特開2020-92371(P2020-92371A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ スミダコーポレーション株式会社の特許一覧

特開2020-92371電力線通信装置及び電力線通信システム
<>
  • 特開2020092371-電力線通信装置及び電力線通信システム 図000003
  • 特開2020092371-電力線通信装置及び電力線通信システム 図000004
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2020-92371(P2020-92371A)
(43)【公開日】2020年6月11日
(54)【発明の名称】電力線通信装置及び電力線通信システム
(51)【国際特許分類】
   H04B 3/54 20060101AFI20200515BHJP
【FI】
   H04B3/54
【審査請求】未請求
【請求項の数】7
【出願形態】OL
【全頁数】12
(21)【出願番号】特願2018-229907(P2018-229907)
(22)【出願日】2018年12月7日
(71)【出願人】
【識別番号】000107804
【氏名又は名称】スミダコーポレーション株式会社
(74)【代理人】
【識別番号】100137589
【弁理士】
【氏名又は名称】右田 俊介
(72)【発明者】
【氏名】岡野 辰昭
【テーマコード(参考)】
5K046
【Fターム(参考)】
5K046AA03
5K046BA01
5K046CC08
5K046CC09
5K046PS17
5K046PS31
5K046ZZ04
(57)【要約】
【課題】供給電力と、そこに重畳される信号が互いに影響し合うことをより高精度に防いで信号の劣化を防ぎ、しかも装置構成の小型化に有利な電力線通信装置及び電力線通信システムを提供する。
【解決手段】負荷となる子機装置6に電力を供給する電源2と、子機装置6に送信される信号を発生する送受信機4と、電源2から供給される電力と送受信機4から発生した信号とを子機装置6に供給する一対の信号共用電源線である電源線31a、31bと、信号が流れる一次コイル41と、一次コイル41により生じた磁束の変化によって電磁誘導を生じる二次コイル43と、二次コイル43と電磁気的に同一の二次コイル44とに対し、一次コイル41、二次コイル43、44の同極性端をそれぞれ電源線31a、31bに接続し、二次コイル43と二次コイル44の対極の端は基準電位端子t3に接続して電力線通信装置を構成する。
【選択図】図1
【特許請求の範囲】
【請求項1】
負荷となる機器に電力を供給する電圧源と、前記機器に送信される信号を発生する信号源と、前記電圧源から供給される電力と前記信号源から発生した前記信号とを前記機器に供給する一対の電力と信号共用電源線と、前記信号源によって発生した前記信号が流れる第一コイルと、前記第一コイルにより生じた磁束の変化によって電磁誘導を生じる第二コイルと、前記第二コイルと電磁気的に同一の第三コイルと、前記第一コイル、前記第二コイル及び前記第三コイルが巻回されている一つの磁心を含むトランス装置を備え、前記第二コイルと前記第三コイルの同極性端がそれぞれ前記一対の共用電源線の各々に接続され、前記第二コイルと第三コイルの対極の端は信号基準電位点に接続されている電力線通信装置。
【請求項2】
前記基準電位点が大地に接続されている、請求項1に記載の電力線通信装置。
【請求項3】
前記基準電位点が、大地とは別の電位に接続されている、請求項1に記載の電力線通信装置。
【請求項4】
前記第二コイルと前記第三コイルの信号基準電位点に接続される容量素子を有する、請求項1から請求項3のいずれか一項に記載の電力線通信装置。
【請求項5】
前記電圧源が交流電圧源である、請求項1から4のいずれか一項に記載の電力線通信装置。
【請求項6】
前記電圧源が直流電圧源である、請求項1から4のいずれか一項に記載の電力線通信装置。
【請求項7】
請求項1から請求項6のいずれか一つに記載の電力線通信装置と、前記機器とを含む、電力線通信システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電力線通信装置及び電力線通信システムに関する。
【背景技術】
【0002】
