【解決手段】被覆導線Laの電圧Vaに応じて発生する第1電圧信号Vc1に代えて第1試験信号Vts1を第1インピーダンス素子4に発生させるための第1サンプル信号Vsp1、および被覆導線Lbの電圧Vbに応じて発生する第2電圧信号Vc2に代えて第2試験信号Vts2を第2インピーダンス素子5に発生させるための第2サンプル信号Vsp2を出力するサンプル信号出力部8と、各サンプル信号Vsp1,Vsp2の出力状態において生成される符号特定用信号Sfの波形データDv4を取得する波形取得部9と、各サンプル信号Vsp1,Vsp2の出力状態において波形取得部9で取得された波形データDv4で示される符号特定用信号Sfの変化パターンと予め取得された基準変化パターンとを比較して故障の有無を判別して信号生成装置1Aの自己診断をする処理部11とを備えている。
2線差動電圧方式のロジック信号が伝送される通信路を構成する一対の被覆導線にそれぞれ取り付けられる一対のプローブにそれぞれ配設された一対の電極のうちの一方のプローブの一方の電極と装置内部の基準電位との間に接続されて、前記一対の被覆導線のうちの当該一方の電極と容量結合する一方の被覆導線に伝送されている電圧に応じて電圧が変化する第1電圧信号を発生させる第1インピーダンス素子と、
前記一対の電極のうちの他方のプローブの他方の電極と前記基準電位との間に接続されて、前記一対の被覆導線のうちの当該他方の電極と容量結合する他方の被覆導線に伝送されている電圧に応じて電圧が変化する第2電圧信号を発生させる第2インピーダンス素子と、
前記第1電圧信号および前記第2電圧信号を入力すると共に当該各電圧信号の差分電圧に応じて電圧が変化する差分信号を出力する差動増幅部とを備えて、前記ロジック信号に対応する符号を特定可能な符号特定用信号を当該差分信号に基づいて生成する信号生成装置であって、
前記第1電圧信号に代えて第1試験信号を前記第1インピーダンス素子に発生させるための第1サンプル信号、および前記第2電圧信号に代えて第2試験信号を前記第2インピーダンス素子に発生させるための第2サンプル信号を出力するサンプル信号出力部と、
前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において生成される前記符号特定用信号についての波形データを取得する波形取得部と、
当該信号生成装置が正常状態のときであって前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力しているときに前記波形取得部で予め取得された前記波形データで示される前記符号特定用信号の電圧値についての時間経過に伴う変化パターンを基準変化パターンとして、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において前記波形取得部で取得された前記波形データで示される前記符号特定用信号の電圧値についての時間経過に伴う変化パターンと前記基準変化パターンとを比較して、当該変化パターンが当該基準変化パターンと一致しているときには当該信号生成装置が正常状態であり、一致していないときには故障状態であると判別する当該信号生成装置の自己診断処理を実行する処理部とを備えている信号生成装置。
2線差動電圧方式のロジック信号が伝送される通信路を構成する一対の被覆導線にそれぞれ取り付けられる一対のプローブにそれぞれ配設された一対の電極のうちの一方のプローブの一方の電極と装置内部の基準電位との間に接続されて、前記一対の被覆導線のうちの当該一方の電極と容量結合する一方の被覆導線に伝送されている電圧に応じて電圧が変化する第1電圧信号を発生させる第1インピーダンス素子と、
前記一対の電極のうちの他方のプローブの他方の電極と前記基準電位との間に接続されて、前記一対の被覆導線のうちの当該他方の電極と容量結合する他方の被覆導線に伝送されている電圧に応じて電圧が変化する第2電圧信号を発生させる第2インピーダンス素子と、
前記第1電圧信号および前記第2電圧信号を入力すると共に当該各電圧信号の差分電圧に応じて電圧が変化する差分信号を出力する差動増幅部とを備えて、前記ロジック信号に対応する符号を特定可能な符号特定用信号を当該差分信号に基づいて生成する信号生成装置であって、
前記第1電圧信号に代えて第1試験信号を前記第1インピーダンス素子に発生させるための第1サンプル信号、および前記第2電圧信号に代えて第2試験信号を前記第2インピーダンス素子に発生させるための第2サンプル信号を出力するサンプル信号出力部と、
前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において、前記差動増幅部から出力される前記差分信号についての波形データを取得する波形取得部と、
当該信号生成装置が正常状態のときであって前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力しているときに前記波形取得部で予め取得された前記波形データで示される前記差分信号の電圧値についての時間経過に伴う変化パターンを基準変化パターンとして、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において前記波形取得部で取得された前記波形データで示される前記差分信号の電圧値についての時間経過に伴う変化パターンと前記基準変化パターンとを比較して、当該変化パターンが当該基準変化パターンと一致しているときには当該信号生成装置が正常状態であり、一致していないときには故障状態であると判別する当該信号生成装置の自己診断処理を実行する処理部とを備えている信号生成装置。
2線差動電圧方式のロジック信号が伝送される通信路を構成する一対の被覆導線にそれぞれ取り付けられる一対のプローブにそれぞれ配設された一対の電極のうちの一方のプローブの一方の電極と装置内部の基準電位との間に接続されて、前記一対の被覆導線のうちの当該一方の電極と容量結合する一方の被覆導線に伝送されている電圧に応じて電圧が変化する第1電圧信号を発生させる第1インピーダンス素子と、
前記一対の電極のうちの他方のプローブの他方の電極と前記基準電位との間に接続されて、前記一対の被覆導線のうちの当該他方の電極と容量結合する他方の被覆導線に伝送されている電圧に応じて電圧が変化する第2電圧信号を発生させる第2インピーダンス素子と、
前記第1電圧信号および前記第2電圧信号を入力すると共に当該各電圧信号の差分電圧に応じて電圧が変化する差分信号を出力する差動増幅部とを備えて、前記ロジック信号に対応する符号を特定可能な符号特定用信号を当該差分信号に基づいて生成する信号生成装置であって、
前記差動増幅部は、前記第1電圧信号を入力すると共に増幅して第3電圧信号として出力する第1増幅回路、前記第2電圧信号を入力すると共に増幅して第4電圧信号として出力する第2増幅回路、並びに当該第3電圧信号および当該第4電圧信号を入力して前記差分信号を出力する差動増幅回路を備え、
前記第1電圧信号に代えて第1試験信号を前記第1インピーダンス素子に発生させるための第1サンプル信号、および前記第2電圧信号に代えて第2試験信号を前記第2インピーダンス素子に発生させるための第2サンプル信号を出力するサンプル信号出力部と、
前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において前記第3電圧信号についての波形データを第1波形データとして取得すると共に、前記第4電圧信号についての波形データを第2波形データとして取得する波形取得部と、
当該信号生成装置が正常状態のときであって前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力しているときに前記波形取得部で予め取得された前記第1波形データで示される前記第3電圧信号の電圧値についての時間経過に伴う変化パターンを第1基準変化パターンとし、かつ前記第2波形データで示される前記第4電圧信号の電圧値についての時間経過に伴う変化パターンを第2基準変化パターンとして、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において前記波形取得部で取得された前記第1波形データで示される前記第3電圧信号の電圧値についての時間経過に伴う変化パターンと前記第1基準変化パターンとを比較すると共に、前記波形取得部で取得された前記第2波形データで示される前記第4電圧信号の電圧値についての時間経過に伴う変化パターンと前記第2基準変化パターンとを比較して、前記第3電圧信号についての前記変化パターンと前記第1基準変化パターンとが一致すると共に、前記第4電圧信号についての前記変化パターンと前記第2基準変化パターンとが一致しているときには当該信号生成装置が正常状態であり、当該第3電圧信号についての当該変化パターンおよび当該第4電圧信号についての当該変化パターンの少なくとも一方が当該第1基準変化パターンおよび当該第2基準変化パターンのうちの対応する一方の基準変化パターンと一致していないときには故障状態であると判別する当該信号生成装置の自己診断処理を実行する処理部とを備えている信号生成装置。
前記一方の電極と前記第1インピーダンス素子とを接続する第1導体ラインおよび当該一方の電極のいずれか一方と容量結合する第1補助導体、および前記他方の電極と前記第2インピーダンス素子とを接続する第2導体ラインおよび当該他方の電極のいずれか一方と容量結合する第2補助導体を備え、
前記サンプル信号出力部は、前記第1サンプル信号を前記第1補助導体に出力することで前記第1試験信号を前記第1インピーダンス素子に発生させると共に、前記第2サンプル信号を前記第2補助導体に出力することで前記第2試験信号を前記第2インピーダンス素子に発生させる請求項1から3のいずれかに記載の信号生成装置。
前記サンプル信号出力部は、前記第1サンプル信号および前記第2サンプル信号の非出力時に、前記第1補助導体パターンおよび前記第2補助導体パターンに前記基準電位と同電位の信号を出力する請求項5記載の信号生成装置。
2線差動電圧方式のロジック信号が伝送される通信路を構成する一対の被覆導線に、当該一対の被覆導線のうちの一方の被覆導線に接続される第1電流検出プローブ、および当該一対の被覆導線のうちの他方の被覆導線に接続される第2電流検出プローブを介して接続されて、前記第1電流検出プローブから出力される電圧信号であって、前記一方の被覆導線に伝送されている電圧に起因して前記一方の被覆導線に流れる電流の電流値に応じて電圧値が変化する第1電圧信号、および前記第2電流検出プローブから出力される電圧信号であって、前記他方の被覆導線に伝送されている電圧に起因して前記他方の被覆導線に流れる電流の電流値に応じて電圧値が変化する第2電圧信号を入力すると共に、当該第1電圧信号および当該第2電圧信号の差分電圧に応じて電圧が変化する差分信号を出力する差動増幅部を備えて、前記ロジック信号に対応する符号を特定可能な符号特定用信号を当該差分信号に基づいて生成する信号生成装置であって、
前記第1電圧信号に代えて第1試験信号を前記差動増幅部に入力させるための第1サンプル信号、および前記第2電圧信号に代えて第2試験信号を前記差動増幅部に入力させるための第2サンプル信号を出力するサンプル信号出力部と、
前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において生成される前記符号特定用信号についての波形データを取得する波形取得部と、
当該信号生成装置が正常状態のときであって前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力しているときに前記波形取得部で予め取得された前記波形データで示される前記符号特定用信号の電圧値についての時間経過に伴う変化パターンを基準変化パターンとして、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において前記波形取得部で取得された前記波形データで示される前記符号特定用信号の電圧値についての時間経過に伴う変化パターンと前記基準変化パターンとを比較して、当該変化パターンが当該基準変化パターンと一致しているときには当該信号生成装置が正常状態であり、一致していないときには故障状態であると判別する当該信号生成装置の自己診断処理を実行する処理部とを備えている信号生成装置。
2線差動電圧方式のロジック信号が伝送される通信路を構成する一対の被覆導線に、当該一対の被覆導線のうちの一方の被覆導線に接続される第1電流検出プローブ、および当該一対の被覆導線のうちの他方の被覆導線に接続される第2電流検出プローブを介して接続されて、前記第1電流検出プローブから出力される電圧信号であって、前記一方の被覆導線に伝送されている電圧に起因して前記一方の被覆導線に流れる電流の電流値に応じて電圧値が変化する第1電圧信号、および前記第2電流検出プローブから出力される電圧信号であって、前記他方の被覆導線に伝送されている電圧に起因して前記他方の被覆導線に流れる電流の電流値に応じて電圧値が変化する第2電圧信号を入力すると共に、当該第1電圧信号および当該第2電圧信号の差分電圧に応じて電圧が変化する差分信号を出力する差動増幅部を備えて、前記ロジック信号に対応する符号を特定可能な符号特定用信号を当該差分信号に基づいて生成する信号生成装置であって、
前記第1電圧信号に代えて第1試験信号を前記差動増幅部に入力させるための第1サンプル信号、および前記第2電圧信号に代えて第2試験信号を前記差動増幅部に入力させるための第2サンプル信号を出力するサンプル信号出力部と、
前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において、前記差動増幅部から出力される前記差分信号についての波形データを取得する波形取得部と、
当該信号生成装置が正常状態のときであって前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力しているときに前記波形取得部で予め取得された前記波形データで示される前記差分信号の電圧値についての時間経過に伴う変化パターンを基準変化パターンとして、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において前記波形取得部で取得された前記波形データで示される前記差分信号の電圧値についての時間経過に伴う変化パターンと前記基準変化パターンとを比較して、当該変化パターンが当該基準変化パターンと一致しているときには当該信号生成装置が正常状態であり、一致していないときには故障状態であると判別する当該信号生成装置の自己診断処理を実行する処理部とを備えている信号生成装置。
2線差動電圧方式のロジック信号が伝送される通信路を構成する一対の被覆導線に、当該一対の被覆導線のうちの一方の被覆導線に接続される第1電流検出プローブ、および当該一対の被覆導線のうちの他方の被覆導線に接続される第2電流検出プローブを介して接続されて、前記第1電流検出プローブから出力される電圧信号であって、前記一方の被覆導線に伝送されている電圧に起因して前記一方の被覆導線に流れる電流の電流値に応じて電圧値が変化する第1電圧信号、および前記第2電流検出プローブから出力される電圧信号であって、前記他方の被覆導線に伝送されている電圧に起因して前記他方の被覆導線に流れる電流の電流値に応じて電圧値が変化する第2電圧信号を入力すると共に、当該第1電圧信号および当該第2電圧信号の差分電圧に応じて電圧が変化する差分信号を出力する差動増幅部を備えて、前記ロジック信号に対応する符号を特定可能な符号特定用信号を当該差分信号に基づいて生成する信号生成装置であって、
前記差動増幅部は、前記第1電圧信号を入力すると共に増幅して第3電圧信号として出力する第1増幅回路、前記第2電圧信号を入力すると共に増幅して第4電圧信号として出力する第2増幅回路、並びに当該第3電圧信号および当該第4電圧信号を入力して前記差分信号を出力する差動増幅回路を備え、
前記第1電圧信号に代えて第1試験信号を前記差動増幅部に入力させるための第1サンプル信号、および前記第2電圧信号に代えて第2試験信号を前記差動増幅部に入力させるための第2サンプル信号を出力するサンプル信号出力部と、
前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において前記第3電圧信号についての波形データを第1波形データとして取得すると共に、前記第4電圧信号についての波形データを第2波形データとして取得する波形取得部と、
