じる応力は、温度条件等によって、温度上昇時と反対方向の応力である場合と、温度上昇時と同じ方向で異なる大きさの応力である場合がある。発熱と放熱を繰り返す熱サイクルによって、半導体チップ3にはコネクタとのコンタクト部から方向が変わる応力(圧縮応力と引張応力)または大きさが変わる応力を繰り返し受け続ける。
【0048】
第1の実施形態の半導体装置100は、コンタクト部が第1接続部4Aと第3接続部5Aの2つに分かれている。半導体装置100は、第1接続部4Aと第3接続部5Aとを合わせたコンタクト部の面積が、比較例の半導体装置900のコンタクト部(部分40A)の面積と同等である。このため、半導体装置100は、比較例の半導体装置900と同等の低オン抵抗を実現できる。
【0049】
半導体装置100のコンタクト部である第1接続部4A及び第3接続部5Aの個々の大きさは、比較例のコンタクト部(部分40A)と比べて小さい。また、第1接続部4Aと第3接続部5Aとは離間しており、生じた応力を逃がしやすい。このため、半導体装置100では、半導体チップ3が受ける応力を低減することができる。
【0050】
以上のように、第1の実施形態の半導体装置100は、オン抵抗を低く保ちながら、半導体チップ3が受ける応力を低減し、半導体チップ3のクラック発生を抑制できる。
【0051】
次に、半導体装置100及び半導体装置900の動作時における、電流の導通経路の分散について説明する。
【0052】
比較例の半導体装置900において、半導体チップ3から流れるソース電流は、すべて1つのソースコネクタ(コネクタ部40)に流れる。一方、実施形態の半導体装置100において、半導体チップ3からの電流経路は、2つのソースコネクタ(第1コネクタ部4と第2コネクタ部5)に分かれる。
【0053】
コネクタ部40、第1コネクタ部4、及び、第2コネクタ部5のソース電流が流れる向きに直交するそれぞれの断面面積は同じである。つまり、半導体装置100のソースコネクタ全体の断面積は、比較例の半導体装置900のソースコネクタの断面積よりも約2倍大きく、半導体装置100のソースコネクタ全体の抵抗値は比較例のソースコネクタの抵抗値よりも低くなる。これにより、半導体装置100のオン抵抗を下げ、発熱を抑えられるため、熱膨張によって半導体チップ3が受ける応力を低減させることができる。
【0054】
次に、半導体装置100において、第1コネクタ部4上に第2コネクタ部5を積層形成する時の位置合わせについて説明する。
【0055】
第2コネクタ部5の第3沿設部5Cの一部、第4沿設部5D及び第4接続部5Eは、それぞれ第1コネクタ部4の第1沿設部4C、第2沿設部4D及び第2接続部4Eの面に沿って設けられる。すなわち、第2コネクタ部5の第3沿設部5Cの一部から第4接続部5Eまでの部分は、第1コネクタ部4の第1沿設部4Cから第2接続部4E間での部分の沿面に沿って当接して積層される。尚、この第1コネクタ部4と第2コネクタ部5が当接する積層部分の両コネクタ部4、5の間はダイボンド材6Dにより電気的な接続がされる。
【0056】
このように、第1コネクタ部4に対し、第2コネクタ部5の相対的な位置関係を簡単に定めることができ、第1コネクタ部4と第2コネクタ部5間の位置ずれを防止できる。
【0057】
第1の実施形態において、X方向において、半導体チップ3と接触するソースコネクタ部品の数は第1コネクタ部4と第2コネクタ部5の2つに限られず、3つまたはそれ以上のコネクタ部品を有することができる。
【0058】
以上説明したように、第1の実施形態の半導体装置100は、第1コネクタ部4と第2コネクタ部5とを有する。第1コネクタ部4と第2コネクタ部5は、半導体チップ3のソース電極3Bと接する。第1コネクタ部4と第2コネクタ部5とは一部が離間して設けられ、第1コネクタ部4と第2コネクタ部5とによって挟まれた領域Rに封止部材7が入り込む。これにより、第1コネクタ部4及び第2コネクタ部5が半導体チップ3及び封止部材7から剥離することが抑制される。組み立て時には、第3沿設部5C、第4沿設部5D及び第4接続部5Eは、それぞれ第1沿設部4C、第2沿設部4D及び第2接続部4Eに複数の部分を沿わせて位置決めすることにより、第1コネクタ部4と第2コネクタ部5との位置ずれの発生を防止できる。
【0059】