電力の供給に使用される電力線(ケーブル)に通信用の信号を重畳する技術は、電力線通信:(PLC:Power Line Communications)と呼ばれている。電力線通信の公知の例は、例えば、特許文献1に記載されている。特許文献1に記載の電力線通信システムは、電気自動車と給電装置とを電力線を含む充電ケーブルにより接続し、電気自動車に備えられた装置と給電装置に備えられた装置とが互いに電力線を介して通信を行うものである。特許文献1の図1によれば、電気自動車は、充電ケーブルのAC線に接続され、充電スタンド及び充電ケーブルからの電力をAC線で電気自動車内の充電器へ導いている。また、2本のAC間にコンデンサが接続され、一方のAC線には、充電ケーブルの接続点からコンデンサの接続点までの間にカップリングトランスの一次コイルが介装されている。AC線間のコンデンサは、フィルタ回路を構成している。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2012−175562号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載の電力線通信システムは、電気自動車と給電装置という比較的短距離の間で行われている。しかしながら、電力線通信は、例えば、鉄道等屋外での運行を管理するシステム等の長距離通信においても使用される。長距離の電力線通信システムでは、高周波信号電圧の減衰が大きく、また、信号品質の劣化が懸念される。このため、長距離の電力線通信では、特許文献1のようにコンデンサをフィルタにするだけでは足りず、より高精度に信号品質の劣化を防いで通信を行うことが要求されている。
【0005】
信号品質の劣化と共に通信を困難にするのがS/N比、つまり信号対ノイズ比の低下である。これは信号の減衰によるほか、電源側の問題からも起こり得る。
近年、電源変圧器に代わってインバーターAC電源装置が使用される事例が増加している。これは高周波スイッチングのPWM変調により50Hzまたは60Hzの出力を生成する物であるため出力電圧にスイッチング周波数とその高調波成分がリップルノイズとして含まれている。また、このリップル電圧は通信信号電圧より大きい。
リップルノイズは、その周波数帯域がPLC通信の周波数帯域である10kHz〜500kHzと重なるために除去困難なノーマルモードノイズとなる。特許文献1に記載の電力線通信システムのフィルタ回路は、このようなノイズを除去することができない。また、ノイズの周波数が通信周波数と重なる場合、ノイズだけを除去することができない。
上記の電源ノイズ問題は、DC電源であってもスイッチング電源装置であれば上記と同様のリップルノイズが含まれており、リップル電圧は通信信号電圧と同等以下であるが、程度の差はあっても上記同様のS/N比低下問題が発生する。
【0006】
また、特許文献1に記載の電力線通信システムは、段落[0002]に記したようにAC線の途中にカップリングトランスの一次コイルが介装されているため、一次コイルに数十アンペアの充電電流が流れる。この電流により発生する磁化力によってカップリングトランスの磁気回路が磁気飽和することを防ぐには、磁気回路にエアギャップを設ける、あるいは鉄芯体積を大きくする、さらには一次コイルに大電流に見合った太い電線を巻回すための大きな巻線スペースが必要になる。このような対策は、機器の構成を小型化することに不利である。
本発明は、上記に鑑みてなされたものであり、供給電力と、そこに重畳される信号が互いに影響し合うことをより高精度に防いで信号の劣化を防ぎ、しかも装置構成の小型化に有利な電力線通信装置及び電力線通信システムに関する。
【課題を解決するための手段】
【0007】
本発明の電力線通信装置は、負荷となる機器に電力を供給する電圧源と、前記機器に送信される信号を発生する信号源と、前記電圧源から供給される電力と前記信号源から発生した前記信号とを前記機器に供給する一対の電力と信号共用電源線と、前記信号源によって発生した前記信号が流れる第一コイルと、前記第一コイルにより生じた磁束の変化によって電磁誘導を生じる第二コイルと、前記第二コイルと電磁気的に同一の第三コイルと、前記第一コイル、前記第二コイル及び前記第三コイルが巻回されている一つの磁心を含むトランス装置を備え、前記第二コイルと前記第三コイルの同極性端がそれぞれ前記一対の共用電源線の各々に接続され、前記第二コイルと第三コイルの対極の端は信号基準電位点に接続されている。
【0008】
本発明の電力線通信システムは、上記電力線通信装置と、前記機器とを含む。
【発明の効果】
【0009】
本発明は、供給電力と、そこに重畳される信号が互いに影響し合うことをより高精度に防いで信号の劣化を防ぎ、しかも装置構成の小型化に有利な電力線通信装置及び電力線通信システムを提供することができる。
【図面の簡単な説明】
【0010】
図1】本発明の一実施形態の電力線通信システム及び電力線通信装置を説明するための図である。
図2図1に示した電力線通信システム及び電力線通信装置の変形例を説明するための図である。
【発明を実施するための形態】
【0011】
以下、本発明の一実施形態を図面に基づいて説明する。なお、すべての図面において、同様の構成要素には同様の符号を付し、重複する説明は適宜省略する。本実施形態では、電源を有する機器(親機装置と記す)と電源から電力の供給を受ける他の機器(子機装置と記す)とによって構成される電力線通信システムの例をあげて説明する。
