【解決手段】インピーダンス調整装置13は可変コンデンサユニット21を有する。マイコン23は、n個のコンデンサ回路A1,A2,・・・,Anが有するPINダイオード31を各別にオン又はオフに切替えることによって可変コンデンサユニット21の容量値を変更する。これにより、高周波電源10から見たプラズマ発生器11側のインピーダンスが調整される。マイコン23は、可変コンデンサユニット21の容量値を目標容量値に変更する場合、容量値を目標容量値とは異なる中継容量値に変更し、容量値を中継容量値に変更した後、容量値を目標容量値に変更する。
【発明を実施するための形態】
【0025】
以下、本発明をその実施の形態を示す図面に基づいて詳述する。
(実施の形態1)
<電源システムの構成>
図1は、実施の形態1における電源システム1の要部構成を示すブロック図である。電源システム1は、高周波電源10、プラズマ発生器11、高周波検出器12及びインピーダンス調整装置13を備える。高周波電源10は、伝送路Tpを介してプラズマ発生器11に接続されている。伝送路Tpの中途に高周波検出器12及びインピーダンス調整装置13が配置されている。高周波検出器12は、高周波電源10とインピーダンス調整装置13との間に位置する。高周波電源10及びプラズマ発生器11は接地されている。
なお、伝送路Tpは、高周波電源10からプラズマ発生器11に至るまでの伝送路を示している。このため、
図1では、高周波検出器12及び後述するコイル20が伝送路Tp上に配置されている。
【0026】
高周波電源10は、周波数が高い交流電圧を出力する交流電源である。高周波電源10が出力する交流電圧の周波数は、工業用のRF(Radio Frequency)帯に属する400kHz、2MHz、13.56MHz、27.12MHz、40.68MHz又は60MHz等の周波数である。高周波電源10は、高周波検出器12及びインピーダンス調整装置13を介して交流電圧をプラズマ発生器11に出力する。このとき、高周波電源10が出力した交流電圧は伝送路Tpを伝送する。高周波電源10の出力インピーダンスは、例えば実部のみによって表される。この場合、出力インピーダンスは例えば50オームである。プラズマ発生器11は負荷として機能する。
【0027】
プラズマ発生器11は、高周波電源10から入力された交流電圧を用いてプラズマを発生させる。プラズマ発生器11のタイプが容量結合型である場合、プラズマ発生器11は、板面が互いに対向する板状の第1電極及び第2電極を有する。第1電極が接地されている。高周波電源10が出力した交流電圧は第2電極に印加される。これにより、第1電極及び第2電極間でプラズマが発生する。
【0028】
プラズマ発生器11のタイプが誘導結合型である場合、プラズマ発生器11はコイルを有する。コイルの一端が接地されている。高周波電源10が出力した交流電圧はコイルの他端に印加される。これにより、コイル内でプラズマが発生する。
【0029】
プラズマ発生器11が発生させたプラズマは、エッチング又はCVD(Chemical Vapor Deposition)等の処理に用いられる。プラズマ発生器11では、処理が実行されている間、プラズマの状態が時間の経過とともに変化する。プラズマの状態が変化した場合、プラズマ発生器11のインピーダンスが変化する。
【0030】
高周波検出器12は、高周波電源10から見たプラズマ発生器11側のインピーダンスを算出するためのパラメータ、又は、高周波電源10から見たプラズマ発生器11側の反射係数を算出するためのパラメータを周期的に検出する。以下では、高周波電源10から見たプラズマ発生器11側のインピーダンスを、負荷側インピーダンスと記載する。高周波電源10から見た反射係数を、単に、反射係数と記載する。反射係数は複素数である。反射係数の絶対値は、ゼロ以上であり、かつ、1以下である。
【0031】
負荷側インピーダンスは、高周波電源10の出力端からプラズマ発生器11側を見たインピーダンス、又は、インピーダンス調整装置13における交流電圧の入力端からプラズマ発生器11側を見たインピーダンスである。インピーダンス調整装置13の入力端は、高周波電源10の出力端に相当する。負荷側インピーダンスは、インピーダンス調整装置13のインピーダンスとプラズマ発生器11のインピーダンスとの合成インピーダンスである。
【0032】
高周波検出器12は、パラメータの一例として、高周波検出器12を介して伝送する交流電圧及び交流電流、並びに、これらの位相差を検出する。高周波検出器12は、パラメータの他例として、プラズマ発生器11に向かう交流電圧の進行波電力(又は進行波電圧)と、プラズマ発生器11で反射して高周波電源10に向かう反射波電力(又は反射波電圧)とを検出する。高周波検出器12は、パラメータを検出する都度、検出したパラメータを示すパラメータ情報をインピーダンス調整装置13に出力する。
【0033】
インピーダンス調整装置13は、自装置のインピーダンスを変更することによって負荷側インピーダンスを調整する。具体的には、インピーダンス調整装置13は、高周波検出器12から入力されたパラメータ情報に基づいて、負荷側インピーダンスが高周波電源10の出力インピーダンスの複素共役となるように、又は、反射係数が最小値となるように、自装置のインピーダンスを調整する。所謂、インピーダンス整合を行う。これにより、負荷側に効率よく電力を供給することができる。負荷側インピーダンスが出力インピーダンスの複素共役とならない場合、インピーダンス調整装置13は、負荷側インピーダンスが高周波電源10の出力インピーダンスの複素共役に最も近い値となるように、自装置のインピーダンスを調整する。