当該信号生成装置が正常状態のときであって前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力しているときに前記波形取得部で予め取得された前記第1波形データで示される前記第3電圧信号の電圧値についての時間経過に伴う変化パターンを第1基準変化パターンとし、かつ前記第2波形データで示される前記第4電圧信号の電圧値についての時間経過に伴う変化パターンを第2基準変化パターンとして、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において前記波形取得部で取得された前記第1波形データで示される前記第3電圧信号の電圧値についての時間経過に伴う変化パターンと前記第1基準変化パターンとを比較すると共に、前記波形取得部で取得された前記第2波形データで示される前記第4電圧信号の電圧値についての時間経過に伴う変化パターンと前記第2基準変化パターンとを比較して、前記第3電圧信号についての前記変化パターンと前記第1基準変化パターンとが一致すると共に、前記第4電圧信号についての前記変化パターンと前記第2基準変化パターンとが一致しているときには当該信号生成装置が正常状態であり、当該第3電圧信号についての当該変化パターンおよび当該第4電圧信号についての当該変化パターンの少なくとも一方が当該第1基準変化パターンおよび当該第2基準変化パターンのうちの対応する一方の基準変化パターンと一致していないときには故障状態であると判別する当該信号生成装置の自己診断処理を実行する処理部とを備えている信号生成装置。
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところが、上記特許文献に開示されているシリアルバスに設けられているコネクタは、故障診断やメンテナンスなどを目的とする外部機器、すなわち、車両の開発者(製造メーカー)が、車両の出荷後に故障診断やメンテナンスなどを目的として接続されることを想定している機器を接続するためのコネクタである。したがって、開発者が想定している診断機器等をコネクタに接続することでは問題は生じないが、開発者が想定していない機器をコネクタに接続したときには、その車両において想定外のトラブル(シリアルバス(通信路)におけるロジック信号の伝送や、シリアルバスに接続されている機器の動作を阻害するなどのトラブル)が生じる可能性がある。
【0005】
そこで、本願出願人は、上記のコネクタを使用せずに、シリアルバス(通信路)に容量結合するプローブを介してシリアルバスに接続されて、シリアルバスを介して伝送されるCANフレーム(符号列)を構成する符号を特定可能な符号特定用信号を生成する信号生成装置を種々開発した。
【0006】
このうちの1つの信号生成装置101は、
図10に示すように、第1インピーダンス素子102、第2インピーダンス素子103、差動増幅部104および信号生成部105を備えて、通信路を構成する一対の被覆導線La,Lbを介して伝送される2線差動電圧方式のロジック信号Sa(被覆導線Laに伝送される電圧信号Vaの電圧Vaと被覆導線Lbに伝送される電圧信号Vbの電圧Vbとの間の電位差(Va−Vb)である差動信号)に基づき、シリアルバスSBを介して伝送されるロジック信号Saに対応する符号(例えば、ロジック信号SaがCANプロトコルに準拠した信号であるときには、CANフレーム(符号列)を構成する各符号)を特定可能な符号特定用信号Sfを生成して出力する。
【0007】
この信号生成装置101では、第1インピーダンス素子102は、一例として、後述する第1増幅回路111の演算増幅器111aにおける非反転入力端子と装置内の基準電位の部位(グランドG)との間に並列接続された抵抗およびコンデンサで構成されている。この第1インピーダンス素子102は、一対の被覆導線La,Lbのうちの一方の被覆導線Laに取り付けられた一方のプローブPLaに配設された電極22a(被覆導線Laと容量結合する電極22a)と接続されて、被覆導線Laに伝送されている電圧Vaに応じて電圧が変化する第1電圧信号Vc1を発生させる。
【0008】
第2インピーダンス素子103は、一例として、後述する第2増幅回路112の演算増幅器112aにおける非反転入力端子と装置内のグランドGとの間に並列接続された抵抗およびコンデンサで構成されている。この第2インピーダンス素子103は、他方の被覆導線Lbに取り付けられた他方のプローブPLbに配設された電極22b(被覆導線Lbと容量結合する電極22b)と接続されて、被覆導線Lbに伝送されている電圧Vbに応じて電圧が変化する第2電圧信号Vc2を発生させる。
【0009】
差動増幅部104は、一例として、演算増幅器111aを有して非反転交流増幅回路として構成されて、第1電圧信号Vc1を入力すると共に増幅して第3電圧信号Vc3として出力する第1増幅回路111、演算増幅器112aを有して第1増幅回路111と同一構成の非反転交流増幅回路として構成されて、第2電圧信号Vc2を入力すると共に増幅して第4電圧信号Vc4として出力する第2増幅回路112、並びに演算増幅器113aを有して構成されて、第3電圧信号Vc3および第4電圧信号Vc4を入力して差分信号Vdを出力する差動増幅回路113を備えている。この差動増幅回路113では、演算増幅器113aの2つの入力抵抗が同一抵抗値に規定され、かつ演算増幅器113aの非反転入力端子とグランドGとの間に接続された抵抗の抵抗値が、演算増幅器113aの負帰還用抵抗の抵抗値と同一に規定されている。この構成により、差動増幅回路113は、演算増幅器113aの入力抵抗および負帰還用抵抗の各抵抗値で規定される増幅率で、第3電圧信号Vc3および第4電圧信号Vc4の各電圧Vc3,Vc4の差分電圧(Vc4−Vc3)を増幅して、差分信号Vdを出力する。また、上記したように、第3電圧信号Vc3は、第1電圧信号Vc1を非反転増幅した信号であり、第4電圧信号Vc4は、第2電圧信号Vc2を非反転増幅した信号であることから、差分信号Vdは、第1電圧信号Vc1および第2電圧信号Vc2の各電圧Vc1,Vc2の差分電圧(Vc2−Vc1)に応じて電圧が変化する信号ともなっている。
【0010】
信号生成部105は、一例として、不図示のコンパレータで構成されて、差分信号Vdを予め規定された閾値電圧と比較して二値化することにより、符号特定用信号Sfを生成して出力する。
【0011】
ところで、本願出願人が開発した上記の信号生成装置では、装置を構成する第1インピーダンス素子102、第2インピーダンス素子103、差動増幅部104および信号生成部105などに、発生率は低いものの、故障が発生する場合もあり、このような故障の発生の有無を、専用の検査装置を別途用意することなく、自己診断できれば極めて有益であり、便利である。
【0012】
本発明は、かかる解決すべき課題に鑑みてなされたものであり、通信路を介して伝送されるロジック信号に対応する符号を特定可能な符号特定用信号を生成する機能と共に、故障の発生の有無を自己診断し得る機能を備えた信号生成装置を提供することを主目的とする。
【課題を解決するための手段】
【0013】
上記目的を達成すべく請求項1記載の信号生成装置は、2線差動電圧方式のロジック信号が伝送される通信路を構成する一対の被覆導線にそれぞれ取り付けられる一対のプローブにそれぞれ配設された一対の電極のうちの一方のプローブの一方の電極と装置内部の基準電位との間に接続されて、前記一対の被覆導線のうちの当該一方の電極と容量結合する一方の被覆導線に伝送されている電圧に応じて電圧が変化する第1電圧信号を発生させる第1インピーダンス素子と、前記一対の電極のうちの他方のプローブの他方の電極と前記基準電位との間に接続されて、前記一対の被覆導線のうちの当該他方の電極と容量結合する他方の被覆導線に伝送されている電圧に応じて電圧が変化する第2電圧信号を発生させる第2インピーダンス素子と、前記第1電圧信号および前記第2電圧信号を入力すると共に当該各電圧信号の差分電圧に応じて電圧が変化する差分信号を出力する差動増幅部とを備えて、前記ロジック信号に対応する符号を特定可能な符号特定用信号を当該差分信号に基づいて生成する信号生成装置であって、前記第1電圧信号に代えて第1試験信号を前記第1インピーダンス素子に発生させるための第1サンプル信号、および前記第2電圧信号に代えて第2試験信号を前記第2インピーダンス素子に発生させるための第2サンプル信号を出力するサンプル信号出力部と、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において生成される前記符号特定用信号についての波形データを取得する波形取得部と、当該信号生成装置が正常状態のときであって前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力しているときに前記波形取得部で予め取得された前記波形データで示される前記符号特定用信号の電圧値についての時間経過に伴う変化パターンを基準変化パターンとして、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において前記波形取得部で取得された前記波形データで示される前記符号特定用信号の電圧値についての時間経過に伴う変化パターンと前記基準変化パターンとを比較して、当該変化パターンが当該基準変化パターンと一致しているときには当該信号生成装置が正常状態であり、一致していないときには故障状態であると判別する当該信号生成装置の自己診断処理を実行する処理部とを備えている。
【0014】
また、請求項2記載の信号生成装置は、2線差動電圧方式のロジック信号が伝送される通信路を構成する一対の被覆導線にそれぞれ取り付けられる一対のプローブにそれぞれ配設された一対の電極のうちの一方のプローブの一方の電極と装置内部の基準電位との間に接続されて、前記一対の被覆導線のうちの当該一方の電極と容量結合する一方の被覆導線に伝送されている電圧に応じて電圧が変化する第1電圧信号を発生させる第1インピーダンス素子と、前記一対の電極のうちの他方のプローブの他方の電極と前記基準電位との間に接続されて、前記一対の被覆導線のうちの当該他方の電極と容量結合する他方の被覆導線に伝送されている電圧に応じて電圧が変化する第2電圧信号を発生させる第2インピーダンス素子と、前記第1電圧信号および前記第2電圧信号を入力すると共に当該各電圧信号の差分電圧に応じて電圧が変化する差分信号を出力する差動増幅部とを備えて、前記ロジック信号に対応する符号を特定可能な符号特定用信号を当該差分信号に基づいて生成する信号生成装置であって、前記第1電圧信号に代えて第1試験信号を前記第1インピーダンス素子に発生させるための第1サンプル信号、および前記第2電圧信号に代えて第2試験信号を前記第2インピーダンス素子に発生させるための第2サンプル信号を出力するサンプル信号出力部と、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において、前記差動増幅部から出力される前記差分信号についての波形データを取得する波形取得部と、当該信号生成装置が正常状態のときであって前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力しているときに前記波形取得部で予め取得された前記波形データで示される前記差分信号の電圧値についての時間経過に伴う変化パターンを基準変化パターンとして、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において前記波形取得部で取得された前記波形データで示される前記差分信号の電圧値についての時間経過に伴う変化パターンと前記基準変化パターンとを比較して、当該変化パターンが当該基準変化パターンと一致しているときには当該信号生成装置が正常状態であり、一致していないときには故障状態であると判別する当該信号生成装置の自己診断処理を実行する処理部とを備えている。
【0015】
また、請求項3記載の信号生成装置は、2線差動電圧方式のロジック信号が伝送される通信路を構成する一対の被覆導線にそれぞれ取り付けられる一対のプローブにそれぞれ配設された一対の電極のうちの一方のプローブの一方の電極と装置内部の基準電位との間に接続されて、前記一対の被覆導線のうちの当該一方の電極と容量結合する一方の被覆導線に伝送されている電圧に応じて電圧が変化する第1電圧信号を発生させる第1インピーダンス素子と、前記一対の電極のうちの他方のプローブの他方の電極と前記基準電位との間に接続されて、前記一対の被覆導線のうちの当該他方の電極と容量結合する他方の被覆導線に伝送されている電圧に応じて電圧が変化する第2電圧信号を発生させる第2インピーダンス素子と、前記第1電圧信号および前記第2電圧信号を入力すると共に当該各電圧信号の差分電圧に応じて電圧が変化する差分信号を出力する差動増幅部とを備えて、前記ロジック信号に対応する符号を特定可能な符号特定用信号を当該差分信号に基づいて生成する信号生成装置であって、前記差動増幅部は、前記第1電圧信号を入力すると共に増幅して第3電圧信号として出力する第1増幅回路、前記第2電圧信号を入力すると共に増幅して第4電圧信号として出力する第2増幅回路、並びに当該第3電圧信号および当該第4電圧信号を入力して前記差分信号を出力する差動増幅回路を備え、前記第1電圧信号に代えて第1試験信号を前記第1インピーダンス素子に発生させるための第1サンプル信号、および前記第2電圧信号に代えて第2試験信号を前記第2インピーダンス素子に発生させるための第2サンプル信号を出力するサンプル信号出力部と、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において前記第3電圧信号についての波形データを第1波形データとして取得すると共に、前記第4電圧信号についての波形データを第2波形データとして取得する波形取得部と、当該信号生成装置が正常状態のときであって前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力しているときに前記波形取得部で予め取得された前記第1波形データで示される前記第3電圧信号の電圧値についての時間経過に伴う変化パターンを第1基準変化パターンとし、かつ前記第2波形データで示される前記第4電圧信号の電圧値についての時間経過に伴う変化パターンを第2基準変化パターンとして、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において前記波形取得部で取得された前記第1波形データで示される前記第3電圧信号の電圧値についての時間経過に伴う変化パターンと前記第1基準変化パターンとを比較すると共に、前記波形取得部で取得された前記第2波形データで示される前記第4電圧信号の電圧値についての時間経過に伴う変化パターンと前記第2基準変化パターンとを比較して、前記第3電圧信号についての前記変化パターンと前記第1基準変化パターンとが一致すると共に、前記第4電圧信号についての前記変化パターンと前記第2基準変化パターンとが一致しているときには当該信号生成装置が正常状態であり、当該第3電圧信号についての当該変化パターンおよび当該第4電圧信号についての当該変化パターンの少なくとも一方が当該第1基準変化パターンおよび当該第2基準変化パターンのうちの対応する一方の基準変化パターンと一致していないときには故障状態であると判別する当該信号生成装置の自己診断処理を実行する処理部とを備えている。
【0016】
また、請求項4記載の信号生成装置は、請求項1から3のいずれかに記載の信号生成装置において、前記一方の電極と前記第1インピーダンス素子とを接続する第1導体ラインおよび当該一方の電極のいずれか一方と容量結合する第1補助導体、および前記他方の電極と前記第2インピーダンス素子とを接続する第2導体ラインおよび当該他方の電極のいずれか一方と容量結合する第2補助導体を備え、前記サンプル信号出力部は、前記第1サンプル信号を前記第1補助導体に出力することで前記第1試験信号を前記第1インピーダンス素子に発生させると共に、前記第2サンプル信号を前記第2補助導体に出力することで前記第2試験信号を前記第2インピーダンス素子に発生させる。
【0017】
また、請求項5記載の信号生成装置は、請求項4記載の信号生成装置において、前記第1インピーダンス素子、前記第2インピーダンス素子および前記差動増幅部は回路基板に実装され、前記回路基板には、前記第1インピーダンス素子と接続されて前記第1導体ラインの一部を構成する第1導体パターンが形成されると共に、前記第2インピーダンス素子と接続されて前記第2導体ラインの一部を構成する第2導体パターンが形成され、前記第1補助導体は、前記回路基板に形成されて前記第1導体パターンと容量結合する第1補助導体パターンであり、前記第2補助導体は、前記回路基板に形成されて前記第2導体パターンと容量結合する第2補助導体パターンである。
【0018】
また、請求項6記載の信号生成装置は、請求項4記載の信号生成装置において、前記第1補助導体は、前記一方のプローブを取り付け可能に構成されて、当該一方のプローブが取り付けられた状態において前記一方の電極と容量結合し、前記第2補助導体は、前記他方のプローブを取り付け可能に構成されて、当該他方のプローブが取り付けられた状態において前記他方の電極と容量結合する。
【0019】
また、請求項7記載の信号生成装置は、請求項5記載の信号生成装置において、前記サンプル信号出力部は、前記第1サンプル信号および前記第2サンプル信号の非出力時に、前記第1補助導体および前記第2補助導体に前記基準電位と同電位の信号を出力する。
【0020】