【0012】
[構成]
まず、本実施形態の電力線通信装置の構成について説明する。
図1は、本実施形態の親機となる電力線通信装置10及び子機となる電力線通信装置11を含む電力線通信システム1を説明するための模式的な回路図である。電力線通信装置10と電力線通信装置11とは双方向に信号を送受信して通信することが可能である。双方向通信を円滑に行うため、電力線通信装置10、11は同一仕様のものとする。
【0013】
電力線通信装置10は、負荷となる機器である電力線通信装置11に電力を供給する電圧源である電源2を備えている。また、電力線通信装置10は、電力線通信装置11に送信される信号を発生する信号源である送受信機4と、電源2から供給される電力と送受信機4から発生した信号とを電力線通信装置11に供給する一対の電力と信号共用の電源線31a、31bと、送受信機4によって発生した信号が流れる一次コイル41と、一次コイル41により生じた磁束の変化によって電磁誘導を生じる二次コイル43と、二次コイル43と電磁気的に同一の二次コイル43と、一次コイル41、二次コイル43及び二次コイル44が巻回されている一つの磁心42を含む三巻線トランスTr1を備え、二次コイル43と二次コイル44の同極性端がそれぞれ電源線31a、電源線31bに別々に接続され、二次コイル43と二次コイル44の対極の端は基準電位端子t3に接続されている。
【0014】
電源2は、商用電力から給電される定格50Hzまたは60Hz、出力電圧100Vまたは200Vの電源トランスであってもよいし、定格50Hzから400Hz、出力電圧100Vから240V出力のインバーターAC電源装置であってもよい。さらに、電源2は、12Vから48V出力のDC電源装置であってもよい。
電源2は、出力のいずれの端子も大地から分離・絶縁された非接地(Floating)方式で送電できるものでなければならない。また、電源2の電流ループにつながり負荷となる子機装置6も同様に大地から電気的に分離されていなければならない。
【0015】
図1において、電力線通信装置10の外部配線接続端子は、一対のケーブル端子t1、t2は外部ケーブル33a、33bを接続する。電源端子t21、t22には電源2の出力を接続する。通信信号の基準電位となる信号グランドには、基準電位端子t3が接続されている。
電力線通信装置10の内部回路としては、ケーブル端子t1、t2と電源端子t21、t22を接続する一対の電源線31a、31bと、双方向通信回路により送信と受信を行う送受信機4と、送受信機4と電源線31a、31bを絶縁しながら信号を注入、分離する個々に絶縁された一次コイル41及び二次コイル43、44を有する三巻線トランスTr1と、二次コイル43、44のトランス端子t45、t46と電源線31a、31bとを接続してハイパスフィルタを構成するコンデンサ45、46と、電源線31a、31bと接続するトランス端子t45、46の巻線対極性端子共用端子(以下、単に「共用端子」と記す)t47と基準電位端子t3とを接続し、不平衡電流抑圧とハイパスフィルタを兼ねるコンデンサ47を備えている。
【0016】
電源線31a及び電源線31bは、電力線通信装置10内にあって電力線通信装置10の外部ケーブル33a、33bとそれぞれ接続される導線部分である。電源線31a及び電源線31bは、いわゆる絶縁電線による配線に限らず、例えば、電源線31aは、ケーブル端子t1、接続点j1及び電源端子t21の3つを含む一体の端子形状とすることができる。電源線31b、32a、32bは、電源線31aと同様に構成されている。電源線31a及び電源線31bは、外部ケーブル33a、33bによって結ばれた電力線通信装置11内を通る閉回路を構成する。
閉回路において電源端子t21から電源端子t22に向かう電流の方向を矢線P1、P2、P3で示す。このような電流のうち、矢線P1で示す電源電流(以下、「矢線P1の電源電流」と記す)が子機装置6を動かす電力として消費される。矢線P2の電源電流と矢線P3の電源電流も電源2から供給される電流であるが、ここで矢線P2の電源電流と矢線P3の電源電流は矢線P1の電源電流より充分に小さいので、矢線P2の電源電流及び矢線P3の電源電流をシステムの電力としては無視し、P1に加算してない。
【0017】
外部ケーブル33a、33bは、布設された時の対地インピーダンスが高く、この対地インピーダンスが等しいことが望ましい。このため、外部ケーブル33a、33bは、キャプタイヤ電源ケーブルであって接地線を含まない二芯平行の長丸ケーブル、または芯線を二本撚り合わせた丸ケーブルが好ましい。
【0018】