【0034】
<インピーダンス調整装置13の構成>
インピーダンス調整装置13は、コイル20、可変コンデンサユニット21、コンデンサ22、マイクロコンピュータ(以下、マイコンという)23及び算出回路24を有する。コイル20は、伝送路Tpの中途に配置されている。コイル20において、高周波検出器12側の一端に可変コンデンサユニット21の一端が接続されている。コイル20において、プラズマ発生器11側の一端にコンデンサ22の一端が接続されている。可変コンデンサユニット21及びコンデンサ22の他端は接地されている。
【0035】
コイル20、可変コンデンサユニット21及びコンデンサ22によって構成される回路は、π型の回路である。インピーダンス調整装置13が有する回路は、π型に限定されず、L型又はT型等であってもよい。L型の回路の一例として、コイル20及びコンデンサ22の直列回路の一端又は他端に可変コンデンサユニット21の一端が接続され、かつ、可変コンデンサユニット21の他端が接地されている回路が挙げられる。この場合、コンデンサ22は、伝送路Tpの中途に配置されてプラズマ発生器11に接続される。L型の回路の他例として、コイル20及び可変コンデンサユニット21の直列回路の一端又は他端にコンデンサ22の一端が接続され、かつ、コンデンサ22の他端が接地されている回路が挙げられる。この場合、可変コンデンサユニット21は、伝送路Tpの中途に配置されて高周波検出器12に接続される。なお、コンデンサ22の代わりに、もう1つの可変コンデンサユニット21を配置してもよい。
【0036】
T型の回路の例として、コイル20と、図示しない他のコイルとが直列に接続され、コイル20及び他のコイル間の接続ノードに可変コンデンサユニット21の一端が接続され、かつ、可変コンデンサユニット21の他端が接地されている回路が挙げられる。
以下では、インピーダンス調整装置13がπ型の回路を有する例を説明する。
【0037】
可変コンデンサユニット21は、並列に接続されたn個のコンデンサ回路A1,A2,・・・,Anを有する。nは2以上の整数である。コンデンサ回路A1,A2,・・・,Anそれぞれは、コンデンサ30、PINダイオード31及び駆動部32を有する。コンデンサ回路A1,A2,・・・,Anそれぞれでは、コンデンサ30の一端がコイル20の一端に接続されている。コンデンサ30の他端は、PINダイオード31のアノードに接続されている。PINダイオード31のカソードは接地されている。このように、コンデンサ30及びPINダイオード31は直列に接続されている。コンデンサ30及びPINダイオード31間の接続ノードに駆動部32が接続されている。
【0038】
n個のコンデンサ回路A1,A2,・・・,Anの並列は、厳密な並列を意味せず、実質的な並列を意味する。従って、例えば、コンデンサ回路A1の両端間に、コンデンサ回路A2及び図示しない抵抗の直列回路が接続されてもよい。
【0039】
駆動部32は、接地電位を基準とした正の電圧をPINダイオード31のアノードに印加する。これにより、PINダイオード31に順方向電圧が印加される。駆動部32は、更に、接地電位を基準とした負の電圧をPINダイオード31のアノードに印加する。これにより、PINダイオード31に逆方向電圧が印加される。
【0040】
PINダイオード31では、P型、I型及びN型の半導体層が接合されている。I型の半導体は真性半導体である。P型及びN型の半導体層の間にI型の半導体層が配置されている。P型及びN型それぞれの半導体層にアノード及びカソードが設けられている。PINダイオード31は半導体スイッチとして機能する。
【0041】
駆動部32がPINダイオード31に順方向電圧を印加した場合、PINダイオード31の両端間の抵抗値は十分に小さな値に低下し、PINダイオード31はオンに切替わる。駆動部32がPINダイオード31に逆方向電圧を印加した場合、PINダイオード31の両端間の抵抗値は十分に大きな値に上昇し、PINダイオード31はオフに切替わる。以上のように、駆動部32は、自身に接続されているPINダイオード31をオン又はオフに切替える。PINダイオード31がオンである場合、交流電圧はPINダイオード31を通過することができる。PINダイオード31がオフである場合、交流電圧はPINダイオード31を通過することができない。
【0042】
マイコン23は、可変コンデンサユニット21が有するn個の駆動部32にハイレベル電圧又はローレベル電圧を出力している。各駆動部32は、マイコン23から入力されている電圧がローレベル電圧からハイレベル電圧に切替わった場合、PINダイオード31をオンに切替える。各駆動部32は、マイコン23から入力されている電圧がハイレベル電圧からローレベル電圧に切替わった場合、PINダイオード31をオフに切替える。
【0043】
図2は可変コンデンサユニット21の容量値の説明図である。
図2では、nが8である例が示されている。
図2では、コンデンサ回路A1,A2,・・・,Anそれぞれについて、コンデンサ30の容量値と、PINダイオード31の状態とが示されている。オン及びオフそれぞれは、1及びゼロによって表されている。
【0044】