また、請求項8記載の信号生成装置は、2線差動電圧方式のロジック信号が伝送される通信路を構成する一対の被覆導線に、当該一対の被覆導線のうちの一方の被覆導線に接続される第1電流検出プローブ、および当該一対の被覆導線のうちの他方の被覆導線に接続される第2電流検出プローブを介して接続されて、前記第1電流検出プローブから出力される電圧信号であって、前記一方の被覆導線に伝送されている電圧に起因して前記一方の被覆導線に流れる電流の電流値に応じて電圧値が変化する第1電圧信号、および前記第2電流検出プローブから出力される電圧信号であって、前記他方の被覆導線に伝送されている電圧に起因して前記他方の被覆導線に流れる電流の電流値に応じて電圧値が変化する第2電圧信号を入力すると共に、当該第1電圧信号および当該第2電圧信号の差分電圧に応じて電圧が変化する差分信号を出力する差動増幅部を備えて、前記ロジック信号に対応する符号を特定可能な符号特定用信号を当該差分信号に基づいて生成する信号生成装置であって、前記第1電圧信号に代えて第1試験信号を前記差動増幅部に入力させるための第1サンプル信号、および前記第2電圧信号に代えて第2試験信号を前記差動増幅部に入力させるための第2サンプル信号を出力するサンプル信号出力部と、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において生成される前記符号特定用信号についての波形データを取得する波形取得部と、当該信号生成装置が正常状態のときであって前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力しているときに前記波形取得部で予め取得された前記波形データで示される前記符号特定用信号の電圧値についての時間経過に伴う変化パターンを基準変化パターンとして、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において前記波形取得部で取得された前記波形データで示される前記符号特定用信号の電圧値についての時間経過に伴う変化パターンと前記基準変化パターンとを比較して、当該変化パターンが当該基準変化パターンと一致しているときには当該信号生成装置が正常状態であり、一致していないときには故障状態であると判別する当該信号生成装置の自己診断処理を実行する処理部とを備えている。
【0021】
また、請求項9記載の信号生成装置は、2線差動電圧方式のロジック信号が伝送される通信路を構成する一対の被覆導線に、当該一対の被覆導線のうちの一方の被覆導線に接続される第1電流検出プローブ、および当該一対の被覆導線のうちの他方の被覆導線に接続される第2電流検出プローブを介して接続されて、前記第1電流検出プローブから出力される電圧信号であって、前記一方の被覆導線に伝送されている電圧に起因して前記一方の被覆導線に流れる電流の電流値に応じて電圧値が変化する第1電圧信号、および前記第2電流検出プローブから出力される電圧信号であって、前記他方の被覆導線に伝送されている電圧に起因して前記他方の被覆導線に流れる電流の電流値に応じて電圧値が変化する第2電圧信号を入力すると共に、当該第1電圧信号および当該第2電圧信号の差分電圧に応じて電圧が変化する差分信号を出力する差動増幅部を備えて、前記ロジック信号に対応する符号を特定可能な符号特定用信号を当該差分信号に基づいて生成する信号生成装置であって、前記第1電圧信号に代えて第1試験信号を前記差動増幅部に入力させるための第1サンプル信号、および前記第2電圧信号に代えて第2試験信号を前記差動増幅部に入力させるための第2サンプル信号を出力するサンプル信号出力部と、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において、前記差動増幅部から出力される前記差分信号についての波形データを取得する波形取得部と、当該信号生成装置が正常状態のときであって前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力しているときに前記波形取得部で予め取得された前記波形データで示される前記差分信号の電圧値についての時間経過に伴う変化パターンを基準変化パターンとして、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において前記波形取得部で取得された前記波形データで示される前記差分信号の電圧値についての時間経過に伴う変化パターンと前記基準変化パターンとを比較して、当該変化パターンが当該基準変化パターンと一致しているときには当該信号生成装置が正常状態であり、一致していないときには故障状態であると判別する当該信号生成装置の自己診断処理を実行する処理部とを備えている。
【0022】
また、請求項10記載の信号生成装置は、2線差動電圧方式のロジック信号が伝送される通信路を構成する一対の被覆導線に、当該一対の被覆導線のうちの一方の被覆導線に接続される第1電流検出プローブ、および当該一対の被覆導線のうちの他方の被覆導線に接続される第2電流検出プローブを介して接続されて、前記第1電流検出プローブから出力される電圧信号であって、前記一方の被覆導線に伝送されている電圧に起因して前記一方の被覆導線に流れる電流の電流値に応じて電圧値が変化する第1電圧信号、および前記第2電流検出プローブから出力される電圧信号であって、前記他方の被覆導線に伝送されている電圧に起因して前記他方の被覆導線に流れる電流の電流値に応じて電圧値が変化する第2電圧信号を入力すると共に、当該第1電圧信号および当該第2電圧信号の差分電圧に応じて電圧が変化する差分信号を出力する差動増幅部を備えて、前記ロジック信号に対応する符号を特定可能な符号特定用信号を当該差分信号に基づいて生成する信号生成装置であって、前記差動増幅部は、前記第1電圧信号を入力すると共に増幅して第3電圧信号として出力する第1増幅回路、前記第2電圧信号を入力すると共に増幅して第4電圧信号として出力する第2増幅回路、並びに当該第3電圧信号および当該第4電圧信号を入力して前記差分信号を出力する差動増幅回路を備え、前記第1電圧信号に代えて第1試験信号を前記差動増幅部に入力させるための第1サンプル信号、および前記第2電圧信号に代えて第2試験信号を前記差動増幅部に入力させるための第2サンプル信号を出力するサンプル信号出力部と、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において前記第3電圧信号についての波形データを第1波形データとして取得すると共に、前記第4電圧信号についての波形データを第2波形データとして取得する波形取得部と、当該信号生成装置が正常状態のときであって前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力しているときに前記波形取得部で予め取得された前記第1波形データで示される前記第3電圧信号の電圧値についての時間経過に伴う変化パターンを第1基準変化パターンとし、かつ前記第2波形データで示される前記第4電圧信号の電圧値についての時間経過に伴う変化パターンを第2基準変化パターンとして、前記サンプル信号出力部が前記第1サンプル信号および前記第2サンプル信号を出力している状態において前記波形取得部で取得された前記第1波形データで示される前記第3電圧信号の電圧値についての時間経過に伴う変化パターンと前記第1基準変化パターンとを比較すると共に、前記波形取得部で取得された前記第2波形データで示される前記第4電圧信号の電圧値についての時間経過に伴う変化パターンと前記第2基準変化パターンとを比較して、前記第3電圧信号についての前記変化パターンと前記第1基準変化パターンとが一致すると共に、前記第4電圧信号についての前記変化パターンと前記第2基準変化パターンとが一致しているときには当該信号生成装置が正常状態であり、当該第3電圧信号についての当該変化パターンおよび当該第4電圧信号についての当該変化パターンの少なくとも一方が当該第1基準変化パターンおよび当該第2基準変化パターンのうちの対応する一方の基準変化パターンと一致していないときには故障状態であると判別する当該信号生成装置の自己診断処理を実行する処理部とを備えている。
【0023】
また、請求項11記載の信号生成装置は、請求項1から10のいずれかに記載の信号生成装置において、出力部を備え、前記処理部は、前記正常状態であるか、前記故障状態であるかの判別結果を前記出力部に表示させる。
【発明の効果】
【0024】
請求項1,2,3,8,9,10記載の信号生成装置によれば、サンプル信号出力部および波形取得部を備えて、処理部が上記の自己診断処理を実行するため、使用者は、この自己診断処理での判別結果に基づいて信号生成装置に故障が発生しているか否かを容易に知得することができる。したがって、この信号生成装置によれば、故障の生じた状態で使用されて、不正確な符号特定用信号を外部に出力するという事態の発生を未然に防止することができる。
【0025】
また、請求項1,8記載の信号生成装置によれば、波形取得部で取得された波形データで示される符号特定用信号の変化パターンと対応する基準変化パターンとを比較して、故障が生じているか否かを判別する構成のため、信号生成装置における各プローブの接続部位から差動増幅部に至るまでの回路要素、差動増幅部および信号生成部のうちの少なくとも1つに故障が生じていること(言い換えれば、信号生成装置における各プローブの接続部位から差動増幅部に至るまでの回路要素、差動増幅部および信号生成部のいずれにも故障が生じていないこと)、つまり信号生成装置が正常状態であることを判別することができる。
【0026】
また、請求項2,9記載の信号生成装置によれば、波形取得部で取得された波形データで示される差分信号の変化パターンと対応する基準変化パターンとを比較して、故障が生じているか否かを判別する構成のため、信号生成装置における各プローブの接続部位から差動増幅部に至るまでの回路要素、および差動増幅部のうちの少なくとも1つに故障が生じているか否かを判別することができる。したがって、信号生成装置における各プローブの接続部位から差動増幅部に至るまでの回路要素、および差動増幅部に故障が生じている状態で信号生成装置が使用されることを回避することができる。
【0027】
また、請求項3,10記載の信号生成装置によれば、波形取得部で取得された波形データで示される第3電圧信号および第4電圧信号の各変化パターンとそれぞれに対応する基準変化パターンとを比較して、故障が生じているか否かを判別する構成のため、信号生成装置における各プローブの接続部位から差動増幅部に至るまでの回路要素、差動増幅部の第1増幅回路、および差動増幅部の第2増幅回路のうちの少なくとも1つに故障が生じているか否かを判別することができる。したがって、信号生成装置における各プローブの接続部位から差動増幅部に至るまでの回路要素、第1増幅回路および第2増幅回路に故障が生じている状態で信号生成装置が使用されることを回避することができる。
【0028】
また、請求項4記載の信号生成装置によれば、第1試験信号および第2試験信号を第1導体ラインおよび第2導体ラインに容量結合で発生させる構成のため、各試験信号を発生させるための導体パターンを第1導体ラインおよび第2導体ラインに直接接続することを回避することができ、この導体パターンの直接接続によって符号特定用信号の生成に悪影響を与える事態の発生を防止することができる。
【0029】
また、請求項5記載の信号生成装置によれば、一対のプローブを接続しない状態で自己診断することができる。
【0030】
また、請求項6記載の信号生成装置によれば、接続した一対のプローブに生じる故障も含めて故障診断を実行することができる。
【0031】
また、請求項7記載の信号生成装置によれば、第1導体ラインにおける第1補助導体パターンと容量結合する部位を基準電位の第1補助導体パターンでガードすることができると共に、第2導体ラインにおける第2補助導体パターンと容量結合する部位を基準電位の第2補助導体パターンでガードすることができる。
【0032】
また、請求項11記載の信号生成装置によれば、処理部が自己診断処理での判別結果(故障が生じているか否か)を出力部に表示させるため、信号生成装置に故障が生じていることを使用者に確実に知得させることができる。
【発明を実施するための形態】
【0034】
以下、信号生成装置の実施の形態について、添付図面を参照して説明する。
【0035】
この信号生成装置は、一対の信号線(一例として一対の被覆導線)で構成される通信路(シリアルバス)を介して伝送される2線差動電圧方式のロジック信号に基づき、このロジック信号に対応する符号を特定可能な符号特定用信号を生成する。また、この信号生成装置は、2線差動電圧方式のロジック信号として、「CANプロトコル」、「CAN FD」、「FlexRay(登録商標)」などの各種通信プロトコルに準拠した各種の「2線差動電圧方式のロジック信号」や、「LVDS」による小振幅低消費電力通信が可能な各種通信プロトコルに準拠した各種の「2線差動電圧方式のロジック信号」を対象とすることができる。この場合、「CANプロトコル」および「CAN FD」の「CAN通信用のシリアルバス」では、「高電位側信号線(CANH)/低電位側信号線(CANL)」が「ロジック信号を伝送するための一対の被覆導線」に相当し、「FlexRay通信用のシリアルバス」では、「正側信号線(BP)/負側信号線(BM)」が「ロジック信号を伝送するための一対の被覆導線」に相当し、「LVDSによる通信を行うシリアルバス」では、「正論理側信号線/負論理側信号線」が「ロジック信号を伝送するための一対の被覆導線」に相当する。また、この信号生成装置は、上記のロジック信号に対応する符号を特定するための符号特定用信号を生成する機能を備えていることから、通信路に伝送されているロジック信号を検出するアナライザの一部としても機能し、さらに検出した符号列をメモリに記憶する記録装置(レコーダ)の一部としても機能することが可能となっている。
【0036】
以下では、一例として、「CAN通信用のシリアルバス」を対象として、CAN通信用のシリアルバス(CAN通信路。以下、単に通信路ともいう)に伝送されている2線差動電圧方式のロジック信号を検出して、このロジック信号に対応する符号を特定可能な符号特定用信号を生成する信号生成装置を例に挙げて説明する。なお、CAN通信用のシリアルバスとしては、自動車に配設された複数のノード(電子制御ユニット:ECU)を接続するシリアルバスや、工場内に配設された複数の機器を接続するシリアルバスがあるが、本例の信号生成装置はいずれのシリアルバスにも適用することができる。
【0037】
図1に示す信号生成装置1Aは、「信号生成装置」の一例であって、入力端子2,3、第1インピーダンス素子4、第2インピーダンス素子5、差動増幅部6、信号生成部7、サンプル信号出力部8、波形取得部9、操作部10、処理部11、出力端子12および出力部13を備えて構成されている。また、入力端子2,3、操作部10、出力端子12および出力部13は、信号生成装置1Aの使用者が操作または視認し得るように、信号生成装置1Aの筐体(ケース)HUの表面に配設され、一方、第1インピーダンス素子4、第2インピーダンス素子5、差動増幅部6、信号生成部7、サンプル信号出力部8、波形取得部9および処理部11は、筐体HU内に配設されている。
【0038】
この信号生成装置1Aは、自動車に配設されているCAN通信用のシリアルバスSBを構成する一対の被覆導線La,Lbを介して伝送されるロジック信号Sa(CANHigh(CANH)の一方の被覆導線Laに伝送される電圧信号の電圧Va(以下、理解の容易のため、この電圧信号自体を電圧信号Vaともいう)とCANLow(CANL)の他方の被覆導線Lbに伝送される電圧信号の電圧Vb(以下、理解の容易のため、この電圧信号自体を電圧信号Vbともいう)との間の電位差(Va−Vb)である差動信号)に基づき、ロジック信号Saに対応する符号(例えば、ロジック信号SaがCANプロトコルに準拠した信号であるときには、CANフレーム(符号列)を構成する各符号)を特定可能な符号特定用信号Sfを生成して出力する。
【0039】
この符号特定用信号Sfは、例えば、信号生成装置1Aと別体に配設された不図示の符号特定装置に出力されて、符号特定装置が、この符号特定用信号Sfに基づいて、シリアルバスSBに伝送されているCANフレームを構成する各符号を特定すると共に、この符号の列で構成される符号列(ロジック信号に対応する符号列)を各種のCAN通信対応機器に出力する。
【0040】
なお、シリアルバスSBを介してのロジック信号Saの伝送原理については公知のため、詳細な説明を省略するが、CANHigh(CANH)の電圧信号VaおよびCANLow(CANL)の電圧信号Vbの仕様について簡単に説明する。
図2に示すように、電圧信号Va,Vbは、ベースになる電圧(+2.5V)から逆方向に変化する電圧信号であって、電圧信号Vaがこのベースの電圧のときには、電圧信号Vbも同じ期間に亘り同じベースの電圧になって、電位差(Va−Vb)がゼロ(最小)となるこの期間に伝送されるCANフレームを構成する符号Cs(論理値)は「1」を示すものとなる。一方、電圧信号Vaがこのベースの電圧よりも高電圧の規定電圧(+3.5V)のときには、電圧信号Vbは同じ期間に亘り、逆にベースの電圧よりも低電圧の他の規定電圧(+1.5V)になって、電位差(Va−Vb)が最大となるこの期間に伝送されるCANフレームを構成する符号Cs(論理値)は「0」を示すものとなる。また、シリアルバスSBにおいて差動信号を伝送するための基準電位となる信号線である「SG」や、差動信号の伝送の用途以外に配設されている信号線および電力線等の図示および説明を省略する。