送受信機4は、内部に送信回路(図示せず)と受信回路(図示せず)と双方向通信回路(図示せず)とを持ち、一通信路での同時通信に対応している。双方向通信の方式は時分割方式、帯域分割方式、方向性結合(ハイブリッドトランス)などの公知の技術のいずれの方式でも良いが、本実施形態では帯域分割方式と時分割方式を併用する。
【0019】
また、本実施形態と異なり、通信が一方向固定である場合は送受信機4、5の一方を送信専用通信装置とし、他方を受信専用通信装置とする。このように、親機装置と子機装置を送受信で使い分ければ、双方向通信回路を省略できる。このような電力線通信システムの構成は本実施形態の構成要素の送受信機4、5から送信、受信の一方の機能要素と双方向通信回路を除くものであり、電力線通信システム1と同様に動作する。送受信機4、5の一方を送信専用通信装置とし、他方を受信専用通信装置とする通信システムは、電力線通信システム1の下位互換装置であるから、その説明を省く。
【0020】
電力線通信装置10に含まれる三巻線トランスTr1は、送受信機4の出力信号が流れる一次コイル41と、一対の二次コイル43、44とを備えている。本実施形態では、二次コイル43の巻始めがトランス端子t45に接続され、コンデンサ45を介して電源線31aの接続点j1に接続されている。二次コイル44の巻始めはトランス端子t46に接続され、コンデンサ46を介して電源線31bの接続点j2に接続されている。また二次コイル43、44のそれぞれの巻終りが共用端子t47に接続されていて、共用端子t47はコンデンサ47を介して信号基準点に接続されている。本実施形態では、基準電位端子t3を信号基準点とし、基準電位端子t3を接地するものとする。
【0021】
三巻線トランスTr1では、二次コイル43、44の電磁気的特性が一致していることが好ましく、また、一次コイル41から二次コイル43、44への伝送損失を少なくするために相互誘導の結合係数を高くする必要がある。このため本実施形態では、一次コイル41、二次コイル43、44に同一の線材を使用し、計3本の線材を3本平行に並べて同一の回数巻回している。結合係数を高めるための巻線法には、上記の並列巻線の他に3本の線材を撚り線として巻回すことも巻数が比較的少ないトランスにとって効果的である。
ここでいう三巻線とは、3個の巻線が存在することに限らず、複数の巻線を直列あるいは並列に接続して電気的に1つのコイルとしていれば、それを一巻線として扱う。
【0022】
また、本実施形態では、コンデンサ45、46の静電容量が同一であることが好ましい。ここで「静電容量が同一」とは、容量の相違が数%程度と小さいことを含む。このような例を実現するには、例えば、コンデンサ45、46の静電容量の差が最小となるように複数のコンデンサから二つを選別して使用してもよい。
上記コンデンサの静電容量は、以下の条件で選定する。
コンデンサのインピーダンスZcは、以下の式によって表される。
Zc=1/(2πf C)
上記式において、fは周波数(Hz)、Cは静電容量(F)である。
本実施形態では、インピーダンスZcが通信周波数に対して十分小さく、電源周波数に対して十分大きくなるように選定する。
DC電源の場合、f=0であるから直流のインピーダンスZcは無限大になり、直流電流はコンデンサを通れないので通信周波数でのインピーダンスのみ考慮すればよい。コンデンサ47の静電容量としては、高精度である必要はないがコンデンサ45の容量とコンデンサ46の容量の合計値と同等の容量を有するものが好ましい。
【0023】
電力線通信装置10では、コンデンサ45、46、47が二次コイル43、44の両端に直列に接続されているので直列LC共振フィルタのように見えるが、本実施形態では以下の理由によりLC共振フィルタとしては利用していない。
三巻線トランスTr1の巻線は純粋な自己インダクタンスではなく、電磁結合している他のコイルとの相互誘導によって並列インピーダンスが存在し、一般のLCフィルタとは異なっている。また、本実施形態の三巻線トランスTr1では二次コイル43、44に電流が流れると、磁気回路的には磁化力が逆向きになり、二次コイル43、44の相互誘導で磁束が打ち消し合うために見かけ上自己インダクタンスはゼロになる。このため、電源線31a、31b間の電源2等のAC電圧源に対してはLCフィルタになり得ない。
一方、電源線31a、31bと基準電位端子t3との間に電圧が存在する場合、三巻線トランスTr1はLCフィルタになり得る。ただし、前述の相互誘導による並列インピーダンスと、自己インダクタンスのバラつき管理が難しく実用が困難になる。そのような周波数共振通過型フィルタの例についてはここでは説明しない。
本実施形態は、三巻線トランスの伝送特性を信号周波数帯域(10kHzから500kHz)内に共振を生じないように設計する。つまり、本実施形態は、帯域内の全ての周波数に対して平等の出力及び受信感度が得られるように設計し、通信周波数以外の周波数のノイズの除去は受信回路に設けた帯域分割通信用の狭帯域フィルタにより担保する。