オンであるPINダイオード31の数が2以上である場合、可変コンデンサユニット21の容量値は、オンである複数のPINダイオード31に接続されている複数のコンデンサ30の容量値の総和で表される。オンであるPINダイオード31の数が1である場合、可変コンデンサユニット21の容量値はオンであるPINダイオード31に接続されているコンデンサ30の容量値で表される。
【0045】
コンデンサ回路Ai(i=1,2,・・・,n)が有するコンデンサ30の容量値は、正の実数Hと、2の(i−1)乗との積で表される。
図2の例では、実数Hは1pFである。これにより、可変コンデンサユニット21の容量値を実数H刻みで調整することができる。
図2の例では、可変コンデンサユニット21の容量値を1pF刻みで調整することができる。
図2の例では、コンデンサ回路A1,A2,・・・,A7が有する7つのPINダイオード31がオンであるので、可変コンデンサユニット21の容量値は127pFである。
【0046】
n個のコンデンサ回路A1,A2,・・・,Anは、k個のグループG1,G2,・・・,Gkに分けられている。kは、2以上の整数であり、整数n未満である。
図2は、n個のコンデンサ回路A1,A2,・・・Anが属するグループが示されている。グループの数、即ち、kが2である場合、例えば、
図2に示すように、コンデンサ回路A1〜A4がグループG1に属し、コンデンサ回路A5〜A8はグループG2に属する。
【0047】
グループGj(j=1,2,・・・,k)の容量値範囲は、グループGjに属するコンデンサ30の最小値及び最大値によって定められている。グループGjの容量値範囲は、グループG1,G2,・・・,Gkの中でグループGjを除く全てのグループの容量値範囲と異なっている。
図2の例では、グループG1の容量値範囲は、1pFから8pFまでの範囲であり、グループG2の容量値範囲は、16pFから128pFまでの範囲である。グループG1,G2の容量値範囲は相互に異なっている。グループG1の容量値範囲の値が最も小さい。グループの番号が大きい程、容量値範囲の値は大きい。従って、グループGkの容量値範囲の値が最も大きい。
【0048】
図1に示す高周波検出器12は、パラメータ情報をインピーダンス調整装置13の算出回路24に出力する。マイコン23は、ハイレベル電圧及びローレベル電圧によって構成されるマスク信号を算出回路24に出力している。
【0049】
算出回路24は、例えばFPGA(field-programmable gate array)によって構成され、負荷側インピーダンス又は反射係数を算出する算出処理を実行する。算出処理では、算出回路24は、マスク信号がローレベル電圧を示している場合、高周波検出器12から入力されたパラメータ情報が示すパラメータに基づいて、負荷側インピーダンス又は反射係数を基準時間の間、繰り返し算出する。算出回路24は、基準時間の間に算出した複数の負荷側インピーダンス又は複数の反射係数の平均値を算出する。算出回路24は、算出した平均値を示す平均情報をマイコン23に出力する。算出回路24は、マスク信号がハイレベル電圧を示している場合、算出を停止する。
【0050】
マイコン23は、算出回路24から平均情報が入力された場合、算出回路24から入力された平均情報が示す負荷側インピーダンス又は反射係数の平均値に基づいて、可変コンデンサユニット21の容量値を算出する。平均情報が負荷側インピーダンスの平均値を示す場合、マイコン23は、負荷側インピーダンスが高周波電源10の出力インピーダンスの複素共役となる可変コンデンサユニット21の容量値を算出する。平均情報が反射係数の平均値を示す場合、マイコン23は、反射係数がゼロとなる可変コンデンサユニット21の容量値を算出する。マイコン23は、算出した容量値に基づいて、可変コンデンサユニット21の容量値の目標容量値を決定する。目標容量値は、可変コンデンサユニット21において実現することができる容量値であって、算出した容量値に一致するか、又は、算出した容量値に最も近い容量値である。
【0051】
前述したように、マイコン23は、可変コンデンサユニット21が有するn個の駆動部32に出力している出力電圧をハイレベル電圧又はローレベル電圧に切替えることによって、可変コンデンサユニット21が有するn個のPINダイオード31を各別にオン又はオフに切替える。マイコン23は、n個のPINダイオード31を各別にオン又はオフに切替えることによって、可変コンデンサユニット21の容量値を、決定した目標容量値に変更する。
以下では、算出回路24及びマイコン23の動作を詳細に説明する。
【0052】
<算出回路24の算出処理>
図3は、算出回路24の算出処理の手順を示すフローチャートである。
図3では、ハイレベル電圧は「H」によって示され、ローレベル電圧は「L」によって示されている。
図3以外の図においても、ハイレベル電圧及びローレベル電圧それぞれは「H」及び「L」によって示されている。ここでは、負荷側インピーダンスを算出する算出処理を説明する。
【0053】
算出回路24は、マイコン23から入力されているマスク信号がハイレベル電圧を示す状態で算出処理を開始する。算出処理では、算出回路24は、マイコン23から入力されているマスク信号の電圧がハイレベル電圧からローレベル電圧に切替わったか否かを判定する(ステップS1)。算出回路24は、マスク信号の電圧がローレベル電圧に切替わっていないと判定した場合(S1:NO)、ステップS1を再び実行し、マスク信号が示す電圧がローレベル電圧に切替わるまで待機する。
【0054】