【0041】
信号生成装置1Aの構成について具体的に説明する。
【0042】
入力端子2には一対のプローブPLa,PLbのうちの一方のプローブPLa(以下、第1プローブPLaともいう)の基端部が接続され(固定的、または取り外し自在に接続され)、また入力端子3には他方のプローブPLb(以下、第2プローブPLbともいう)の基端部が接続される(固定的、または取り外し自在に接続される)。
【0043】
この場合、第1プローブPLaは、シールドケーブル(一例として、同軸ケーブル)を用いて構成されると共に、対応する一方の被覆導線Laに着脱自在に取り付けられる(接続される)先端部(自由端部)に電極部21aが設けられている。本例では、第1プローブPLaは金属非接触型のプローブとして構成されている。このため、電極部21aは、被覆導線Laに取り付けられた状態において、被覆導線Laの不図示の絶縁被覆部(以下、単に「被覆部」ともいう)に接触(当接)して、被覆導線Laの不図示の金属部(芯線)と容量結合する電極(一方の電極)22aと、被覆導線Laの被覆部における電極22aの接触部位をこの電極22aを含めて覆うことで、電極22aの他の金属部(被覆導線Laの芯線以外の金属部)との容量結合を防止するためのシールド23aとを備えている。また、電極22aは、第1プローブPLaを構成するシールドケーブルの芯線および入力端子2を介して第1インピーダンス素子4に接続されている。また、シールド23aは、このシールドケーブルのシールドおよび入力端子2を介して、信号生成装置1Aにおける基準電位の部位(グランドG)に接続されている。
【0044】
なお、第1プローブPLaを構成するシールドケーブルの上記の芯線は、第1プローブPLaの基端部が接続される入力端子2と第1インピーダンス素子4とを接続する導体ライン(後述するように、第1インピーダンス素子4が実装される回路基板に形成されて、第1インピーダンス素子4の一端に接続された第1導体パターンCP1を一部に含む導体ライン)と共に、一方の電極22aと第1インピーダンス素子4とを接続する第1導体ラインCDL1を構成する。
【0045】
第2プローブPLbは、シールドケーブル(一例として、同軸ケーブル)を用いて構成されると共に、対応する他方の被覆導線Lbに着脱自在に取り付けられる(接続される)先端部(自由端部)に電極部21bが設けられている。本例では、第2プローブPLbは、第1プローブPLaと同様にして、金属非接触型のプローブとして構成されている。このため、電極部21bは、被覆導線Lbに取り付けられた状態において、被覆導線Lbの不図示の絶縁被覆部(以下、単に「被覆部」ともいう)に接触(当接)して、被覆導線Lbの不図示の金属部(芯線)と容量結合する電極22bと、被覆導線Lbの被覆部における電極22bの接触部位をこの電極22bを含めて覆うことで、電極22bの他の金属部(被覆導線Lbの芯線以外の金属部)との容量結合を防止するためのシールド23bとを備えている。また、電極22bは、第2プローブPLbを構成するシールドケーブルの芯線および入力端子3を介して第2インピーダンス素子5に接続されている。また、シールド23bは、このシールドケーブルのシールドおよび入力端子3を介して、グランドGに接続されている。
【0046】
なお、第2プローブPLbを構成するシールドケーブルの上記の芯線は、第2プローブPLbの基端部が接続される入力端子3と第2インピーダンス素子5との間の導体ライン(後述するように、第2インピーダンス素子5が実装される回路基板に形成されて、第2インピーダンス素子5の一端に接続された第2導体パターンCP2を一部に含む導体ライン)と共に、他方の電極22bと第2インピーダンス素子5とを接続する第2導体ラインCDL2を構成する。
【0047】
第1インピーダンス素子4は、抵抗31a(高抵抗値の抵抗(少なくとも数MΩ程度の高インピーダンス抵抗))、および抵抗31aに並列接続されたコンデンサ32aを備えて構成されている。第1インピーダンス素子4は、その一端(抵抗31aの一端)が入力端子2を介して第1プローブPLaを構成するシールドケーブルの芯線に接続され、その他端(抵抗31aの他端)がグランドGに接続されている。この構成により、第1インピーダンス素子4は、電極部21aの電極22aと容量結合する一方の被覆導線Laに伝送されている電圧信号Vaの電圧Vaに応じて電圧が変化する第1電圧信号Vc1を、両端間に発生させる。この場合、第1インピーダンス素子4は、第1プローブPLaが被覆導線Laに接続されているときには、電圧Vaがベースの電圧のときに低電圧となり、電圧Vaが高電圧の規定電圧のときに高電圧となるように変化する第1電圧信号Vc1を発生させる。
【0048】
第2インピーダンス素子5は、抵抗31b(抵抗31aと同じ抵抗値の抵抗(高インピーダンス抵抗))、および抵抗31bに並列接続されたコンデンサ32b(コンデンサ32aと同じ容量値のコンデンサ)を備えて構成されている。第2インピーダンス素子5は、その一端(抵抗31bの一端)が入力端子3を介して第2プローブPLbを構成するシールドケーブルの芯線に接続され、その他端(抵抗31bの他端)がグランドGに接続されている。この構成により、第2インピーダンス素子5は、電極部21bの電極22bと容量結合する他方の被覆導線Lbに伝送されている電圧信号Vbの電圧Vbに応じて電圧が変化する第2電圧信号Vc2を、両端間に発生させる。この場合、第2インピーダンス素子5は、第2プローブPLbが被覆導線Lbに接続されているときには、電圧Vbがベースの電圧のときに高電圧となり、電圧Vbが低電圧の規定電圧のときに低電圧となるように変化する第2電圧信号Vc2を発生させる。また、第1電圧信号Vc1および第2電圧信号Vc2は、共に、容量結合によって検出される信号であることから、電圧信号Va,Vbの変化(電圧信号Va,Vbのパルスの長さの変化や、このパルスの密度の変化)に応じて、直流レベル(直流成分)が変化する信号となっている。
【0049】
なお、各インピーダンス素子4,5は、上記の構成(抵抗31aおよびコンデンサ32aの並列回路、抵抗31bおよびコンデンサ32bの並列回路)に限定されるものではない。例えば、抵抗31aや抵抗31bだけの回路や、コンデンサ32aやコンデンサ32bだけの回路で構成してもよい。また、コンデンサ32a,32bについては、ディスクリート部品で構成することもできるし、入力端子2,3を介して接続されたプローブPLa,PLbを構成するシールドケーブルの配線容量(芯線とシールドとの間に形成される容量)で構成することもできる。
【0050】
差動増幅部6は、第1電圧信号Vc1および第2電圧信号Vc2を入力すると共に各電圧信号Vc1,Vc2の差分電圧(Vc2−Vc1)に応じて電圧が変化する差分信号Vdを出力する。
【0051】
具体的には、差動増幅部6は、一例として、第1増幅回路41、第2増幅回路42および差動増幅回路43を備えて構成されている。第1増幅回路41は、不図示の正電源電圧および負電源電圧(例えば、±10V)で動作する演算増幅器41a、演算増幅器41aの出力端子と反転入力端子との間に接続された抵抗41b、および演算増幅器41aの反転入力端子とグランドGとの間に直列接続された状態で配設された抵抗41cおよびコンデンサ41dを備えて、非反転型の交流増幅回路として構成されている。また、演算増幅器41aの非反転入力端子は、第1インピーダンス素子4の一端に接続されている。この構成により、第1増幅回路41は、第1電圧信号Vc1を入力すると共に、第1電圧信号Vc1の交流成分を、抵抗41b,41cの各抵抗値で規定される増幅率で増幅して第3電圧信号Vc3として出力する。
【0052】
第2増幅回路42は、上記の正電源電圧および負電源電圧で動作する演算増幅器42a、演算増幅器42aの出力端子と反転入力端子との間に接続された抵抗42b(抵抗41bと同一抵抗値の抵抗)、および演算増幅器42aの反転入力端子とグランドGとの間に直列接続された状態で配設された抵抗42c(抵抗41cと同一抵抗値の抵抗)およびコンデンサ42d(コンデンサ41dと同一容量値のコンデンサ)を備えて、非反転型の交流増幅回路として構成されている。また、演算増幅器42aの非反転入力端子は、第2インピーダンス素子5の一端に接続されている。この構成により、第2増幅回路42は、第2電圧信号Vc2を入力すると共に、第2電圧信号Vc2の交流成分を、抵抗42b,42cの各抵抗値で規定される増幅率(第1増幅回路41と同じ増幅率)で増幅して第4電圧信号Vc4として出力する。
【0053】
なお、第1増幅回路41および第2増幅回路42は、上記の構成に限定されない。例えば、抵抗41cおよびコンデンサ41dの直列回路に代えて、演算増幅器41aの反転入力端子とグランドGとの間に抵抗41cのみを配設し、かつ抵抗42cおよびコンデンサ42dの直列回路に代えて、演算増幅器42aの反転入力端子とグランドGとの間に抵抗42cのみを配設する構成(各増幅回路41,42を非反転型の直流増幅回路とする構成)を採用してもよいなど、種々の回路構成を採用することもできる。
【0054】
差動増幅回路43は、上記の正電源電圧および負電源電圧で動作する演算増幅器43a、演算増幅器43aの反転入力端子に一端が接続された抵抗43b、演算増幅器43aの非反転入力端子に一端が接続された抵抗43c(抵抗43bと同一抵抗値の抵抗)、演算増幅器43aの出力端子と反転入力端子との間に接続された抵抗43d、および演算増幅器43aの非反転入力端子とグランドGとの間に接続された抵抗43e(抵抗43dと同一抵抗値の抵抗)を備えて構成されている。また、抵抗43bの他端は、第1増幅回路41の出力端子(演算増幅器41aの出力端子)に接続され、抵抗43cの他端は、第2増幅回路42の出力端子(演算増幅器42aの出力端子)に接続されている。この構成により、差動増幅回路43は、第3電圧信号Vc3および第4電圧信号Vc4を入力すると共に、両信号Vc3,Vc4の差分電圧(Vc4−Vc3)を抵抗43b,43dの各抵抗値で規定される増幅率で増幅することにより、差分電圧(Vc4−Vc3)に応じて電圧値(振幅)が変化する差分信号Vdを出力する。また、上記したように、第3電圧信号Vc3は、第1電圧信号Vc1を非反転増幅した信号であり、第4電圧信号Vc4は、第2電圧信号Vc2を非反転増幅した信号であることから、差分信号Vdは、第1電圧信号Vc1および第2電圧信号Vc2の各電圧Vc1,Vc2の差分電圧(Vc2−Vc1)に応じて電圧が変化する信号でもある。
【0055】
信号生成部7は、例えば、図示しないコンパレータを備えて構成されて、コンパレータが、差分信号Vdを閾値電圧(予め規定された固定電圧値の電圧。本例では、グランドGと同電位の電圧)と比較して二値化することにより、符号特定用信号Sfを生成して出力端子12に出力する。
【0056】
この場合、信号生成部7は、第1プローブPLaが対応する被覆導線Laに接続されると共に、第2プローブPLbが対応する被覆導線Lbに接続され、かつ各プローブPLa,PLbが正常であって、さらに信号生成装置1Aが正常状態のとき(つまり、各インピーダンス素子4,5、差動増幅部6(各増幅回路41,42および差動増幅回路43)、および信号生成部7自体がいずれも正常なとき)、言い換えれば、信号生成装置1Aが後述の通常動作モードでの動作を支障なく実行可能な正常状態のときには、正しい符号特定用信号Sf、つまり、
図2に示すように、シリアルバスSBにCANフレーム(符号列)を構成する符号Cs(「1」)が伝送されている期間において既知の高電位側電圧(レセッシブ)となり、符号Cs(「0」)が伝送されている期間において既知の低電位側電圧(ドミナント)となる符号特定用信号Sfを生成して出力する。
【0057】
サンプル信号出力部8は、処理部11によって制御されることにより、第1電圧信号Vc1に代えて第1試験信号Vts1を第1インピーダンス素子4に発生させるための第1サンプル信号Vsp1、および第2電圧信号Vc2に代えて第2試験信号Vts2を第2インピーダンス素子5に発生させるための第2サンプル信号Vsp2を出力する。
【0058】
具体的には、この信号生成装置1Aでは、第1インピーダンス素子4、第2インピーダンス素子5、差動増幅部6、信号生成部7、サンプル信号出力部8、波形取得部9、および処理部11を含む電子回路が回路基板に実装されている。また、回路基板には、第1インピーダンス素子4などの各構成要素を構成する電子部品間を接続する複数の導体パターンが形成されている。また、
図3に示すように、回路基板CBの一方の表面CBaには、この複数の導体パターンのうちの1つとして、第1インピーダンス素子4の一端と接続された第1導体パターンCP1が形成されると共に、この複数の導体パターンのうちの他の1つとして、第2インピーダンス素子5の一端と接続された第2導体パターンCP2が形成されている。この第1導体パターンCP1は、第1プローブPLaの基端部が接続される入力端子2と第1インピーダンス素子4とを接続する導体ラインの一部を構成する。また、この第2導体パターンCP2は、第2プローブPLbの基端部が接続される入力端子3と第2インピーダンス素子5とを接続する導体ラインの一部を構成する。
【0059】
また、
図3に示すように、回路基板CBにおける一方の表面CBaの背面(回路基板CBの他方の表面)CBbには、第1導体パターンCP1に対向する状態で第1補助導体としての第1補助導体パターンCP3(
図1も参照)が平面視長方形に形成されると共に、第2導体パターンCP2に対向する状態で第2補助導体としての第2補助導体パターンCP4が平面視長方形(例えば、第1補助導体パターンCP3と同一形状)に形成されている。この場合、回路基板CBは均一な厚さの絶縁材料で構成されていることから、第1導体パターンCP1と第1補助導体パターンCP3、および第2導体パターンCP2と第2補助導体パターンCP4は、それぞれ互いに平行な状態で、かつ回路基板CBの厚み分だけ離間して対向配置された状態となっている。この構成により、第1補助導体パターンCP3は第1導体パターンCP1と容量結合し、また第2補助導体パターンCP4は第2導体パターンCP2と容量結合する。
【0060】
さらに本例では、
図3に示すように、第1導体パターンCP1における第1補助導体パターンCP3との対向部位が第1補助導体パターンCP3の平面視形状と同一の形状(長方形)に形成されると共に、第2導体パターンCP2における第2補助導体パターンCP4との対向部位が第2補助導体パターンCP4の平面視形状と同一の形状(長方形)に形成されている。この構成により、第1導体パターンCP1における第1補助導体パターンCP3との対向部位は、第1導体パターンCP1における他の部位と比較して幅広に形成され、また第2導体パターンCP2における第2補助導体パターンCP4との対向部位は、第2導体パターンCP2における他の部位と比較して幅広に形成されるため、容量結合の度合いが高められている(大きな結合容量が確保されている)。また、本例では一例として、回路基板CBを平面視したときの第1導体パターンCP1と第1補助導体パターンCP3とが重なる領域の面積と、第2導体パターンCP2と第2補助導体パターンCP4とが重なる領域の面積とが同等となるように構成されることで、第1導体パターンCP1と第1補助導体パターンCP3との間の結合容量の容量値と、第2導体パターンCP2と第2補助導体パターンCP4との間の結合容量の容量値とがほぼ同じ容量値に規定されている。
【0061】
なお、第1補助導体パターンCP3および第2補助導体パターンCP4の平面視形状は、上記した長方形に限定されず、図示はしないが、正方形や、円形や、楕円形など種々の形状とすることができる。また、回路基板CBが多層基板であるときには、第1補助導体パターンCP3は第1導体パターンCP1に近接して、また第2補助導体パターンCP4は第2導体パターンCP2に近接して配置される構成が好ましい。このため、第1補助導体パターンCP3は第1導体パターンCP1が形成された層に隣接する層(回路基板CBの表面の層または内層)に形成し、第2補助導体パターンCP4は第2導体パターンCP2が形成された層に隣接する層(回路基板CBの表面の層または内層)に形成するのが好ましい。
【0062】
この信号生成装置1Aでは、サンプル信号出力部8は、第1補助導体パターンCP3に第1サンプル信号Vsp1を予め規定された振幅で出力することで、第1補助導体パターンCP3と第1導体パターンCP1との間の結合容量を介して、第1試験信号Vts1を第1電圧信号Vc1に代えて第1導体パターンCP1(つまり、第1導体パターンCP1と接続された第1インピーダンス素子4)に発生させ、また第2補助導体パターンCP4に第2サンプル信号Vsp2を予め規定された振幅(第1サンプル信号Vsp1と同じ振幅)で出力することで、第2補助導体パターンCP4と第2導体パターンCP2との間の結合容量を介して、第2試験信号Vts2を第2電圧信号Vc2に代えて第2導体パターンCP2(つまり、第2導体パターンCP2と接続された第2インピーダンス素子5)に発生させる。また、サンプル信号出力部8は、第1サンプル信号Vsp1および第2サンプル信号Vsp2の出力を停止しているとき(非出力時)には、第1補助導体パターンCP3および第2補助導体パターンCP4に対して、グランドGと同電位の信号を出力する。