【0024】
次に、コンデンサ45、46と三巻線トランスTr1による電源2のフィルタリングについて説明する。電源線31a、31b間には、接続点j1−コンデンサ45−二次コイル43−(共用端子t47)−二次コイル44−コンデンサ46−接続点j2からなる直列回路が形成されている。電源2は便宜的に接続点j1側を正極、接続点j2側を負極とし、出力電圧をV1とする。二次コイル43、44のインピーダンスは自己インダクタンスのインピーダンスと、相互誘導により送受信機4の内部インピーダンス(等価抵抗Rとする)が並列に見えており、これらの並列成分に加えて巻線の抵抗が直列に存在する。
【0025】
上記直列回路に電源2が接続されると、接続点j1、j2間に電圧V1が印加されて矢線P2の電源電流が流れる。二次コイル43を流れるコイル電流i3、二次コイル44を流れるコイル電流i5は、矢線P2の電源電流と値が等しく、かつ互いに等しい(i3=i5)が、コイル電流i5は共用端子t47で折り返されるので三巻線トランスTr1の磁気回路的には電流の向きが逆向きで値がコイル電流i3と等しくなる。
二次コイル43、44は、巻数が等しいので磁化力の源となる電流と巻数の積も等しく、発生する磁化力は方向が逆向きで値が等しいものとなる。このため、磁心42内に逆向きの双子の磁束が発生することになるが、この磁束は見かけ上打ち消し合って消滅する。換言すれば、二次コイル43、44の磁化力が相互誘導で打ち消し合う結果、自己インダクタンスが無くなるので、二次コイル43、44と一次コイル41との相互誘導もなくなるため等価抵抗Rは存在しなくなる。従って二次コイル43、44のインピーダンスは巻線の直流抵抗成分だけになる。
【0026】
また、磁束が打ち消された結果、一次コイル41に電圧は誘起されず、コイル電流i35は流れない。このような電磁気現象により、電源線31a、31bに接続される二次コイル43、44から送受信機4に接続される一次コイル41への電圧移行が阻止されて、送受信機4に対する電源2の干渉障害が防止される。
この磁束及びインダクタンスの消滅は、AC電源に対してだけでは無く接続点j1−接続点j2間に電圧として存在する全ての交流電圧についても同様に生じる。このため、AC電源またはDC電源に含まれるリップルノイズも三巻線トランスTr1内で消滅する。また、電源2から発生するノイズの他に外部から侵入するノイズであっても、接続点j1−接続点j2間に電圧として存在するノイズは同様の電磁気現象により三巻線トランスTr1内で消滅する。
例えば、電源線31a、31bに雷サージが侵入した場合、対地雷電圧はアレスター等で防御しても線間に電源電圧を超えるサージ電圧が残ることがある。このようなサージ電圧によるサージ電流が発生すると、接続点j1−接続点j2間に電圧を生じるが、前述の電磁気現象により三巻線トランスTr1内で消滅し、送受信機4の障害を防止することができる。
【0027】
次に、三巻線トランスTr1と電源線31a、31bをつないでいるコンデンサ45、46のフィルタ効果について説明する。電源線31a、31b間には、接続点j1−コンデンサ45−二次コイル43−(共用端子t47)−二次コイル44−コンデンサ46−接続点j2からなる直列回路が形成されている。ここの説明では、電源2は便宜的に接続点j1の側を正極、接続点j2の側を負極とし、電源2の出力電圧を電圧V1とする。
二次コイル43、44のインピーダンスとしては、自己インダクタンスのインピーダンス(Zeとする)と、相互誘導により送受信機4の内部インピーダンス(ここでは送信器の出力抵抗)が並列に見えており、この等価並列抵抗をRとする。二次コイル43、44の巻線抵抗をRwとする。コンデンサ45、46のインピーダンスはZcとする。
ここで、三巻線トランスTr1においては、通常、インピーダンスZeが等価並列抵抗Rより充分大きいが、本実施形態の動作状態では二次コイル43、44の自己インダクタンスが消滅し、Ze≒0Ωとなる。このことから、等価並列抵抗Rも消滅し、二次コイル43、44のインピーダンスは巻線の直流抵抗Rwのみになる。
【0028】
本実施形態では、インピーダンスZcが直流抵抗Rwよりも充分大きくなっていて(Rw<<Zc)、直流抵抗Rwを無視することができる。接続点j1−接続点j2間の直列回路の電源に対するインピーダンスZ12は、コンデンサ45、46の直列回路となり、以下のように表される。
12≒2Zc
上記のインピーダンスZcは通信信号周波数に対して十分小さい必要がある。許容されるインピーダンスZcの最大値として送受信機の入出力インピーダンスと同値として、例えば10kHzで150Ωとすれば、定格50Hzの電源2に対するインピーダンスは(10000/50)倍の30kΩとなり、インピーダンスZ12はインピーダンスZcの2倍の60kΩとなる。