算出回路24は、マスク信号の電圧がローレベル電圧に切替わったと判定した場合(S1:YES)、マスク信号の電圧がローレベル電圧に切替わってから待機時間が経過したか否かを判定する(ステップS2)。待機時間は、一定値であり、予め設定されている。算出回路24が図示しないタイマを有する場合、タイマは、マスク信号の電圧がローレベル電圧に切替わってから経過した時間を計測する。算出回路24は、タイマが計測している時間に基づいて、待機時間が経過したか否かを判定する。制御部44は、待機時間が経過していないと判定した場合(S2:NO)、ステップS2を再び実行し、待機時間が経過するまで待機する。
【0055】
算出回路24は、待機時間が経過したと判定した場合(S2:YES)、マイコン23から入力されているマスク信号がハイレベル電圧を示すか否かを判定する(ステップS3)。算出回路24は、マスク信号がハイレベル電圧を示すと判定した場合(S3:YES)、算出処理を終了し、再び、算出処理を開始する。算出回路24は、マスク信号がハイレベル電圧を示していない、即ち、マスク信号がローレベル電圧を示している場合(S3:NO)、高周波検出器12からパラメータ情報が入力したか否かを判定する(ステップS4)。算出回路24は、パラメータ情報が入力してないと判定した場合(S4:NO)、ステップS3を再び実行する。マスク信号の電圧がローレベル電圧に維持されている場合、算出回路24は、パラメータ情報が入力されるまで待機する。
【0056】
算出回路24は、パラメータ情報が入力されたと判定した場合(S4:YES)、高周波検出器12から入力されたパラメータ情報が示すパラメータに基づいて、負荷側インピーダンスを算出する(ステップS5)。前述したように、算出処理では、算出回路24は平均情報をマイコン23に出力する。算出回路24は、待機時間が経過してから、又は、平均情報を出力してから、基準時間が経過したか否かを判定する(ステップS6)。基準時間は、一定値であり、予め設定されている。
【0057】
算出回路24がタイマを有する場合、タイマは、待機時間が経過してから、又は、平均情報を出力してから経過した時間を計測する。ステップS6では、算出回路24は、タイマが計測している時間に基づいて基準時間が経過したか否かを判定する。
【0058】
算出回路24は、基準時間が経過していないと判定した場合(S6:NO)、ステップS3を再び実行する。マスク信号の電圧がローレベル電圧に維持されている場合、算出回路24は再び負荷側インピーダンスを算出する。高周波検出器12がパルス情報を出力する周期は、基準時間よりも十分に短く、基準時間が経過するまでに、算出回路24がステップS5を実行する回数は2回以上である。
【0059】
算出回路24は、基準時間が経過したと判定した場合(S6:YES)、基準時間が経過するまでに算出した複数の負荷側インピーダンスの平均値を算出し(ステップS7)、算出した平均値を示す平均情報をマイコン23に出力する(ステップS8)。算出回路24は、ステップS8を実行した後、ステップS3を再び実行する。
【0060】
以上のように、算出回路24は、マスク信号の電圧がローレベル電圧に維持されている場合、基準時間が経過するまで、負荷側インピーダンスを繰り返し算出する。算出回路24は、基準時間が経過した場合、算出した複数の負荷側インピーダンスの平均値を算出し、算出した平均値を示す平均情報をマイコン23に出力する。マスク信号の電圧がハイレベル電圧に切替わった場合、算出回路24は、負荷側インピーダンスの算出を停止する。マスク信号の電圧がローレベル電圧に切替わった場合、算出回路24は、ローレベル電圧に切替わってから待機時間が経過した後、再び、負荷側インピーダンス及び平均値の算出を再開する。
【0061】
反射係数を算出する算出処理は、負荷側インピーダンスの算出処理と同様である。負荷側インピーダンスの算出処理の説明において、負荷側インピーダンスを反射係数に置き換えることによって、反射係数を算出する算出処理を説明することができる。
【0062】
算出回路24は、処理を実行する処理素子、例えば、CPU(Central Processing Unit)を有する構成であってもよい。この場合、算出回路24では、図示しない記憶部にコンピュータプログラムが記憶されており、処理素子はコンピュータプログラムを実行することによって算出処理を実行する。
【0063】
コンピュータプログラムは、算出回路24の処理素子が読み取り可能に記憶媒体に記憶されていてもよい。この場合、図示しない読み出し装置によって記憶媒体から読み出されたコンピュータプログラムが算出回路24の記憶部に書き込まれる。記憶媒体は、光ディスク、フレキシブルディスク、磁気ディスク、磁気光ディスク又は半導体メモリ等である。光ディスクは、CD(Compact Disc)−ROM(Read Only Memory)、DVD(Digital Versatile Disc)−ROM、又は、BD(Blu-ray(登録商標) Disc)等である。磁気ディスクは、例えばハードディスクである。また、図示しない通信網に接続されている図示しない外部装置からコンピュータプログラムをダウンロードし、ダウンロードしたコンピュータプログラムを記憶部に書き込んでもよい。
【0064】
<マイコン23の構成>