【0063】
波形取得部9は、A/D変換器などを含んで構成されて、入力されたアナログ信号を規定のサンプリング周期でサンプリングすることにより、このアナログ信号の瞬時値を示す波形データDvに変換する。また、波形取得部9は、この変換によって得られた(取得した)波形データDvを処理部11に出力する。本例では一例として、波形取得部9は、差動増幅部6を構成する各増幅回路41,42から出力される各電圧信号Vc3,Vc4、差動増幅部6から出力される差分信号Vd、および信号生成部7から出力される符号特定用信号Sfを上記のアナログ信号として入力して、各電圧信号Vc3,Vc4についての波形データDv1,Dv2(第3電圧信号Vc3についての第1波形データDv1,第4電圧信号Vc4についての第2波形データDv2)、差分信号Vdについての波形データDv3、および符号特定用信号Sfについての波形データDv4を取得して、処理部11に出力する。
【0064】
操作部10は、信号生成装置1Aの動作モードを、通常動作モードおよび自己診断モードのうちのいずれか一方に切り替えるためのスイッチを含んで構成されている。また、操作部10は、スイッチによって切り替えられている現在の動作モードを示すモード信号Smを処理部11に出力する。
【0065】
処理部11は、一例として、CPUおよびメモリなどを備えて構成されて、操作部10から出力されるモード信号Smで示される動作モードが通常動作モードのときには、通常処理を実行し、一方、この動作モードが自己診断モードのときには、波形取得部9から出力される波形データDvを使用して自己診断処理を実行する。また、処理部11には、自己診断処理においてサンプル信号出力部8から出力させるべき第1サンプル信号Vsp1および第2サンプル信号Vsp2についての種々の規定の変化パターン(電圧値についての時間経過に伴う変化パターン)についてのパターンデータが予め記憶されている。また、処理部11には、信号生成装置1Aが上記の正常状態ときに実行した自己診断処理において、第1サンプル信号Vsp1および第2サンプル信号Vsp2が各規定の変化パターンで出力されているときに、波形取得部9に入力されるアナログ信号についての電圧値についての時間経過に伴う変化パターンを基準変化パターンとして、この基準変化パターンについてのパターンデータが第1サンプル信号Vsp1および第2サンプル信号Vsp2の各規定の変化パターンに対応して予め記憶されている。
【0066】
本例では一例として、処理部11には、
図4に示すように、第1サンプル信号Vsp1および第2サンプル信号Vsp2が互いに逆相の状態で、低電圧(一例として、ゼロボルト)の期間と高電圧(一例として、上記した電圧Vaの高電位と同程度の電圧)の期間とが繰り返される変化パターンが1つの規定の変化パターン(説明のため、第1変化パターンともいう)として、この第1変化パターンについてのパターンデータが記憶されると共に、
図5に示すように、第1サンプル信号Vsp1および第2サンプル信号Vsp2が互いに同相の状態で、低電圧(一例として、ゼロボルト)の期間と高電圧(一例として、上記した電圧Vaの高電位と同程度の電圧)の期間とが繰り返される変化パターンが他の1つの規定の変化パターン(説明のため、第2変化パターンともいう)として、この第2変化パターンについてのパターンデータが記憶されている。
【0067】
また、本例の信号生成装置1Aでは、処理部11は、波形取得部9から出力される各電圧信号Vc3,Vc4についての波形データDv1,Dv2、差分信号Vdについての波形データDv3、および符号特定用信号Sfについての波形データDv4を使用して自己診断処理を実行する。
【0068】
このため、処理部11には、サンプル信号出力部8が第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力しているときの波形データDv1で示される第3電圧信号Vc3についての変化パターンを第3電圧信号Vc3についての第1変化パターンに対応する基準変化パターン(説明のため、第1基準変化パターンともいう)として、この第1基準変化パターンについてのパターンデータが記憶されると共に、波形データDv2で示される第4電圧信号Vc4についての変化パターンを第4電圧信号Vc4についての第1変化パターンに対応する基準変化パターン(説明のため、第2基準変化パターンともいう)として、この第2基準変化パターンについてのパターンデータが記憶されている。また、サンプル信号出力部8が第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力しているときの波形データDv3で示される差分信号Vdについての変化パターンを差分信号Vdについての第1変化パターンに対応する基準変化パターン(説明のため、第3基準変化パターンともいう)として、この第3基準変化パターンについてのパターンデータが記憶されると共に、波形データDv4で示される符号特定用信号Sfについての変化パターンを符号特定用信号Sfについての第1変化パターンに対応する基準変化パターン(説明のため、第4基準変化パターンともいう)として、この第4基準変化パターンについてのパターンデータが記憶されている。
【0069】
この場合、信号生成装置1Aが正常状態であって、かつ各プローブPLa,PLbが対応する被覆導線La,Lbに取り付けられていない状態において、処理部11が自己診断処理を実行して、サンプル信号出力部8に対して第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を規定の同じ振幅で出力させたときには、
図4に示すように、第1インピーダンス素子4に第1サンプル信号Vsp1と同相の第1試験信号Vts1が規定のレベルで発生し、第2インピーダンス素子5に第2サンプル信号Vsp2と同相の第2試験信号Vts2が規定のレベル(第1試験信号Vts1と同等のレベル)で発生する。
【0070】
これにより、正常状態の差動増幅部6では、
図4に示すように、第1増幅回路41が第1試験信号Vts1を正常に増幅して、規定の振幅A1で(振幅A1が予め規定された閾値電圧Vth1を上回る変化パターンで)第3電圧信号Vc3を出力し、第2増幅回路42が第2試験信号Vts2を正常に増幅して、規定の振幅A2で(振幅A2が予め規定された閾値電圧Vth2を上回る変化パターンで)第4電圧信号Vc4を出力し、差動増幅回路43がこの第3電圧信号Vc3およびこの第4電圧信号Vc4を入力してその差分電圧(Vc4−Vc3)を増幅することにより、規定の振幅A3で(振幅A3が予め規定された閾値電圧Vth3を上回る変化パターンで)差分信号Vdを出力する。また、正常状態の信号生成部7が、規定の振幅A3の差分信号Vdを二値化することにより、
図4に示すように、第1サンプル信号Vsp1が低電圧で、かつ第2サンプル信号Vsp2が高電圧の期間に既知の高電位側電圧となり、第1サンプル信号Vsp1が高電圧で、かつ第2サンプル信号Vsp2が低電圧の期間に既知の低電位側電圧となる変化パターンで、言い換えれば、既知の高電位側電圧と既知の低電位側電圧との間に閾値電圧Vth4を予め規定したときに、高電圧の期間では閾値電圧Vth4を上回る電圧となり、低電圧の期間では閾値電圧Vth4を下回る電圧となる変化パターンで符号特定用信号Sfを出力する。
【0071】
一方、各プローブPLa,PLbが対応する被覆導線La,Lbに取り付けられていない状態において、処理部11が自己診断処理を実行して、サンプル信号出力部8に対して第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたとしても、第1導体パターンCP1、第1インピーダンス素子4および第1増幅回路41の少なくとも1つが故障しているとき(故障状態のとき)には、第3電圧信号Vc3は規定の振幅A1(閾値電圧Vth1を上回る振幅)では出力されず、また第2導体パターンCP2、第2インピーダンス素子5および第2増幅回路42の少なくとも1つが故障しているときには、第4電圧信号Vc4は規定の振幅A2(閾値電圧Vth2を上回る振幅)では出力されない。また、第3電圧信号Vc3が規定の振幅A1(閾値電圧Vth1を上回る振幅)で出力されないか、または第4電圧信号Vc4が規定の振幅A2(閾値電圧Vth2を上回る振幅)で出力されないときには、差分信号Vdも規定の振幅A3(閾値電圧Vth3を上回る振幅)では出力されない。
【0072】
また、差分信号Vdについては、第1インピーダンス素子4、第1増幅回路41、第2インピーダンス素子5、および第2増幅回路42が正常であっても、差動増幅回路43が故障しているとき、また第1インピーダンス素子4、第1増幅回路41、第2インピーダンス素子5、第2増幅回路42および差動増幅回路43のうちの少なくとも1つが故障しているときには、規定の振幅A3(閾値電圧Vth3を上回る振幅)では出力されない。また、符号特定用信号Sfについては、各インピーダンス素子4,5および差動増幅部6(各増幅回路41,42および差動増幅回路43)が正常であっても、信号生成部7が故障しているとき、また各インピーダンス素子4,5、差動増幅部6(各増幅回路41,42および差動増幅回路43)、および信号生成部7のうちの少なくとも1つが故障しているときには、第1サンプル信号Vsp1が低電圧で、かつ第2サンプル信号Vsp2が高電圧の期間に、閾値電圧Vth4を上回る振幅A4にならなかったり、また第1サンプル信号Vsp1が高電圧で、かつ第2サンプル信号Vsp2が低電圧の期間に、閾値電圧Vth4を下回る振幅A4にならなかったりする。
【0073】
したがって、処理部11には、第3電圧信号Vc3についての第1変化パターンに対応する第1基準変化パターンについてのパターンデータとして、規定の振幅A1となる(振幅が予め規定された閾値電圧Vth1を上回る)との変化パターンについてのパターンデータが記憶され、第4電圧信号Vc4についての第1変化パターンに対応する第2基準変化パターンについてのパターンデータとして、規定の振幅A2となる(振幅が予め規定された閾値電圧Vth2を上回る)との変化パターンについてのパターンデータが記憶され、差分信号Vdについての第1変化パターンに対応する第3基準変化パターンについてのパターンデータとして、規定の振幅A3となる(振幅が予め規定された閾値電圧Vth3を上回る)との変化パターンについてのパターンデータが記憶されている。また、処理部11には、符号特定用信号Sfについての第1変化パターンに対応する第4基準変化パターンについてのパターンデータとして、第1サンプル信号Vsp1が低電圧で、かつ第2サンプル信号Vsp2が高電圧の期間に、振幅が閾値電圧Vth4を上回り、また第1サンプル信号Vsp1が高電圧で、かつ第2サンプル信号Vsp2が低電圧の期間に、振幅が閾値電圧Vth4を下回るとの変化パターンについてのパターンデータが記憶されている。
【0074】
また、処理部11には、サンプル信号出力部8が第2変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力しているときの波形データDv1で示される第3電圧信号Vc3についての変化パターンを第3電圧信号Vc3についての第2変化パターンに対応する基準変化パターン(説明のため、第5基準変化パターンともいう)として、この第5基準変化パターンについてのパターンデータが記憶されると共に、波形データDv2で示される第4電圧信号Vc4についての変化パターンを第4電圧信号Vc4についての第2変化パターンに対応する基準変化パターン(説明のため、第6基準変化パターンともいう)として、この第6基準変化パターンについてのパターンデータが記憶されている。
【0075】
なお、この信号生成装置1Aでは、各インピーダンス素子4,5に発生する2つの電圧信号(第1電圧信号Vc1および第2電圧信号Vc2)が同相となる状態での動作は想定されていない。このことから、信号生成装置1Aが正常状態であっても、また故障していたとしても、サンプル信号出力部8が第2変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力しているときには、差分信号Vdは規定の振幅A3(閾値電圧Vth3を上回る振幅)では出力されるとは限らない。このため、信号生成部7が、この差分信号Vdに基づいて生成する符号特定用信号Sfについての変化パターンも定まらない。つまり、処理部11は、サンプル信号出力部8が第2変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力しているときの波形データDv3で示される差分信号Vdおよび波形データDv4で示される符号特定用信号Sfでは、信号生成装置1Aが正常状態であるか故障状態であるかを判別できないことから、差分信号Vdおよび符号特定用信号Sfについての第2変化パターンに対応する各基準変化パターンは記憶されていない。
【0076】
この場合、信号生成装置1Aが正常状態であって、かつ各プローブPLa,PLbが対応する被覆導線La,Lbに取り付けられていない状態において、処理部11が自己診断処理を実行して、サンプル信号出力部8に対して第2変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたときには、
図5に示すように、第1インピーダンス素子4に第1サンプル信号Vsp1と同相の第1試験信号Vts1が規定のレベルで発生し、第2インピーダンス素子5に第2サンプル信号Vsp2と同相の第2試験信号Vts2が規定のレベルで発生する。
【0077】
これにより、正常状態の差動増幅部6では、
図5に示すように、第1増幅回路41が第1試験信号Vts1を正常に増幅して、規定の振幅A1で(振幅A1が予め規定された閾値電圧Vth1を上回る変化パターンで)第3電圧信号Vc3を出力し、第2増幅回路42が第2試験信号Vts2を正常に増幅して、規定の振幅A2で(振幅A2が予め規定された閾値電圧Vth2を上回る変化パターンで)第4電圧信号Vc4を出力する。
【0078】
一方、各プローブPLa,PLbが対応する被覆導線La,Lbに取り付けられていない状態において、処理部11が自己診断処理を実行して、サンプル信号出力部8に対して第2変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたとしても、第1導体パターンCP1、第1インピーダンス素子4および第1増幅回路41の少なくとも1つが故障しているとき(故障状態のとき)には、第3電圧信号Vc3は規定の振幅A1(閾値電圧Vth1を上回る振幅)では出力されず、また第2導体パターンCP2、第2インピーダンス素子5および第2増幅回路42の少なくとも1つが故障しているときには、第4電圧信号Vc4は規定の振幅A2(閾値電圧Vth2を上回る振幅)では出力されない。
【0079】
したがって、処理部11には、第3電圧信号Vc3についての第2変化パターンに対応する第5基準変化パターンについてのパターンデータとして、規定の振幅A1となる(振幅が予め規定された閾値電圧Vth1を上回る)との変化パターンについてのパターンデータが記憶され、第4電圧信号Vc4についての第2変化パターンに対応する第6基準変化パターンについてのパターンデータとして、規定の振幅A2となる(振幅が予め規定された閾値電圧Vth2を上回る)との変化パターンについてのパターンデータが記憶されている。
【0080】
出力端子12には、信号生成装置1Aを、信号生成装置1Aと別体に配設された不図示の符号特定装置に接続するための接続ケーブル(図示せず)が接続可能となっている。
【0081】
出力部13は、一例として、ディスプレイ装置や発光ダイオードなどの表示装置で構成されて、処理部11から出力される自己診断についての診断結果を表示する(出力する)。この構成により、信号生成装置1Aは、使用者に対して、信号生成装置1Aが正常状態であるか、故障が生じた状態であるかを報知することが可能となっている。なお、出力部13は、信号生成装置1Aに一体的に配設されている構成が好ましいが、信号生成装置1Aに通信回線を介して接続された別体の出力装置とする構成であってもよい。
【0082】
次に、信号生成装置1Aの使用例、およびその際の信号生成装置1Aの動作について、図面を参照して説明する。
【0083】
最初に、
図1に示すように、使用者によって、第1プローブPLaが接続されるべき被覆導線Laに接続され、かつ第2プローブPLbが接続されるべき被覆導線Lbに接続されると共に、操作部10のスイッチに対する操作が行われて操作部10が通常動作モードを示すモード信号Smを出力しているときには、処理部11は、このモード信号Smを入力して通常処理を実行する。この通常処理では、処理部11は、第1補助導体パターンCP3への第1サンプル信号Vsp1の出力、および第2補助導体パターンCP4への第2サンプル信号Vsp2の出力を停止して、第1補助導体パターンCP3および第2補助導体パターンCP4に対してグランドGと同電位の信号を出力する。