【0029】
接続点j1から接続点j2に流れる矢線P2の電源電流は、V1/60kΩの式によって算出される。この式においてV1=200Vとすると、矢線P2の電源電流(式では便宜上P2と標記)は、P2=3.3mAとなる。このような値は、一通信路での同時通信で使用される微少電流値の範囲内である。
以上説明した方法で、本実施形態は、信号周波数に対して十分小さく、電源周波数に対して十分大きいインピーダンスを持つ静電容量のコンデンサを設定することができる。
【0030】
コンデンサ47は、接続点j1−接続点j2間の直列回路の共用端子t47と基準電位端子t3を接続し、不平衡電流を抑制する。不平衡電流は、主に電源線31a、31bの対地インピーダンスが一致していない場合に発生する。電源線31a、31bの対地インピーダンスは、主に電源線31a、31bの大地との静電容量によるが、完全に一致させることは難しい。対地インピーダンスが一致していなければ、電圧V1は対地インピーダンスの比に分圧され、分圧点である大地と算術中間電圧との間に電位差が生じる。共用端子t47は、算術中間電圧に合せて設計されており、t47を直接t3の接地に接続すれば前記電位差による電流が大地に流れることになる。
【0031】
不平衡電流は、コイル電流i3とコイル電流i5の電流値の差として表れ、打ち消すべき磁束が完全には打ち消せなくなって一次コイル41に電圧を生じてしまう。このような不平衡電圧は注意深く設計施工されたシステムでは無視できる程小さいが、ケーブル周辺の電磁的環境の一時的擾乱、例えば電車の通過などにより、一時的に大きくなることがあり得る。このような場合に発生する不平衡電流を抑制する目的で、本実施形態は、予防的にコンデンサ47を備えているが、通信システムの動作に必須の構成要素では無い。
【0032】
以上のように、電源2に対するフィルタ効果は、コンデンサ45、46を設けたことによって微少な電流しか流れず、流れた電流による起磁力は相殺されて磁束を生じないので電磁的干渉を起こさない。また、本実施形態は、電源2からの電流が微少である上、磁束を生じないので磁気飽和することがない。このような本実施形態の電力線通信システム1は、三巻線トランスTr1が使用する信号電力に必要な分を超える過剰なコア体積や電線直径を必要としないので小型化に有利である。
【0033】
次に、電力線通信システム1において送受信される送受信信号の伝送ループについて説明する。便宜的に、親機側から送信し子機側で受信している状態とする。
電力線通信システム1では、電力線通信装置10内の送受信機4から送出された信号電圧によって三巻線トランスTr1の一次コイル41に励磁電流が流れ、磁心42に磁束が発生して二次コイル43、44に電圧を誘起する。一次コイル41、二次コイル43、44は巻数が同一であるのでコイル端子電圧の値は全て同じである。本実施形態では、コイル端子の電圧が送信信号電圧となる。
二次コイル43の電圧により発生したコイル電流i2は、トランス端子t45からコンデンサ45を通り接続点j1から電源線31aに流れ込む。接続点j1には子機装置6に向かう信号電流S1と電源2の側に向かう電流NG1が存在する。
【0034】
二次コイル44の電圧により発生したコイル電流i4は、トランス端子t46からコンデンサ46を通り、接続点j2から電源線31bに流れ込む。接続点j2には、子機装置6に向かう信号電流S2と電源2の側に向かう電流NG1が存在する。ここで、電源線31aの電流NG1の通路であるトランス端子t45−接続点j1−電源端子t21と、電源線31bの電流NG1の通路トランス端子t46−接続点j2−電源端子t22のインピーダンスが同一で、トランス端子t45、t46の電圧が同一であるから、電源端子t21と電源端子t22での信号電圧は同一となり、電源2の内部インピーダンスの両端に電位差が無いので電流は流れない。
【0035】
また、電源2は大地から絶縁されているために対地インピーダンスが高いので、電源端子t21、t22から大地への漏れ電流は無視できる。このため、本実施形態では電流NG1は存在しないとみなすことができる。
以上のことから、電力線通信システム1において、信号電流S1=コイル電流i2、信号電流S2=コイル電流i4の関係が成立する。
上記二つの流れ出し電流の起磁力に対し、相互誘導で一次コイル41には、等アンペアターンの法則によりi1=(i2+i4)の電流が送信器から流れ込む。この過程を送受信器4からの視点で見れば、送信電流が三巻線トランスTr1の一次から二つの二次コイル43、44に分流したことと等価である。
【0036】