図4はマイコン23の要部構成を示すブロック図である。マイコン23は、入力部40、出力部41,42、記憶部43及び制御部44を有する。これらは、内部バス45に接続されている。入力部40及び出力部41それぞれは、更に、算出回路24に接続されている。出力部42は、可変コンデンサユニット21が有するn個の駆動部32に各別に接続されている。
【0065】
平均情報は、算出回路24から入力部40に入力される。入力部40は、平均情報が入力された場合、入力された平均情報が示す負荷側インピーダンス又は反射係数の平均値を制御部44に通知する。
出力部41は、算出回路24にマスク信号を出力している。出力部41は、制御部44の指示に従って、マスク信号が示す電圧をハイレベル電圧又はローレベル電圧に切替える。
【0066】
出力部42は、n個の駆動部32にハイレベル電圧又はローレベル電圧を出力している。出力部42は、制御部44の指示に従って、n個の駆動部32への出力電圧をハイレベル電圧又はローレベル電圧に切替える。前述したように、各駆動部32は、出力電圧に応じてPINダイオード31をオン又はオフに切替える。
【0067】
制御部44は、出力部42に指示して、n個の駆動部32への出力電圧をハイレベル電圧又はローレベル電圧に各別に切替えさせる。これにより、制御部44は、可変コンデンサユニット21が有するn個のPINダイオード31のオン又はオフへの切替えを各別に実現する。制御部44は、n個のPINダイオード31を各別にオン又はオフに切替えることによって、可変コンデンサユニット21の容量値を変更する。制御部44は変更部として機能する。
【0068】
記憶部43は不揮発メモリである。記憶部43には、コンピュータプログラムPが記憶されている。制御部44は、処理を実行する処理素子、例えばCPUを有する。制御部44の処理素子は、コンピュータプログラムPを実行することによって、負荷側インピーダンスを調整する調整処理を実行する。
【0069】
コンピュータプログラムPは、制御部44の処理素子が読み取り可能に記憶媒体Eに記憶されていてもよい。この場合、図示しない読み出し装置によって記憶媒体Eから読み出されたコンピュータプログラムPがマイコン23の記憶部43に書き込まれる。記憶媒体Eは、光ディスク、フレキシブルディスク、磁気ディスク、磁気光ディスク又は半導体メモリ等である。また、図示しない通信網に接続されている図示しない外部装置からコンピュータプログラムPをダウンロードし、ダウンロードしたコンピュータプログラムPを記憶部43に書き込んでもよい。
制御部44が有する処理素子の数が2以上であってもよい。この場合、複数の処理素子が調整処理を協同で実行してもよい。
【0070】
<調整処理>
図5、
図6及び
図7は調整処理の手順を示すフローチャートである。制御部44は、調整処理を周期的に実行する。記憶部43には、可変コンデンサユニット21の容量値を示す容量値情報と、変数qの値とが記憶されている。なお、容量値情報が示す容量値は、可変コンデンサユニット21のn個のコンデンサ回路A1,A2,・・・,An全体の容量値であり、PINダイオード31のオン/オフ状態から算出することができる。容量値情報が示す容量値は制御部44によって更新される。変数qの値は、制御部44によって変更される。変数qの値は、1以上であり、かつ、k以下である整数である。kは、前述したように、グループG1,G2,・・・,Gkの数を示す。
図2の例では、kは2である。以下では、平均情報が負荷側インピーダンスの平均値を示す場合に実行される負荷側インピーダンスの調整処理を説明する。
【0071】
調整処理では、まず、制御部44は、入力部40に入力された最新の平均情報が示す負荷側インピーダンスの平均値に基づいて、負荷側インピーダンスが高周波電源10の出力インピーダンスの複素共役と一致する可変コンデンサユニット21の容量値を算出する(ステップS11)。次に、制御部44は、ステップS11で算出した容量値に基づいて目標容量値を決定する(ステップS12)。目標容量値は、可変コンデンサユニット21において実現することができる容量値であって、ステップS11で算出した容量値に一致するか、又は、算出した容量値に最も近い容量値である。制御部44は決定部としても機能する。
【0072】
なお、前述したように、容量値情報が示す容量値は、可変コンデンサユニット21の各PINダイオード31のオン/オフ状態から算出することができる。即ち、容量値情報として可変コンデンサユニット21の各PINダイオード31のオン/オフ状態を示す情報を用いてもよい。同様に、目標容量値を可変コンデンサユニット21の各PINダイオード31のオン/オフ状態で表すこともできる。
【0073】
次に、制御部44は、可変コンデンサユニット21の容量値を、現在の容量値(以下、現在容量値という)から、ステップS12で決定した目標容量値に変更した場合に可変コンデンサユニット21の容量値が変化するか否かを判定する(ステップS13)。ステップS13が実行された時点における可変コンデンサユニット21の現在容量値は、容量値情報が示す容量値である。ステップS13では、制御部44は、ステップS12で決定した目標容量値が、容量値情報が示す現在容量値と異なる場合、容量値が変化すると判定する。制御部44は、ステップS12で決定した目標容量値が、容量値情報が示す現在容量値と一致する場合、容量値が変化しないと判定する。
【0074】