また、第1の実施形態の半導体装置100は、半導体チップ3と接触するコンタクト部が第1接続部4Aと第3接続部5Aの2つに分かれている。2つに分けない場合と比較して、コンタクト部の合計面積はほぼ同じにしながら、2つのコンタクト部それぞれの面積を小さくすることで、半導体チップ3と第1コネクタ部4及び第2コネクタ部5との膨張量の差に起因する応力を低減することができる。これにより、半導体装置100は、オン抵抗を低く保ちながら、半導体チップ3のクラック発生を抑制できる。
【0060】
半導体装置100は、半導体チップ3とコネクタ部と間に生じる応力が低減し、領域Rに封止部材7が設けられる。このため、コネクタ部と半導体チップ3のソース電極3Bとが剥離しにくく、半導体装置100のオープン故障の発生が抑制できる。
【0061】
さらに、半導体装置100の動作時において、ソース電流は第1コネクタ部4及び第2コネクタ部5に分かれて導通する。電流の導通経路の断面積が増えるため、ソースコネクタの抵抗値が下がり、半導体装置100のオン抵抗を下げることができる。
【0062】
(第1の実施形態の変形例)
図3を用いて、第1の実施形態の変形例について説明する。
図3(a)及び(b)は、第1の実施形態の変形例にかかる半導体装置100Aの構成を模式的に示す斜視図、及び第1コネクタ部を模式的に示す斜視図である。第1の実施形態の変形例は、第1の実施形態の構成に加えて、第1コネクタ部4と第2コネクタ部5とが重なり合う位置に、嵌合部を有する。
【0063】
第1コネクタ部4は、第1嵌合部8を有する。第2コネクタ部5は、第1嵌合部8に重なる位置に、第1嵌合部8と嵌合する第2嵌合部9を有する。
なお、第1嵌合部8及び第2嵌合部9は、例えば
図3に示すような第1沿設部4C及び第3沿設部5Cに設けられた2つの丸型の凹凸であるが、第1嵌合部8及び第2嵌合部9の形状、設ける数、及び位置はこれに限定されない。
【0064】
第1の実施形態の変形例では、組み立て時に第1嵌合部8と第2嵌合部9を嵌合させることで、簡単に第1コネクタ部14と第2コネクタ部15とを位置合わせできる。第1の実施形態の変形例では第1の実施形態よりも、組み立て時に発生する第1コネクタ部4と第2コネクタ部5との位置ズレを抑制できる。
【0065】
このように、第1の実施形態及び第1の実施形態の変形例によれば、オン抵抗を低減し、半導体チップ3のクラック発生を抑制できる半導体装置100Aが得られる。
【0066】
(第2の実施形態)
図4を用いて、第2の実施形態に係る半導体装置100Bを説明する。
図4(a)及び(b)は、第2の実施形態に係る半導体装置の構成を模式的に示す斜視図及び第1コネクタ部を模式的に示す斜視図である。第2の実施形態に係る半導体装置100Bは、第1コネクタ部24及び第2コネクタ部25のそれぞれの半導体チップ3と接触する部分が、分割される点で第1の実施形態と異なる。なお、第1の実施形態と同様の構成、動作、効果等ついては説明を省略する。
【0067】
半導体装置100Bの第1コネクタ部24は、第1の実施形態の第1コネクタ部4の第1接続部4Aが、Y方向において3つに分割されたものと同等の構造である第1接続部4F、第1接続部4G、第1接続部4Hに置き換わった構造を有する。第1接続部4F、4G、4HはY方向において互いに離間し、それぞれが半導体チップ3と電気的に接触する。
【0068】
半導体装置100Bの第2コネクタ部25は、第1の実施形態の第2コネクタ部5の第3接続部5AがY方向において3つに分割されたものと同等である、第3接続部5F、第3接続部5G、第3接続部5Hに置き換わった構造を有する。第3接続部5F、5G、5HはY方向において互いに離間し、それぞれが半導体チップ3と電気的に接触する。
【0069】
なお、第1コネクタ部24及び第2コネクタ部25がY方向に分割される数は、3つに限定されず、2つ以上に分割されることができる。
【0070】
第2の実施形態の半導体装置100Bは、ソースコネクタ(第1コネクタ部24と第2コネクタ部25)の半導体チップ3と接するコンタクト部が第1接続部4F、4G、4H、及び第3接続部5F、5G、5Hの6つに分かれている。
【0071】
半導体装置100Bのコンタクト部は、X方向だけでなくY方向にも分割され互いに離間している。このため、半導体装置100Bは、半導体チップ3に平行な1方向だけでなく、半導体チップ3に平行な方向全体に半導体チップ3が受ける応力を逃がすことができる。低減できる応力の方向が1方向に限定されないため、半導体装置100Bは半導体装置100よりも効果的に半導体チップ3のクラック発生を抑制できる。
【0072】
(第2の実施形態の変形例)