【0084】
これにより、この通常動作モードにおいて、第1補助導体パターンCP3に近接して対向配設された第1導体パターンCP1における第1補助導体パターンCP3と同一形状の部位への外来ノイズの飛び込みを軽減し、かつ第2補助導体パターンCP4に近接して対向配設された第2導体パターンCP2における第2補助導体パターンCP4と同一形状の部位への外来ノイズの飛び込みを軽減しつつ、被覆導線Laの電圧Vaに応じて電圧が変化する第1電圧信号Vc1を第1インピーダンス素子4に発生させることと、被覆導線Lbの電圧Vbに応じて電圧が変化する第2電圧信号Vc2を第2インピーダンス素子5に発生させることとが可能になっている。
【0085】
この状態において、信号生成装置1Aが正常状態のときには、上記したように、第1インピーダンス素子4が、入力端子2および第1プローブPLaを介して接続された被覆導線Laの電圧Vaに応じて
図2に示すように電圧が変化する(つまり、電圧Vaがベースの電圧のときに低電圧となり、電圧Vaが高電圧の規定電圧のときに高電圧となるように変化する)第1電圧信号Vc1を発生させる。また、第2インピーダンス素子5が、入力端子3および第2プローブPLbを介して接続された被覆導線Lbの電圧Vbに応じて
図2に示すように電圧が変化する(つまり、電圧Vbがベースの電圧のときに高電圧となり、電圧Vbが低電圧の規定電圧のときに低電圧となるように変化する)第2電圧信号Vc2を発生させる。
【0086】
次いで、差動増幅部6では、第1増幅回路41がこの第1電圧信号Vc1を非反転増幅して第3電圧信号Vc3を出力し、第2増幅回路42がこの第2電圧信号Vc2を非反転増幅して第4電圧信号Vc4を出力する。また、差動増幅回路43が、両信号Vc3,Vc4の差分電圧(Vc4−Vc3)を増幅することにより、差分電圧(Vc4−Vc3)に応じて電圧値(振幅)が変化する差分信号Vdを出力する。
【0087】
続いて、信号生成部7が、この差分信号Vdを閾値電圧と比較して二値化することにより、正しい符号特定用信号Sf(シリアルバスSBにCANフレーム(符号列)を構成する符号Cs(「1」)が伝送されている期間において高電位側電圧(レセッシブ)となり、符号Cs(「0」)が伝送されている期間において低電位側電圧(ドミナント)となる符号特定用信号Sf)を生成して出力端子12に出力する。これにより、出力端子12に接続された接続ケーブルを介して信号生成装置1Aに接続された不図示の符号特定装置が、符号特定用信号Sfを受信して処理することが可能となる。
【0088】
また、波形取得部9は、通常動作モードおよび自己診断モードのうちの少なくとも自己診断モードにおいて動作していればよいが、本例では一例として、通常動作モードおよび自己診断モードのいずれの動作モードにおいても動作しているものとする。波形取得部9は、動作状態において、差動増幅部6を構成する各増幅回路41,42から出力される各電圧信号Vc3,Vc4、差動増幅部6から出力される差分信号Vd、および信号生成部7から出力される符号特定用信号Sfを入力して、各電圧信号Vc3,Vc4についての波形データDv1,Dv2、差分信号Vdについての波形データDv3、および符号特定用信号Sfについての波形データDv4を処理部11に出力している。
【0089】
ところで、信号生成装置1Aが正常状態のときには、上記したように、正しい符号特定用信号Sfを生成して出力端子12から符号特定装置等の外部装置に出力することができるが、信号生成装置1Aが正常状態でないときには、ある期間において高電位側電圧(レセッシブ)となり、ある期間において低電位側電圧(ドミナント)となる信号が出力されていたとしても、この信号が上記の正しい符号特定用信号Sfとはなっていないことがある(つまり、信号生成装置1Aが外部装置に正しい符号特定用信号Sfを出力することができない状態になることがある)。
【0090】
そこで、使用者は、各プローブPLa,PLbを対応する被覆導線La,Lbに接続する前に、信号生成装置1Aの処理部11に自己診断処理を実行させて、信号生成装置1Aが正常状態であるか否か(故障が生じていないか否か)を確認する。
【0091】
この場合、使用者は、各プローブPLa,PLbを対応する被覆導線La,Lbに接続していない状態において、操作部10のスイッチに対する操作を行って、操作部10に対して自己診断モードを示すモード信号Smを処理部11へ出力させる。処理部11は、自己診断モードを示すモード信号Smを入力して、自己診断処理を実行する。
【0092】
この自己診断処理では、処理部11は、まず、記憶している第1変化パターン(
図4に示す変化パターン)についてのパターンデータに基づき、第1変化パターン(逆相の変化パターン)で第1サンプル信号Vsp1および第2サンプル信号Vsp2をサンプル信号出力部8から出力させる。第1サンプル信号Vsp1は、第1補助導体パターンCP3に出力され、第2サンプル信号Vsp2は第2補助導体パターンCP4に出力される。
【0093】
この場合、第1導体パターンCP1における第1補助導体パターンCP3と対向する部位(第1補助導体パターンCP3と容量結合する部位)、および第1導体パターンCP1に接続された第1インピーダンス素子4には、第1電圧信号Vc1に代えて第1試験信号Vts1が、
図4に示すように、第1サンプル信号Vsp1と同相の状態で発生し、また第2導体パターンCP2における第2補助導体パターンCP4と対向する部位(第2補助導体パターンCP4と容量結合する部位)、および第2導体パターンCP2に接続された第2インピーダンス素子5には、第2電圧信号Vc2に代えて第2試験信号Vts2が、
図4に示すように、第2サンプル信号Vsp2と同相の状態(第1試験信号Vts1とは逆相の状態)で発生するが、第1試験信号Vts1および第2試験信号Vts2に基づいて発生する第3電圧信号Vc3、第4電圧信号Vc4、差分信号Vdおよび符号特定用信号Sfの各変化パターンは、上記したように、信号生成装置1Aが正常状態であるか故障状態であるか、さらに故障状態のときにはいずれの回路が故障しているかによって異なる。
【0094】
このため、処理部11は、この自己診断処理において、サンプル信号出力部8に対して第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させる制御を実行するのに合わせて、波形取得部9から出力されている各波形データDv1,Dv2,Dv3,Dv4を取得すると共に、第1サンプル信号Vsp1および第2サンプル信号Vsp2の変化のタイミング(例えば、
図4に示す各時刻t1,t2,t3,t4,t5,・・・)に対応させて記憶する。
【0095】
この場合、1つの時刻からその次の時刻までの期間の全体に亘る各波形データDv1,Dv2,Dv3,Dv4をすべて記憶する構成を採用してもよいが、各波形データDv1,Dv2,Dv3,Dv4が最も安定する上記の次の時刻の直前の短期間(1つの時刻からその次の時刻までの期間よりも十分に短い期間)での各波形データDv1,Dv2,Dv3,Dv4を記憶する構成を採用することもできる。
【0096】
次いで、この自己診断処理では、処理部11は、記憶している第2変化パターン(
図5に示す変化パターン)についてのパターンデータに基づき、第2変化パターン(同相の変化パターン)で第1サンプル信号Vsp1および第2サンプル信号Vsp2をサンプル信号出力部8から出力させる。第1サンプル信号Vsp1は、第1補助導体パターンCP3に出力され、第2サンプル信号Vsp2は第2補助導体パターンCP4に出力される。
【0097】
この場合、第1導体パターンCP1における第1補助導体パターンCP3と対向する部位(第1補助導体パターンCP3と容量結合する部位)、および第1導体パターンCP1に接続された第1インピーダンス素子4には、第1電圧信号Vc1に代えて第1試験信号Vts1が、
図5に示すように、第1サンプル信号Vsp1と同相の状態で発生し、また第2導体パターンCP2における第2補助導体パターンCP4と対向する部位(第2補助導体パターンCP4と容量結合する部位)、および第2導体パターンCP2に接続された第2インピーダンス素子5には、第2電圧信号Vc2に代えて第2試験信号Vts2が、
図5に示すように、第2サンプル信号Vsp2と同相の状態(第1試験信号Vts1とも同相の状態)で発生するが、第1試験信号Vts1および第2試験信号Vts2に基づいて発生する第3電圧信号Vc3および第4電圧信号Vc4の各変化パターンは、上記したように、信号生成装置1Aが正常状態であるか故障状態であるかによって異なる。
【0098】
このため、処理部11は、この自己診断処理において、サンプル信号出力部8に対して第2変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させる制御を実行するのに合わせて、波形取得部9から出力されている各波形データDv1,Dv2を取得すると共に、第1サンプル信号Vsp1および第2サンプル信号Vsp2の変化のタイミング(例えば、
図5に示す各時刻t1,t2,t3,t4,t5,・・・)に対応させて記憶する。
【0099】
続いて、この自己診断処理では、処理部11は、第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたときに記憶した第3電圧信号Vc3についての波形データDv1に基づき、第3電圧信号Vc3についての時間変化に伴う変化パターンを求めて、予め記憶されている第1基準変化パターンと比較する。第1導体パターンCP1および第1インピーダンス素子4が正常状態で、かつ差動増幅部6を構成する第1増幅回路41が正常状態のときには、求めた変化パターンは対応する第1基準変化パターン(規定の振幅A1となる(振幅が予め規定された閾値電圧Vth1を上回る)との変化パターン)と一致するが、第1導体パターンCP1、第1インピーダンス素子4および差動増幅部6を構成する第1増幅回路41のうちの少なくとも1つが故障しているとき(正常状態ではないとき)には、求めた変化パターンはその振幅が閾値電圧Vth1を下回ることから、対応する第1基準変化パターンとは一致しない。
【0100】
また、処理部11は、第2変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたときに記憶した第3電圧信号Vc3についての波形データDv1に基づき、第3電圧信号Vc3についての時間変化に伴う変化パターンを求めて、予め記憶されている第5基準変化パターンと比較する。第1導体パターンCP1および第1インピーダンス素子4が正常状態で、かつ差動増幅部6を構成する第1増幅回路41が正常状態のときには、求めた変化パターンは対応する第5基準変化パターン(規定の振幅A1となる(振幅が予め規定された閾値電圧Vth1を上回る)との変化パターン)と一致するが、第1導体パターンCP1、第1インピーダンス素子4および差動増幅部6を構成する第1増幅回路41のうちの少なくとも1つが故障しているとき(正常状態ではないとき)には、求めた変化パターンはその振幅が閾値電圧Vth1を下回ることから、対応する第5基準変化パターンとは一致しない。
【0101】
したがって、処理部11は、第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたときに記憶した波形データDv1に基づいて求めた第3電圧信号Vc3についての変化パターンが第1基準変化パターンと一致し、かつ第2変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたときに記憶した波形データDv1に基づいて求めた第3電圧信号Vc3についての変化パターンが第5基準変化パターンと一致しているときには、第1導体パターンCP1と第1インピーダンス素子4(つまり、信号生成装置1AにおけるプローブPLaの接続部位から差動増幅部6に至るまでの回路要素)、および第1増幅回路41が正常状態であると判別する。一方、処理部11は、第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたときに記憶した波形データDv1に基づいて求めた第3電圧信号Vc3についての変化パターンが第1基準変化パターンと一致していなかったり、第2変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたときに記憶した波形データDv1に基づいて求めた第3電圧信号Vc3についての変化パターンが第5基準変化パターンと一致していなかったりしたときには、第1導体パターンCP1と第1インピーダンス素子4(つまり、信号生成装置1AにおけるプローブPLaの接続部位から差動増幅部6に至るまでの回路要素)、および第1増幅回路41のうちの少なくとも1つが故障していると判別して、この判別結果を記憶する。
【0102】
また、この自己診断処理では、処理部11は、第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたときに記憶した第4電圧信号Vc4についての波形データDv2に基づき、第4電圧信号Vc4についての時間変化に伴う変化パターンを求めて、予め記憶されている第2基準変化パターンと比較する。第2導体パターンCP2および第2インピーダンス素子5(つまり、信号生成装置1AにおけるプローブPLbの接続部位から差動増幅部6に至るまでの回路要素)が正常状態で、かつ差動増幅部6を構成する第2増幅回路42が正常状態のときには、求めた変化パターンは対応する第2基準変化パターン(規定の振幅A2となる(振幅が予め規定された閾値電圧Vth2を上回る)との変化パターン)と一致するが、第2導体パターンCP2、第2インピーダンス素子5および差動増幅部6を構成する第2増幅回路42のうちの少なくとも1つが故障しているとき(正常状態ではないとき)には、求めた変化パターンはその振幅が閾値電圧Vth2を下回ることから、対応する第2基準変化パターンとは一致しない。
【0103】
また、処理部11は、第2変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたときに記憶した第4電圧信号Vc4についての波形データDv2に基づき、第4電圧信号Vc4についての時間変化に伴う変化パターンを求めて、予め記憶されている第6基準変化パターンと比較する。第2導体パターンCP2および第2インピーダンス素子5(つまり、信号生成装置1AにおけるプローブPLbの接続部位から差動増幅部6に至るまでの回路要素)が正常状態で、かつ差動増幅部6を構成する第2増幅回路42が正常状態のときには、求めた変化パターンは対応する第6基準変化パターン(規定の振幅A2となる(振幅が予め規定された閾値電圧Vth2を上回る)との変化パターン)と一致するが、第2導体パターンCP2、第2インピーダンス素子5および差動増幅部6を構成する第2増幅回路42のうちの少なくとも1つが故障しているとき(正常状態ではないとき)には、求めた変化パターンはその振幅が閾値電圧Vth2を下回ることから、対応する第6基準変化パターンとは一致しない。
【0104】
したがって、処理部11は、第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたときに記憶した波形データDv1に基づいて求めた第4電圧信号Vc4についての変化パターンが第2基準変化パターンと一致し、かつ第2変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたときに記憶した波形データDv1に基づいて求めた第4電圧信号Vc4についての変化パターンが第6基準変化パターンと一致しているときには、第2導体パターンCP2と第2インピーダンス素子5(つまり、信号生成装置1AにおけるプローブPLbの接続部位から差動増幅部6に至るまでの回路要素)、および第2増幅回路42が正常状態であると判別する。一方、処理部11は、第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたときに記憶した波形データDv1に基づいて求めた第4電圧信号Vc4についての変化パターンが第2基準変化パターンと一致していなかったり、第2変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたときに記憶した波形データDv1に基づいて求めた第4電圧信号Vc4についての変化パターンが第6基準変化パターンと一致していなかったりしたときには、第2導体パターンCP2と第2インピーダンス素子5(つまり、信号生成装置1AにおけるプローブPLbの接続部位から差動増幅部6に至るまでの回路要素)、および第2増幅回路42のうちの少なくとも1つが故障していると判別して、この判別結果を記憶する。
【0105】
また、処理部11は、自己診断処理でのここまでの処理において、第1導体パターンCP1、第1インピーダンス素子4および第1増幅回路41のうちの少なくとも1つに故障が生じていると判別したとき、または第2導体パターンCP2、第2インピーダンス素子5および第2増幅回路42のうちの少なくとも1つに故障が生じていると判別したときには、その旨を出力部13に出力して、この自己診断処理を終了させる。