制御部44は、容量値が変化しないと判定した場合(S13:NO)、可変コンデンサユニット21の容量値を変更する必要がないので、調整処理を終了する。制御部44は、容量値が変化すると判定した場合(S13:YES)、可変コンデンサユニット21の容量値をステップS12で決定した目標容量値に変更するため、可変コンデンサユニット21の容量値がステップS12で決定した目標容量値となるn個のPINダイオード31の状態を決定する(ステップS14)。具体的には、
図2に示されているn個のPINダイオード31の状態を変更する。
【0075】
次に、制御部44は、可変コンデンサユニット21の容量値を目標容量値に変更した場合に可変コンデンサユニット21の容量値が増加するか否かを判定する(ステップS15)。制御部44は、容量値が増加すると判定した場合(S15:YES)、変数qの値を1に設定する(ステップS16)。次に、制御部44は、グループGqに属するPINダイオード31のオン又はオフへの切替えが必要であるか否かを判定する(ステップS17)。制御部44は、PINダイオード31の切替えが必要であると判定した場合(S17:YES)、グループGqに属する複数のPINダイオード31の状態がステップS14で決定した複数のPINダイオード31の状態となるように、グループGqの駆動部32への出力電圧をハイレベル電圧又はローレベル電圧に切替える(ステップS18)。
【0076】
これにより、グループGqに属し、かつ、目標容量値への変更のために切替えが必要な全てのPINダイオード31が駆動部32によってオン又はオフに切替えられる。ステップS18の実行が終了した時点において、オン又はオフへの切替えが必要なPINダイオード31が残っていると仮定する。この場合、ステップS18の実行により、可変コンデンサユニット21の容量値は、目標容量値とは異なる中継容量値に変更される。
【0077】
次に、制御部44は、ステップS18を実行してから第1設定時間が経過したか否かを判定する(ステップS19)。第1設定時間は、一定値であり、予め設定されている。マイコン23が図示しないタイマを有する場合、制御部44は、ステップS18が実行されてから経過した時間をタイマに計測させる。ステップS19では、制御部44は、タイマが計測した時間に基づいて第1設定時間が経過したか否かを判定する。制御部44は、第1設定時間が経過していないと判定した場合(S19:NO)、ステップS19を再び実行し、第1設定時間が経過するまで待機する。可変コンデンサユニット21の容量値の変更によって、プラズマ発生器11が発生させているプラズマの状態が変動する。第1設定時間は、容量値の変更に必要な時間の最大時間とプラズマの状態が安定するために必要な時間との合計時間よりも長い。
【0078】
制御部44は、グループGqに属するPINダイオード31の切替えが必要ではないと判定した場合(S17:NO)、又は、第1設定時間が経過したと判定した場合(S19:YES)、変数qの値を1だけインクリメントし(ステップS20)、変数qの値がkであるか否かを判定する(ステップS21)。前述したように、kは、グループG1,G2,・・・,Gkの数である。
【0079】
制御部44は、変数qの値がkではないと判定した場合(S21:NO)、ステップS17を再び実行する。これにより、制御部44は、グループG1からグループGk−1まで、順次、複数の駆動部32への出力電圧の切替え、即ち、複数のPINダイオード31の切替えを行う。制御部44は、変数qの値がkであると判定した場合(S21:YES)、出力部41に指示して、算出回路24に出力しているマスク信号の電圧をハイレベル電圧に切替えさせる(ステップS22)。これにより、算出回路24は、負荷側インピーダンスの算出を停止する。
【0080】
次に、制御部44は、グループGkに属するPINダイオード31のオン又はオフへの切替えが必要であるか否かを判定する(ステップS23)。制御部44は、PINダイオード31の切替えが必要であると判定した場合(S23:YES)、グループGkに属する複数のPINダイオード31の状態がステップS14で決定した複数のPINダイオード31の状態となるように、グループGkの駆動部32への出力電圧をハイレベル電圧又はローレベル電圧に切替える(ステップS24)。グループGkに属するPINダイオード31に、切替えが必要なPINダイオード31が含まれている場合、ステップS29の実行により、可変コンデンサユニット21の容量値が目標容量値に変更される。
【0081】
前述したように、グループの番号が大きい程、グループの容量値範囲の値は大きい。目標容量値への変更によって可変コンデンサユニット21の容量値が増加する場合、制御部44は、オン又はオフへの切替えが必要なPINダイオード31を含む複数のグループの中で、容量値範囲の値が最も小さいグループに属し、かつ、目標容量値への変更のために切替えが必要な全てのPINダイオード31をオン又はオフに切替える。これにより、可変コンデンサユニット21の容量値が現在容量値から中継容量値に変更される。容量値範囲の値が最も小さいグループから、PINダイオード31の切替えを行うので、中継容量値が目標容量値を超えることはない。可変コンデンサユニット21の容量値が大きい場合にプラズマ発生器11の動作が不安定である構成では、この切替えは効果的である。
【0082】
制御部44は、容量値が増加しない、即ち、容量値が減少すると判定した場合(S15:NO)、変数qの値をkに設定する(ステップS25)。次に、制御部44は、グループGqに属するPINダイオード31のオン又はオフへの切替えが必要であるか否かを判定する(ステップS26)。制御部44は、PINダイオード31の切替えが必要であると判定した場合(S26:YES)、ステップS18と同様に、グループGqの駆動部32への出力電圧をハイレベル電圧又はローレベル電圧に切替える(ステップS27)。