ここで、信号電流S1が通る回路をS1ループ、信号電流S2が通る回路をS2ループとする。S1ループは、トランス端子t45−コンデンサ45−接続点j1−ケーブル端子t1−外部ケーブル33a−ケーブル端子t4−接続点j4−コンデンサ55−トランス端子t55−二次コイル53−共用端子t57−コンデンサ57−基準電位端子t6−大地−基準電位端子t3−コンデンサ47−二次コイル43−トランス端子t45のループとなる。また、S2ループは、トランス端子t46−コンデンサ46−接続点j2−ケーブル端子t2−ケーブル33b−ケーブル端子t5−接続点j5−コンデンサ56−トランス端子t56−二次コイル54−共用端子t57−コンデンサ57−基準電位端子t6−大地−基準電位端子t3−コンデンサ47−二次コイル44−トランス端子t45のループとなる。
S1ループ及びS2ループは、相応する同種の回路要素がそれぞれ同一の特性になるよう設定されているので、S1ループとS2ループのインピーダンスの相違は同一とみなせる程度に僅少である。従って、トランス端子t45、t46で同電圧の信号電流S1、S2はいずれもコイル電流i1の1/2(S1=S2=(i1/2)である。
【0037】
続いて、子機装置6の側への伝送ループについて説明する。ここでは、上記のS1ループとS2ループとでインピーダンスが等しいことを前提としている。電力線通信装置10から出力された信号電流S1、S2は、ケーブル端子t1、t2から二芯の外部ケーブル33a、33bを伝い、電力線通信装置11のケーブル端子t4、t5に達する。この間のS1ループ、S2ループのインピーダンスは、伝送路の距離に比例して増加し、信号電圧が減衰するが、受信器が感知できる最小受信電圧には限界がある。本実施形態では、有効感度電圧は送信出力電圧の1/100が限界であり、これにより通信距離が制約される。
接続点j4、j5から先に向かう電流は、三巻線トランスTr2の側に向かう信号電流S1、S2と子機装置6の側に向かう電流NG2に分かれるが、子機装置6の側の電源端子t61、t62が同電位になり子機装置6の内部インピーダンスに電流は流れず、子機装置6は大地から絶縁されているので対地インピーダンスが高いため、対地漏れ電流は無視できるので電流NG2は存在しないとみなす。
従って、電力線通信システム1においては、信号電流S1とコイル電流i7の値が等しく、信号電流S2とコイル電流i9の値が等しくなる。信号電流S1、S2が流れ込むことによって生じる起磁力は、同方向であるから加算され、磁心52に2倍の磁束を発生させる。このとき、一次コイル51には等アンペアターンの法則によりコイル電流i7とコイル電流i9との合成電流であるコイル電流i6(i6=i7+i9)が送受信機5に向かって流れる。この過程を送受信器5からの視点で見れば、送受信機5が受信に使用する信号電力を二つのループで半分ずつ分担して運んだことと等価である。本実施形態の電力線通信システム1は、電源ケーブル二芯に信号電流が半分ずつ分流したことにより信号電圧減衰も半分になるので長距離通信に有利になる。
【0038】
S1ループを通ってきた信号電流S1、S2ループを通ってきた信号電流S2は、共用端子t57で合流して帰還電流S3となる。帰還電流S3は、コンデンサ57を経由し基準電位端子t6に達する。基準電位端子t3、t6は、電力線通信装置10と電力線通信装置11それぞれの側の基準電位点で接地されている。基準電位端子t3、t6では、同一の帰還電流S3が逆向きに大地に流れ込み、互いに相殺されていると見ることができるので、仮想等電位点になる。見かけ上帰還電流S3は、基準電位端子t6から大地を通り、基準電位端子t3からコンデンサ47を介して共用端子t47に達する。さらに、帰還電流S3は、三巻線トランスTr1の二次コイル43にコイル電流i2、二次コイル44にコイル電流i4として還流する。このような帰還電流S3によってS1ループ、S2ループが完結し、電力線通信装置10、11間の信号伝送が完了する。
【0039】
また、子機装置6の側の矢線P3の電源電流は、親機として機能する電力線通信装置10の側の前述した矢線P2の電源電流と同様に流れる。電力線通信装置10、11は同一の構造を有し、また、矢線P2の電源電流と矢線P3の電源電流は略等しい(P2≒P3)ので、ここでは説明を省略する。三巻線トランスTr2においては、三巻線トランスTr1内の矢線P2の電源電流と同様に、矢線P3の電源電流による磁化力は相殺されて磁束が消滅する。このような作用により、本実施形態の電力線通信システム1では、子機側である電力線通信装置11においても電源による送受信機5に対する干渉、障害が生じない。
【0040】
電力線通信装置10、11のコンデンサ47、57は、帰還電流S3に対するハイパスフィルタであるとともに、電力線通信装置10、11の親機と子機の接地電位の差電圧とその不規則変動による交流成分が通信信号ループ内に侵入し障害となることを抑制するフィルタとして機能する。しかしながら、通信システムの動作に必須の構成要素では無い。