【0106】
一方、処理部11は、自己診断処理でのここまでの処理において、第1導体パターンCP1、第1インピーダンス素子4および第1増幅回路41がすべて正常状態であると判別し、かつ第2導体パターンCP2、第2インピーダンス素子5および第2増幅回路42がすべて正常状態であると判別したときには、自己診断処理を続行して、第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたときに記憶した差分信号Vdについての波形データDv3に基づき、差分信号Vdについての時間変化に伴う変化パターンを求めて、予め記憶されている第3基準変化パターンと比較する。
【0107】
この場合、第1導体パターンCP1、第1インピーダンス素子4、第1増幅回路41、第2導体パターンCP2、第2インピーダンス素子5および第2増幅回路42が正常状態であって、かつ差動増幅回路43が正常状態のときには、求めた変化パターンは対応する第3基準変化パターン(規定の振幅A3となる(振幅が予め規定された閾値電圧Vth3を上回る)との変化パターン)と一致するが、第1導体パターンCP1、第1インピーダンス素子4、第1増幅回路41、第2導体パターンCP2、第2インピーダンス素子5および第2増幅回路42が正常状態であっても差動増幅回路43が故障しているときには、求めた変化パターンはその振幅が閾値電圧Vth3を下回ることから、対応する第3基準変化パターンとは一致しない。
【0108】
したがって、処理部11は、第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたときに記憶した波形データDv3に基づいて求めた差分信号Vdについての変化パターンが第3基準変化パターンと一致しているときには、第1導体パターンCP1、第1インピーダンス素子4、第1増幅回路41、第2導体パターンCP2、第2インピーダンス素子5および第2増幅回路42と共に、差動増幅回路43も正常状態であると判別する。一方、処理部11は、この求めた差分信号Vdについての変化パターンが第3基準変化パターンと一致していないときには、差動増幅回路43が故障していると判別して、この判別結果を記憶する。
【0109】
また、処理部11は、自己診断処理でのここまでの処理において、差動増幅回路43が故障していると判別したときは、その旨を出力部13に出力して、この自己診断処理を終了させる。
【0110】
一方、処理部11は、自己診断処理でのここまでの処理において、第1導体パターンCP1、第1インピーダンス素子4、第1増幅回路41、第2導体パターンCP2、第2インピーダンス素子5、第2増幅回路42および差動増幅回路43がすべて正常状態であると判別したときには、自己診断処理を続行して、第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたときに記憶した符号特定用信号Sfについての波形データDv4に基づき、符号特定用信号Sfについての時間変化に伴う変化パターンを求めて、予め記憶されている第4基準変化パターンと比較する。
【0111】
この場合、第1導体パターンCP1、第1インピーダンス素子4、第1増幅回路41、第2導体パターンCP2、第2インピーダンス素子5、第2増幅回路42および差動増幅回路43が正常状態であって、かつ信号生成部7が正常状態のときには、求めた変化パターンは対応する第4基準変化パターン(第1サンプル信号Vsp1が低電圧で、かつ第2サンプル信号Vsp2が高電圧の期間に、振幅が閾値電圧Vth4を上回り、また第1サンプル信号Vsp1が高電圧で、かつ第2サンプル信号Vsp2が低電圧の期間に、振幅が閾値電圧Vth4を下回るとの基準変化パターン)と一致する。一方、第1導体パターンCP1、第1インピーダンス素子4、第1増幅回路41、第2導体パターンCP2、第2インピーダンス素子5、第2増幅回路42および差動増幅回路43が正常状態であっても、信号生成部7が故障しているときには、第1サンプル信号Vsp1が低電圧で、かつ第2サンプル信号Vsp2が高電圧の期間において、振幅が閾値電圧Vth4を下回ったりすることから、対応する第4基準変化パターンとは一致しない。
【0112】
したがって、処理部11は、第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力させたときに記憶した波形データDv4に基づいて求めた符号特定用信号Sfについての変化パターンが第4基準変化パターンと一致しているときには、第1導体パターンCP1、第1インピーダンス素子4、第1増幅回路41、第2導体パターンCP2、第2インピーダンス素子5、第2増幅回路42および差動増幅回路43と共に、信号生成部7も正常状態であると判別する。一方、処理部11は、この求めた符号特定用信号Sfについての変化パターンが第4基準変化パターンと一致していないときには、信号生成部7が故障していると判別して、この判別結果を記憶する。
【0113】
また、処理部11は、自己診断処理でのここまでの処理において、信号生成部7が故障していると判別したときは、その旨を出力部13に出力して、自己診断処理を終了させる。一方、処理部11は、第1導体パターンCP1、第1インピーダンス素子4、第1増幅回路41、第2導体パターンCP2、第2インピーダンス素子5、第2増幅回路42および差動増幅回路43と共に、信号生成部7も正常状態であると判別したときには、信号生成装置1Aが全体として正常状態であることから、その旨を出力部13に出力して、自己診断処理を終了させる。
【0114】
このようにして、信号生成装置1Aの動作モードを自己診断モードに切り替えて動作させたときに、処理部11が実行した自己診断処理での判別結果が出力部13に出力(表示)されるため、使用者は、信号生成装置1Aが全体として正常状態であるか、故障が生じているかを知得することが可能となっている。さらに、本例の信号生成装置1Aでは、第1導体パターンCP1、第1インピーダンス素子4および第1増幅回路41で構成される回路(以下、説明のため第1回路ともいう)が全体として正常状態であるか、故障が生じているかの判別結果、第2導体パターンCP2、第2インピーダンス素子5および第2増幅回路42で構成される回路(以下、説明のため第2回路ともいう)が全体として正常状態であるか、故障が生じているかの判別結果、差動増幅回路43が正常状態であるか、故障が生じているかの判別結果、および信号生成部7が正常状態であるか、故障が生じているかの判別結果が個別に出力部13に出力(表示)されるため、使用者は、信号生成装置1Aに故障が生じている場合において、より具体的にどの回路に故障が生じているかを知得することが可能となっている。
【0115】
これにより、使用者は、信号生成装置1Aが正常状態であるときにのみ、通常動作モードに切り替えると共に、第1プローブPLaを対応する被覆導線Laに取り付け、かつ第2プローブPLbを対応する被覆導線Lbに取り付けて使用することが可能となることから、不正確な符号特定用信号Sfが外部に出力されるといった事態の発生を防止することが可能となっている。
【0116】
なお、この信号生成装置1Aでは、上記したように、より具体的にどの回路に故障が生じているかを判別するために、シリアルバスSB(被覆導線La,Lb)側に位置する回路(上流側の回路)であるところの上記の第1回路および第2回路から、差動増幅回路43、信号生成部7という順に、正常状態と判別したときにのみその下流側に配設された回路を診断する(正常状態であるか、故障が生じているかを判別する)という手順で自己診断処理を実行する構成を採用しているが、この構成に限定されるものではない。
【0117】
例えば、上記の第1回路、上記の第2回路、差動増幅回路43および信号生成部7の少なくとも1つの回路に故障が生じているときには、正しい符号特定用信号Sfを出力することができないことから、信号生成装置1Aは故障していると判別してもよい。このため、波形取得部9が各電圧信号Vc3,Vc4、差分信号Vdおよび符号特定用信号Sfを入力して、対応する波形データDv1,Dv2,Dv3,Dv4を出力する構成に代えて、波形取得部9が各電圧信号Vc3,Vc4、差分信号Vdおよび符号特定用信号Sfのうちの少なくとも1つ、またはいずれか1つを入力して、上記の波形データDv1,Dv2,Dv3,Dv4のうちの対応する波形データDvのみを出力する構成を採用することもできる。この構成では、処理部11は、自己診断処理において、この波形データDvで示される信号についての変化パターンを、対応する基準変化パターンと比較することで、正常状態であるか、故障が生じているかを判別する。
【0118】
このように、この信号生成装置1Aによれば、サンプル信号出力部8および波形取得部9を備えて、処理部11が上記の自己診断処理を実行するため、使用者は、信号生成装置1Aに故障が発生しているか否かを容易に知得することができる。したがって、この信号生成装置1Aによれば、故障の生じた状態で使用されて、不正確な符号特定用信号Sfを外部に出力するという事態の発生を未然に防止することができる。
【0119】
また、この信号生成装置1Aによれば、処理部11が、自己診断処理において、サンプル信号出力部8が第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力している状態において波形取得部9で取得された波形データDv4で示される符号特定用信号Sfの変化パターンと対応する第4基準変化パターンとを比較して、信号生成装置1Aに故障が生じているか否かを判別する構成のため、第1導体パターンCP1、第1インピーダンス素子4、第1増幅回路41、第2導体パターンCP2、第2インピーダンス素子5、第2増幅回路42、差動増幅回路43および信号生成部7の少なくとも1つに故障が生じていること、言い換えれば、信号生成装置1Aが正常状態であることを判別することができる。
【0120】
また、この信号生成装置1Aによれば、処理部11が、自己診断処理において、サンプル信号出力部8が第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力している状態において波形取得部9で取得された波形データDv3で示される差分信号Vdの変化パターンと対応する第3基準変化パターンとを比較して、信号生成装置1Aに故障が生じているか否かを判別する構成のため、第1導体パターンCP1、第1インピーダンス素子4、第1増幅回路41、第2導体パターンCP2、第2インピーダンス素子5、第2増幅回路42および差動増幅回路43の少なくとも1つに故障が生じていることを判別することができる結果、故障が生じている回路をより限定して判別することができる。なお、処理部11が、自己診断処理において、サンプル信号出力部8が第1変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力している状態において波形取得部9で取得された波形データDv3で示される差分信号Vdの変化パターンと対応する第3基準変化パターンとのみを比較して、信号生成装置1Aに故障が生じているか否かを判別するという構成を採用したときには、第1インピーダンス素子4、第2インピーダンス素子5および差動増幅部6のうちの少なくとも1つに故障が生じているか否かを判別することができ、したがって、これらに故障が生じている状態で信号生成装置1Aが使用されることを回避することができる。
【0121】
また、この信号生成装置1Aによれば、処理部11が、自己診断処理において、サンプル信号出力部8が第1変化パターンや第2変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力している状態において波形取得部9で取得された波形データDv1で示される第3電圧信号Vc3の変化パターンと対応する第1基準変化パターンとを比較すると共に、波形取得部9で取得された波形データDv2で示される第4電圧信号Vc4の変化パターンと対応する第2基準変化パターンとを比較して、信号生成装置1Aに故障が生じているか否かを判別する構成のため、第1導体パターンCP1、第1インピーダンス素子4および第1増幅回路41で構成される第1回路、並びに第2導体パターンCP2、第2インピーダンス素子5および第2増幅回路42で構成される第2回路に故障が生じているかを判別することができる結果、故障が生じている回路をより限定して判別することができる。なお、処理部11が、自己診断処理において、サンプル信号出力部8が第1変化パターンや第2変化パターンで第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力している状態において波形取得部9で取得された波形データDv1で示される第3電圧信号Vc3の変化パターンと対応する第1基準変化パターンとを比較すると共に、波形取得部9で取得された波形データDv2で示される第4電圧信号Vc4の変化パターンと対応する第2基準変化パターンとを比較するという比較のみで、信号生成装置1Aに故障が生じているか否かを判別するという構成を採用したときには、第1回路および第2回路のうちの少なくとも一方に故障が生じているか否かを判別することができ、したがって、これらに故障が生じている状態で信号生成装置1Aが使用されることを回避することができる。
【0122】
また、この信号生成装置1Aでは、第1プローブPLaの電極(一方の電極)22aと第1インピーダンス素子4とを接続する第1導体ラインCDL1(具体的には、第1導体ラインCDL1の一部を構成する第1導体パターンCP1)と容量結合する第1補助導体としての第1補助導体パターンCP3、および第2プローブPLbの電極22b(他方の電極)と第2インピーダンス素子5とを接続する第2導体ラインCDL2(具体的には、第2導体ラインCDL2の一部を構成する第2導体パターンCP2)と容量結合する第2補助導体としての第2補助導体パターンCP4を備えて、サンプル信号出力部8が第1サンプル信号Vsp1を第1補助導体パターンCP3に出力すると共に、第2サンプル信号Vsp2を第2補助導体パターンCP4に出力する。
【0123】
したがって、この信号生成装置1Aによれば、各試験信号Vts1,Vts2を第1導体ラインCDL1および第2導体ラインCDL2に容量結合で発生させる構成のため、各試験信号Vts1,Vts2を発生させるための導体パターンを第1導体ラインCDL1および第2導体ラインCDL2に直接接続することを回避することができ、この導体パターンの直接接続によって符号特定用信号の生成に悪影響を与える事態の発生を防止することができる。また、この信号生成装置1Aによれば、第1導体ラインCDL1に容量結合する第1補助導体パターンCP3、および第2導体ラインCDL2に容量結合する第2補助導体パターンCP4を備えたことにより、第1プローブPLaおよび第2プローブPLbを接続しない状態で自己診断することができる。
【0124】
また、この信号生成装置1Aによれば、サンプル信号出力部8は、第1サンプル信号Vsp1および第2サンプル信号Vsp2の非出力時に、第1補助導体(上記の例では第1補助導体パターンCP3)および第2補助導体(上記の例では第2補助導体パターンCP4)に基準電位と同電位(グランドGの電位)の信号を出力するため、通常動作モードにおいて、第1導体パターンCP1における第1補助導体パターンCP3と対向する部位(容量結合する主たる部位)、および第2導体パターンCP2における第2補助導体パターンCP4と対向する部位(容量結合する主たる部位)を基準電位でガードすることができる。
【0125】
また、この信号生成装置1Aによれば、表示装置などを備えて構成された出力部13を備え、処理部11が自己診断処理での判別結果(故障が生じているか否か)を出力部13に表示させるため、信号生成装置1Aに故障が生じていることを使用者に確実に知得させることができる。
【0126】
なお、上記の信号生成装置1Aでは、第1プローブPLaおよび第2プローブPLbを接続しない状態で自己診断し得るようにするため、回路基板CBに形成された第1導体パターンCP1と容量結合する第1補助導体パターンCP3を回路基板CBに形成すると共に、回路基板CBに形成された第2導体パターンCP2と容量結合する第2補助導体パターンCP4を回路基板CBに形成して、自己診断の際には、第1サンプル信号Vsp1を第1補助導体パターンCP3に出力し、第2サンプル信号Vsp2を第2補助導体パターンCP4に出力する構成を採用しているが、この構成に限定されない。
【0127】
例えば、第1補助導体としての第1補助導体パターンCP3を回路基板CBに形成すると共に、第2補助導体としての第2補助導体パターンCP4を回路基板CBに形成する信号生成装置1Aの上記構成に代えて、
図6に示す信号生成装置1Bのように、第1プローブPLaを取り付け可能に、第1補助導体51を筐体HUの表面に配設すると共に、第2プローブPLbを取り付け可能に、第2補助導体52を筐体HUの表面に配設する構成を採用することもできる。以下、信号生成装置1Bについて、説明するが、第1補助導体51および第2補助導体52以外の構成については、信号生成装置1Aの構成(第1補助導体パターンCP3および第2補助導体パターンCP4の構成を除く構成)と同一であることから、同一の構成については同一の符号を付して重複する説明を省略する。