【0083】
次に、制御部44は、ステップS19と同様に、ステップS27を実行してから第1設定時間が経過したか否かを判定する(ステップS28)。制御部44は、第1設定時間が経過していないと判定した場合(S28:NO)、ステップS28を再び実行し、第1設定時間が経過するまで、即ち、プラズマの状態が安定するまで待機する。
【0084】
制御部44は、グループGqに属するPINダイオード31の切替えが必要ではないと判定した場合(S26:NO)、又は、第1設定時間が経過したと判定した場合(S28:YES)、変数qの値を1だけデクリメントし(ステップS29)、変数qの値が1であるか否かを判定する(ステップS30)。
【0085】
制御部44は、変数qの値が1ではないと判定した場合(S30:NO)、ステップS26を再び実行する。これにより、制御部44は、グループGkからグループG2まで、順次、複数の駆動部32への出力電圧の切替え、即ち、複数のPINダイオード31の切替えを行う。制御部44は、変数qの値が1であると判定した場合(S30:YES)、出力部41に指示して、算出回路24に出力しているマスク信号の電圧をハイレベル電圧に切替えさせる(ステップS31)。これにより、算出回路24は、負荷側インピーダンスの算出を停止する。
【0086】
次に、制御部44は、グループG1に属するPINダイオード31のオン又はオフへの切替えが必要であるか否かを判定する(ステップS32)。制御部44は、PINダイオード31の切替えが必要であると判定した場合(S32:YES)、グループG1に属する複数のPINダイオード31の状態がステップS14で決定した複数のPINダイオード31の状態となるように、グループG1の駆動部32への出力電圧をハイレベル電圧又はローレベル電圧に切替える(ステップS33)。グループG1に属するPINダイオード31に切替えが必要なPINダイオード31が含まれている場合、ステップS33の実行により、可変コンデンサユニット21の容量値が目標容量値に変更される。
【0087】
目標容量値への変更によって可変コンデンサユニット21の容量値が減少する場合、制御部44は、オン又はオフへの切替えが必要なPINダイオード31を含む複数のグループの中で、容量値範囲の値が最も大きいグループに属し、かつ、目標容量値への変更のために切替えが必要な全てのPINダイオード31をオン又はオフに切替える。これにより、可変コンデンサユニット21の容量値が現在容量値から中継容量値に変更される。容量値範囲の値が最も大きいグループから、PINダイオード31の切替えを行うので、中継容量値が目標容量値を超えることはない。可変コンデンサユニット21の容量値が大きい場合にプラズマ発生器11の動作が不安定である構成では、この切替えは効果的である。
【0088】
制御部44は、グループGkに属するPINダイオード31の切替えが必要ではないと判定した場合(S23:NO)、グループG1に属するPINダイオード31の切替えが必要ではないと判定した場合(S32:NO)、又は、ステップS24若しくはステップS33を実行した後、ステップS22又はステップS31を実行してから第2設定時間が経過したか否かを判定する(ステップS34)。第2設定時間は、一定値であり、予め設定されている。マイコン23がタイマを有する場合、制御部44は、ステップS22又はステップS31が実行されてから経過した時間をタイマに計測させる。ステップS34では、制御部44は、タイマが計測した時間に基づいて第2設定時間が経過したか否かを判定する。
【0089】
制御部44は、第2設定時間が経過していないと判定した場合(S34:NO)、ステップS34を再び実行し、第2設定時間が経過するまで待機する。可変コンデンサユニット21の容量値の変更によって、負荷側インピーダンスが変動する。第2設定時間は、ステップS24又はステップS33で行われる容量値の変更に必要な時間の最大時間と、負荷側インピーダンスが安定するために必要な時間との合計時間よりも長い。
【0090】
制御部44は、第2設定時間が経過したと判定した場合(S34:YES)、容量値情報が示す容量値を、ステップS12で決定した目標容量値に更新し(ステップS35)、出力部41に指示して、算出回路24に出力しているマスク信号の電圧をローレベル電圧に切替えさせる(ステップS36)。これにより、算出回路24は、負荷側インピーダンス及び平均値の算出を再開する。制御部44は、ステップS36を実行した後、調整処理を終了する。
【0091】
平均情報が反射係数の平均値を示す場合に実行される反射係数の調整処理は、以下の点を除いて負荷側インピーダンスの調整処理と同様である。反射係数の調整処理のステップS11では、制御部44は、入力部40に入力された平均情報が示す反射係数の平均値に基づいて、反射係数がゼロとなる可変コンデンサユニット21の容量値を算出する。制御部44がステップS22又はステップS31を実行した場合、算出回路24は反射係数の算出を停止する。制御部44がステップS36を実行した場合、算出回路24は反射係数の算出を再開する。
【0092】
<インピーダンス調整装置13の動作>