図5を用いて、第2の実施形態の変形例について説明する。
図5(a)及び(b)は、第2の実施形態の変形例にかかる半導体装置100Cの構成を模式的に示す斜視図及び第1コネクタ部を模式的に示す斜視図である。第2の実施形態の変形例は、第1コネクタ部及び第2コネクタ部が複数設けられることで、半導体チップ3と接触するコンタクト部が分割される点で第2の実施形態と異なる。なお、第1の実施形態と同様の構成、動作、効果等ついては説明を省略する。
【0073】
半導体装置100Cは、第1の実施形態の第1コネクタ部4が第1コネクタ部4−1、4−2、4−3に置き換えられる。さらに、半導体装置100Cは、第1の実施形態の第2コネクタ部5が第2コネクタ部5−1、5−2、5−3に置き換えられる。
【0074】
半導体装置100Cの第1コネクタ部4−1、4−2、4−3は、互いに同じ構造を有し、第1の実施形態の第1コネクタ部4よりもY方向の幅が小さくなった構造を有する。
図5(b)では4A−1〜4A−3、4B−1〜4B−3、4D−1〜4D−3、4E−1〜4E−3の参照符号は省略する。
【0075】
半導体装置100Cの第2コネクタ部5−1、5−2、5−3は、互いに同じ構造を有し、第1の実施形態の第2コネクタ部5よりもY方向の幅が小さくなった構造を有する。
【0076】
X方向及びZ方向において、第1コネクタ部4−1と第2コネクタ部5−1との位置関係、第1コネクタ部4−2と第2コネクタ部5−2との位置関係、及び第1コネクタ部4−3と第2コネクタ部5−3との位置関係は、第1の実施形態の実施形態の第1コネクタ部4と第2コネクタ部5との位置関係と同等である。第1コネクタ部4−1、4−2、4−3は、Y方向において互いに離間する。
【0077】
このように、第2の実施形態の変形例に係る半導体装置100Cは、第1コネクタ部及び第2コネクタ部が複数設けられる。半導体装置100Cのコンタクト部は、X方向だけでなくY方向にも分割され互いに離間する。これにより、半導体装置100Cは半導体装置100よりも効果的に半導体チップ3のクラック発生を抑制できる。第2の実施形態の変形例によれば、第2の実施形態と同様に、第1の実施形態よりも半導体チップ3のクラック発生を抑制できる導体装置が得られる。
【0078】
このように、第2の実施形態及び第2の実施形態の変形例によれば、第1の実施形態よりも半導体チップ3のクラック発生を抑制できる半導体装置が得られる。
【0079】
なお、第2の実施形態及び第2の実施形態の変形例は、第1の実施形態の変形例に係る半導体装置100Aと同様に、第1嵌合部8が第1コネクタ部に設けられ、第2嵌合部9が第2コネクタ部に設けられることができる。
【0080】
図6(a)は、第2の実施形態に係る嵌合部を有する半導体装置の構成を模式的に示す斜視図である。
図6(b)は、第2の実施形態に係る第1嵌合部を有する第1コネクタ部を模式的に示す斜視図である。
図7(a)は、第2の実施形態の変形例に係る嵌合部を有する半導体装置の構成を模式的に示す斜視図である。
図7(b)は、第2の実施形態の変形例に係る第1嵌合部を有する第1コネクタ部を模式的に示す斜視図である。
【0081】
第2の実施形態及び第2の実施形態の変形例に係る嵌合部を有する半導体装置100D、100Eは、組み立て時に第1嵌合部8と第2嵌合部9を嵌合させることで、簡単に第1コネクタ部と第2コネクタ部とを位置合わせできる。これにより、組み立て時に発生する第1コネクタ部と第2コネクタ部との位置ズレを抑制できる。
【0082】
以上説明した少なくとも一つの実施形態によれば、半導体装置のソースコネクタは、第1コネクタ部及び第2コネクタ部を有し、ソースコネクタの半導体チップとのコンタクト部が分かれている。コンタクト部の合計面積を保ちながら、各コネクタ部の各コンタクト部の大きさを小さくすることで、半導体装置は、半導体チップとソースコネクタとの膨張量の差に起因する応力を低減することができる。さらに、半導体装置の動作時において、ソース電流は第1コネクタ部及び第2コネクタ部に分かれて導通する。ソース電流の導通経路の断面積が増えるため、ソースコネクタの抵抗値が下がり、半導体装置のオン抵抗を下げることができる。このように、実施形態によれば、オン抵抗を低く保ちながら、半導体チップが受ける応力を低減し、半導体チップのクラック発生を抑制する半導体装置を提供することができる。
【0083】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。