【0041】
上記通信信号ループにおける信号品質について要約する。
(1)送信信号電流を電源ケーブル二芯に分流し、受信側で加算する結果、信号電圧減衰が従来技術によるものより少ない。
(2)電源ケーブル二芯間に存在する電源由来ノイズおよび外来ノイズは三巻線トランス内で相殺消滅することにより、受信器側に移行しない。この効果により、通信信号周波数と同じ周波数のノイズも除去される。
(3)上記(1)と(2)の効果により長距離通信においてもS/N比の低下が少ない。
以上説明のように、本実施形態の電力線通信システム1及び電力線通信装置10、11は、電源2が交流でも、直流であっても、信号品質の高い電力通信を行うことができる。
【0042】
[変形例]
次に、以上説明した電力線通信システム1の変形例を説明する。
図1で説明した本実施形態は、信号基準電位を大地とした電力線通信方式を示している。しかし、本実施形態は、大地への接地ができない場合であっても同様の効果を得る電力線通信システムを構成することができる。
図2は、接地に替えて信号グランド線33cを使用した本実施形態の変形例である。図1で説明した電力線通信システム1は、電力線通信装置10(親機側)、電力線通信装置11(子機側)とも十分良好な接地が得られることを前提としているが、電力線通信装置10、電力線通信装置11のどちらか、または両方が接地できない場合も考えられる。その場合は、図2の電力線通信システム100のように、基準電位端子t3、t6を絶縁電線で接続する事ができる。
図2に示す電力線通信システム100は、信号グランド線33cだけが図1の電力線通信システム1と異なるものであって、他は電力線通信システム1と同様に構成されている。このため、変形例では、信号グランド線33cの部分以外の説明を省略する。
【0043】
信号グランド線33cは、帰還電流S3が基準電位端子t6から基準電位端子t3へ流れる信号線となる。信号グランド線33cのインピーダンスによる信号電圧減衰を少なくするため、信号グランド線33cには、信号電流S1の外部ケーブル33a及び信号電流S2のケーブル33bと同様に、対地インピーダンスが高いものが好ましい。また、信号グランド線33cは、帰還電流S3に応じて十分な導体面積の電線を使用することが好ましい。ただし、信号グランド線33cは、外部ケーブル33a、33bより太い必要は無い。このような信号グランド線33cには、三芯撚り合せ丸型キャプタイヤケーブルを使用し、三芯中の一芯を信号グランド線33cとして使用し、他の二芯を33a、33bとして使用することが好ましい。
【0044】
上記実施形態及び実施例は、以下の技術思想を包含する。
(1)負荷となる機器に電力を供給する電圧源と、前記機器に送信される信号を発生する信号源と、前記電圧源から供給される電力と前記信号源から発生した前記信号とを前記機器に供給する一対の電力と信号共用電源線と、前記信号源によって発生した前記信号が流れる第一コイルと、前記第一コイルにより生じた磁束の変化によって電磁誘導を生じる第二コイルと、前記第二コイルと電磁気的に同一の第三コイルと、前記第一コイル、前記第二コイル及び前記第三コイルが巻回されている一つの磁心を含むトランス装置を備え、前記第二コイルと前記第三コイルの同極性端がそれぞれ前記一対の共用電源線の各々に接続され、前記第二コイルと第三コイルの対極の端は信号基準電位点に接続されている電力線通信装置。
(2)前記基準電位点が大地に接続されている、(1)の電力線通信装置。
(3)前記基準電位点が、大地とは別の電位に接続されている、(1)の電力線通信装置。
(4)前記第二コイルと前記第三コイルの信号基準電位点に接続される容量素子を有する、(1)から(3)のいずれか一つの電力線通信装置。
(5)前記電圧源が交流電圧源である、(1)から(4)のいずれか一つの電力線通信装置。
(6)前記電圧源が直流電圧源である、(1)から(4)のいずれか一つの電力線通信装置。
(7)(1)から(6)のいずれか一つの電力線通信装置と、前記機器とを含む、電力線通信システム。
【符号の説明】
【0045】
1、100・・・電力線通信システム
2・・・電源
t1、t2、t4、t5・・・ケーブル端子
4、5・・・送受信機
6・・・子機装置
10、11・・・電力線通信装置
31a、31b、32a、32b・・・電源線
33a、33b・・・外部ケーブル
33c・・・信号グランド線
41、51・・・一次コイル
42、52・・・磁心
43、44、53、54・・・二次コイル
45、46、47、55、56,57・・・コンデンサ
j1、j2、j4、j5・・・接続点
t1、t2、t4、t5・・・ケーブル端子
t21、t22、t61、t62・・・電源端子
t3、t6・・・基準電位端子
t45、t46、t55、t56・・・トランス端子
Tr1、Tr2・・・三巻線トランス
図1
図2