【0128】
第1補助導体51および第2補助導体52は、例えば、両端を除く外周全体が不図示の絶縁被覆で覆われた金属柱体を、コ字状に折曲して構成されている。また、第1補助導体51および第2補助導体52は、
図6に示すように、互いにほぼ並行となる状態で折曲された両端部側の部位を一対の脚部として、筐体HUに対して絶縁された状態で、かつ互いに離間した状態で、筐体HUの表面に起立して配設されている。この構成により、自己診断の際に、第1プローブPLaを対応する第1補助導体51に取り付けることと、第2プローブPLbを対応する第2補助導体52に取り付けることとが可能となっている。
【0129】
また、
図6に示すように、第1補助導体51は、その一端がサンプル信号出力部8に接続され、その他端が開放されて、第1サンプル信号Vsp1が出力され得るように構成されている。また、第2補助導体52は、その一端がサンプル信号出力部8に接続され、その他端が開放されて、第2サンプル信号Vsp2が出力され得るように構成されている。
【0130】
この構成により、信号生成装置1Bでは、自己診断処理の実行の際に、第1補助導体51に取り付けられた第1プローブPLaの電極(一方の電極)22aが第1補助導体51と容量結合し、また第2補助導体52に取り付けられた第2プローブPLbの電極(他方の電極)22bが第2補助導体52と容量結合する。このため、サンプル信号出力部8から第1補助導体51に第1サンプル信号Vsp1を出力することで、第1プローブPLaの電極22a、およびこの電極22aと第1インピーダンス素子4とを接続する第1導体ラインCDL1に、第1電圧信号Vc1に代えて第1試験信号Vts1を発生させることができ、またサンプル信号出力部8から第2補助導体52に第2サンプル信号Vsp2を出力することで、第2プローブPLbの電極22b、およびこの電極22bと第2インピーダンス素子5とを接続する第2導体ラインCDL2に、第2電圧信号Vc2に代えて第2試験信号Vts2を発生させることができる。
【0131】
したがって、この信号生成装置1Bにおいても、上記した信号生成装置1Aでの自己診断処理と同等の自己診断処理を実行することができるため、上記した信号生成装置1Aでの効果と同等の効果を奏することができる。また、この信号生成装置1Bでは、信号生成装置1Aとは異なり、自己診断処理の実行に際して、第1プローブPLaおよび第2プローブPLbを接続する必要が生じるが、その代わりに、第1プローブPLaおよび第2プローブPLbに生じた故障についても、自己診断処理で判別することができる。
【0132】
また、上記の信号生成装置1A,1Bでは、自己診断処理において、処理部11がサンプル信号出力部8に対して第1サンプル信号Vsp1および第2サンプル信号Vsp2を、第1変化パターンと第2変化パターンの2つの変化パターンで出力させる構成を採用しているが、上記したように、第1サンプル信号Vsp1および第2サンプル信号Vsp2を第1変化パターンで出力させることで、第1導体パターンCP1、第1インピーダンス素子4、第1増幅回路41、第2導体パターンCP2、第2インピーダンス素子5、第2増幅回路42、差動増幅回路43および信号生成部7のいずれかに故障が生じているか否か(つまり、信号生成装置1A,1B全体として正常状態であるか、故障状態であるか)を診断できることから、自己診断処理において、処理部11がサンプル信号出力部8に対して第1サンプル信号Vsp1および第2サンプル信号Vsp2を第1変化パターンのみで出力させる構成を採用することもできる。
【0133】
また、上記の信号生成装置1A,1Bはいずれも、上記した構成(先端部側(自由端部側)に電極部21a,21bが配設された構成)のプローブPLa,PLbを介して、シリアルバスSBを構成する被覆導線La,Lbに接続される構成である。このため、この構成のプローブPLa,PLbが接続される信号生成装置1A,1Bでは、各電極部21a,21bが一体的に形成されている構成のプローブが接続される構成とは異なり、
図7に示すように、電極部21a,21bをシリアルバスSBにおける長手方向(長さ方向)Wに沿って離間する任意の2つの位置(同図に示すように、電極部21aは、一般的に互いにツイストされている(撚り合わされている)被覆導線La,Lbのうちの被覆導線Laの第1の位置P1に、電極部21bはシリアルバスSBを構成する被覆導線Lbの第2の位置P2)に装着して使用することができる。このため、図示はしないが、各電極部21a,21bが一体的に形成されていて、シリアルバスSBにおける長手方向Wに沿った同じ位置に取り付ける構成(ツイストされている被覆導線La,Lbをこの位置において解いて、電極部21a,21bを取付可能な距離だけ離す作業と、電極部21a,21bをこの位置における対応する被覆導線La,Lbに同時に取り付ける作業とを行う必要がある構成)のプローブが接続される構成とは異なり、各電極部21a,21bを、それぞれが取り付け易い各位置P1,P2においてツイストされている被覆導線La,Lbを解いて取り付けることができる。また、各電極部21a,21bをシリアルバスSBにおける長手方向Wに沿った別の位置P1,P2に取り付ける構成のため、ツイストされている被覆導線La,Lbを各位置P1,P2において解く量を少なくすることができる。したがって、信号生成装置1A,1Bによれば、各電極部21a,21bのシリアルバスSBへの装着を確実に行えると共に、装着に要する時間の短縮も図ること(装着性を高めること)ができる。
【0134】
また、プローブPLa,PLbの各基端部側に共通の1つのコネクタを配置すると共に、このコネクタを介して信号生成装置1A,1Bに接続するようにし、かつ各プローブPLa,PLbにおける各基端部側の部位(例えば
図7に示す部位X)を、電極部21a,21b側の部位をある程度露出させた状態のままで熱収縮チューブなどで一本化する(まとめる)ようにしてもよい。また、
図7の信号生成装置1A,1Bでは、各プローブPLa,PLbの基端部側をそれぞれ信号生成装置1A,1Bに接続する構成を採用しているが、この構成に限定されるものではない。
【0135】
例えば、
図8に示す信号生成装置1A,1Bのように、2芯シールド線SCを介して信号生成装置1A,1Bに接続された接続ボックスなどの接続部53に、各プローブPLa,PLbの基端部側をそれぞれ接続する構成を採用することもできる。この構成では、2芯シールド線SCは、基端部側が不図示のコネクタを介して信号生成装置1A,1Bに接続されると共に、2つの芯線がこのコネクタを介して信号生成装置1A,1B内の各インピーダンス素子4,5に接続され、かつ不図示のシールドがコネクタを介して信号生成装置1A,1B内のグランドGに接続されている。また、接続部53は、2芯シールド線SCの自由端側に接続されている。この場合、接続部53内には、2芯シールド線SCに含まれてインピーダンス素子4に接続される一方の芯線を、対応するプローブPLaを構成するシールドケーブルの芯線に接続し、2芯シールド線SCに含まれてインピーダンス素子5に接続される他方の芯線を、対応するプローブPLbを構成するシールドケーブルの芯線に接続し、かつ2芯シールド線SCのシールドを、各プローブPLa,PLbを構成する各シールドケーブルのシールドに接続する不図示の接続回路が内蔵されている。
【0136】
この
図8に示す信号生成装置1A,1Bにおいても、別体に形成された一対のプローブPLa,PLbの自由端側に各電極部21a,21bが配置されている構成のため、上記した
図7に示す信号読取システム1と同等の効果を奏することができる。
【0137】
また、上記の各信号生成装置1A,1Bは、被覆導線La,Lbの金属部(芯線)と容量結合する電極部21a,21bを有するプローブPLa,PLbを介して被覆導線La,Lbに接続されると共に、被覆導線La,Lbに伝送されている電圧信号Va,Vbの電圧Va,Vbに応じて電圧が変化する各電圧信号Vc1,Vc2を生成し、この電圧信号Vc1,Vc2に基づいて、電圧信号Va,Vbに対応する符号Csを特定可能な符号特定用信号Sfを生成する構成(すなわち、電圧検出プローブとして機能する上記の各プローブPLa,PLbを使用する構成)を採用しているが、この構成に限定されるものではない。
【0138】
例えば、各プローブPLa,PLbに代えて、
図9に示す信号生成装置1Cのように、一対の電流検出プローブPLc,PLd(被覆導線La,Lbを切断することなく、被覆導線La,Lbに装着し得るクランプ式の電流検出プローブが好ましい)を接続して、符号特定用信号Sfを生成する構成を採用することもできる。公知となっている様々な電流検出プローブをこの電流検出プローブPLc,PLdとして使用することができるが、以下では、一例として、本願出願人が既に提案している特開2006−343109号公報に開示されている電流検出プローブを使用する例を挙げて説明する。また、プローブPLa,PLbを接続する上記の信号生成装置1A,1Bと同一の構成については同一の符号を付して、重複する説明を省略する。
【0139】
この電流検出プローブPLc,PLdは、
図9に示すように、略円形に形成されると共に先端が開閉自在に構成されたクランプ部61と、クランプ部61の内部に配設されて鉄心などの磁気コアに巻線を巻き付けた検出コイルで構成された電流センサ(図示せず)とを備えて、同一に構成されている。この電流センサは、各クランプ部61で対応する被覆導線(電流検出プローブPLcでは被覆導線La、電流検出プローブPLdでは被覆導線Lb)を挟み込んだ状態(クランプした状態)において、対応する被覆導線を流れている電流(被覆導線Laを流れている電流Iaと、被覆導線Lbを流れている電流Ib)を検出すると共に、この電流の電流値に振幅が比例する電圧信号としての電流対応信号Vi(電流Iaについての第1電圧信号としての電流対応信号Viaと、電流Ibについての第2電圧信号としての電流対応信号Vib)に変換して信号生成装置1Cに出力する。電流検出プローブPLc,PLdは、基端部側が入力端子2,3に接続され(固定的、または取り外し自在に接続され)、自由端側にクランプ部61が接続されたシールドケーブル(一例として、同軸ケーブル)を有して構成されている。また、これらのシールドケーブルの基端部と接続される信号生成装置1Cの回路構造は、
図9に示すように、信号生成装置1A,1Bの回路構造(
図6参照)と同等に構成されている。
【0140】
なお、信号生成装置1Cの各インピーダンス素子4,5については、信号生成装置1A,1Bとは異なり、シールドケーブルの特性インピーダンスとの整合が担保される抵抗値(例えば、50Ωや75Ωなどの低抵抗値)に規定されている。なお、この電流検出プローブPLc,PLdは、上記したクランプ部61の構成により、AC電流検出プローブ(交流電流検出プローブ)として構成されているが、電流検出プローブPLc,PLdとして交流電流だけでなく直流電流についても測定し得るDC電流検出プローブ(直流電流検出プローブ)を採用してもよいのは勿論である。
【0141】
被覆導線Laを流れている電流Iaは、被覆導線Laに伝送される電圧信号Vaの電圧Vaに応じてその電流値が変化することから、電流対応信号Viaは電圧信号Vaの電圧Vaに応じてその電圧値が変化する。また、被覆導線Lbを流れている電流Ibは、被覆導線Lbに伝送される電圧信号Vbの電圧Vbに応じてその電流値が変化することから、電流対応信号Vibは電圧信号Vbの電圧Vbに応じてその電圧値が変化する。したがって、信号生成装置1Cでも、プローブPLa,PLbが接続されている上記の信号生成装置1A,1Bと同様にして、差動増幅部6において、第1増幅回路41が第3電圧信号Vc3を出力し、第2増幅回路42が第4電圧信号Vc4を出力し、差動増幅回路43が差分信号Vdを出力する。また、信号生成部7が符号特定用信号Sfを生成して出力する。
【0142】
また、信号生成装置1Cでは、
図9に示すように、信号生成装置1Bでは開放されていた第1補助導体51および第2補助導体52の各端部が所定電位に規定されている部位(本例では一例として、グランドG)に接続されている。また、信号生成装置1Bでは、差動増幅部6の第1増幅回路41に入力する第1試験信号Vts1と、第2増幅回路42に入力する第2試験信号Vts2とを発生させるために、サンプル信号出力部8が電圧信号としての第1サンプル信号Vsp1および第2サンプル信号Vsp2を出力する構成を採用しているが、信号生成装置1Cでは、サンプル信号出力部8Aが、電流信号としての第1サンプル信号Isp1および第2サンプル信号Isp2を出力する構成を採用している。
【0143】
この構成により、信号生成装置1Cでは、自己診断処理の実行の際に、電流検出プローブPLcを第1補助導体51にクランプし、かつ電流検出プローブPLdを第2補助導体52にクランプした状態において、サンプル信号出力部8Aから第1補助導体51に第1サンプル信号Isp1を出力することで、電流検出プローブPLcから第1導体ラインCDL1に出力される電流対応信号Viaを差動増幅部6の第1増幅回路41に、第1電圧信号Vc1に代えて第1試験信号Vts1として入力することができる。また、サンプル信号出力部8Aから第2補助導体52に第2サンプル信号Isp2を出力することで、電流検出プローブPLdから第2導体ラインCDL2に出力される電流対応信号Vibを差動増幅部6の第2増幅回路42に、第2電圧信号Vc2に代えて第2試験信号Vts2として入力することができる。
【0144】
したがって、この信号生成装置1Cにおいても、上記した信号生成装置1A,1Bでの自己診断処理と同等の自己診断処理を実行することができるため、上記した信号生成装置1A,1Bでの効果と同等の効果を奏することができる。また、この信号生成装置1Cでは、信号生成装置1Bと同様にして、自己診断処理の実行に際して、電流検出プローブPLc,PLdを接続する構成のため、電流検出プローブPLc,PLdが正常であるか否かについても、自己診断処理で判別することができる。
【0145】
また、この信号生成装置1Cでは、電流検出プローブPLc,PLdから第1試験信号Vts1,第2試験信号Vts2を出力させるために(つまり、差動増幅部6の第1増幅回路41,第2増幅回路42に第1試験信号Vts1,第2試験信号Vts2を入力するために)、サンプル信号出力部8Aが、電流検出プローブPLc,PLdをクランプさせる第1補助導体51,第2補助導体52に第1サンプル信号Isp1,第2サンプル信号Isp2を出力する構成を採用しているが、この構成に限定されるものではない。例えば、第1補助導体51および第2補助導体52に代えて、電流検出プローブPLc,PLdの各クランプ部61内に配設されて磁気コアに上記の検出コイルと共に巻線を巻き付けた注入コイルを設け、電流検出プローブPLc,PLdを構成するシールドケーブルとして2芯以上の多芯シールドケーブルを使用し、かつサンプル信号出力部8Aが電流検出プローブPLc,PLdを構成する多芯シールドケーブルの1つの芯線をそれぞれ経由して各クランプ部61内の注入コイルに第1サンプル信号Isp1,第2サンプル信号Isp2を出力する構成を採用することもできる。
【0146】
この構成を採用した信号生成装置1Cにおいても、サンプル信号出力部8Aが電流検出プローブPLc側の注入コイルに第1サンプル信号Isp1を出力することで、この注入コイルと磁気的に結合している電流検出プローブPLc側の検出コイルに電圧を誘起させて、電流検出プローブPLcから第1試験信号Vts1を出力させることができ、サンプル信号出力部8Aが電流検出プローブPLd側の注入コイルに第2サンプル信号Isp2を出力することで、この注入コイルと磁気的に結合している電流検出プローブPLd側の検出コイルに電圧を誘起させて、電流検出プローブPLdから第2試験信号Vts2を出力させることができる。したがって、この構成の信号生成装置1Cによっても、上記した信号生成装置1A,1Bでの自己診断処理と同等の自己診断処理を実行することができるため、上記した信号生成装置1A,1Bでの効果と同等の効果を奏することができる。また、この構成の信号生成装置1Cにおいても、自己診断処理の実行に際して、電流検出プローブPLc,PLdが正常であるか否かを自己診断処理で判別することができる。
【0147】
また、上記の電流検出プローブPLc,PLdを使用する信号生成装置1Cによれば、各プローブPLa,PLbを備えた上記の構成と同様にして、電流検出プローブPLc,PLdの各クランプ部61をシリアルバスSBにおける長手方向Wに沿って離間する任意の2つの位置(
図9に示すように、電流検出プローブPLcのクランプ部61は、ツイストされている(撚り合わされている)被覆導線La,Lbのうちの被覆導線Laの第1の位置P1に、電流検出プローブPLdのクランプ部61は、シリアルバスSBを構成する被覆導線Lbの第2の位置P2)に装着して使用することができる。このため、第1プローブPLaおよび第2プローブPLbを備えた構成と同様の効果を奏することができる。