図8は、インピーダンス調整装置13の動作を説明するためのタイミングチャートである。算出回路24、マイコン23及び駆動部32が実行する処理が時系列で示されている。ここでは、グループの数、即ち、kが2であって、かつ、グループG1,G2に属する駆動部32がPINダイオード31をオン又はオフに切替える例を説明する。この説明においても、算出回路24が負荷側インピーダンスを算出すると仮定する。
【0093】
図8に示すように、算出回路24は、基準時間の間に複数の負荷側インピーダンスを算出し、算出した複数の負荷側インピーダンスの平均値を算出する。算出回路24は、マスク信号の電圧がハイレベル電圧である期間と、マスク信号の電圧がローレベル電圧に切替わってから待機時間が経過するまでの期間とを除いて、この一連の算出を繰り返し実行する。算出回路24は、一連の算出が終了する都度、負荷側インピーダンスの平均値を示す平均情報をマイコン23に出力する。
【0094】
マイコン23は、算出回路24から入力された最新の平均情報が示す負荷側インピーダンスの平均値に基づいて、負荷側インピーダンスが高周波電源10の出力インピーダンスの複素共役に一致する可変コンデンサユニット21の容量値を算出し、算出した容量値に基づいて目標容量値を決定する。
【0095】
マイコン23は、目標容量値への変更によって、可変コンデンサユニット21の容量値が増加する場合、容量値範囲の値が小さいグループG1に属し、かつ、目標容量値への変更のために切替えが必要な全てのPINダイオード31をオン又はオフに切替える。これにより、可変コンデンサユニット21の容量値は中継容量値に変更される。具体的には、マイコン23は、駆動部32への出力電圧を切替えることによって、駆動部32にPINダイオード31を切替えさせる。マイコン23は、容量値を中継容量値に変更してから第1設定時間が経過した後、容量値範囲の値がグループG1の次に大きいグループG2に属し、かつ、目標容量値への変更のために切替えが必要な全てのPINダイオード31をオン又はオフに切替える。これにより、可変コンデンサユニット21の容量値は目標容量値に変更される。
【0096】
マイコン23は、目標容量値への変更によって、可変コンデンサユニット21の容量値が減少する場合、容量値範囲の値が大きいグループG2に属し、かつ、目標容量値への変更のために切替えが必要な全てのPINダイオード31をオン又はオフに切替える。次に、マイコン23は、容量値を中継容量値に変更してから第1設定時間が経過した後、容量値範囲の値がグループG2の次に小さいグループG1に属し、かつ、目標容量値への変更のために切替えが必要な全てのPINダイオード31をオン又はオフに切替える。
【0097】
マイコン23は、可変コンデンサユニット21の容量値の変更に係る最後のグループに属するPINダイオード31をオン又はオフに切替えるとともに、マスク信号の電圧をローレベル電圧からハイレベル電圧に切替える。マイコン23は、マスク信号の電圧をハイレベル電圧に切替えてから第2設定時間が経過した後、マスク信号の電圧をローレベル電圧に戻す。算出回路24は、マスク信号の電圧がローレベル電圧に戻ってから、待機時間が経過した後、再び、一連の算出を繰り返す。
【0098】
<インピーダンス調整装置13の効果>
図9はインピーダンス調整装置13の効果の説明図である。
図9では、スミスチャートに高周波電源10から見た反射係数が示されている。
図9では、スミスチャートで用いられる等抵抗円及び等リアクタンス円等の図示が省略されている。
図9では、反射係数の絶対値を表す円が破線で示されている。スミスチャートの原点に対応する反射係数の絶対値はゼロである。反射係数は複素数である。ここでは、マイコン23は、調整処理を実行することによって、反射係数がゼロとなるように負荷側インピーダンスを調整する例を説明する。
【0099】
図2の例では、コンデンサ回路A1,A2,・・・,A7が有する7つのPINダイオード31がオンであり、コンデンサ回路A8が有する1つのPINダイオード31がオフである。このとき、可変コンデンサユニット21の容量値は127pFである。反射係数をゼロにするために、可変コンデンサユニット21の容量値を128pFに変更すると仮定する。この場合、マイコン23は、コンデンサ回路A1,A2,・・・,A7が有する7つのPINダイオード31をオフに切替え、コンデンサ回路A8が有する1つのPINダイオード31をオンに切替える必要がある。
【0100】
従来のインピーダンス調整装置では、マイコン23は、可変コンデンサユニット21の容量値を目標容量値に変更するために、切替えが必要な全てのPINダイオード31を共通の時間帯にオン又はオフに切替える。従って、マイコン23は、コンデンサ回路A1,A2,・・・,A7が有する7つのPINダイオード31をオフに切替え、コンデンサ回路A8が有する1つのPINダイオード31をオンに切替える。このような従来の構成では、反射係数は、例えば、
図9の上側に示すような軌跡を描く。
【0101】
全てのPINダイオード31がオン又はオフに切替えられ、共通の時間帯にオン又はオフに切替わる複数のPINダイオード31に、オンに切替わるPINダイオード31と、オフに切替わるPINダイオード31とが含まれている。このため、可変コンデンサユニット21の容量値の変更が開始されてから、可変コンデンサユニット21の容量値が現在容量値から目標容量値となるまでの過渡期において、可変コンデンサユニット21の容量値は、目標容量値を大きく超過し、反射係数の絶対値は1に近い値となる可能性がある。反射係数の絶対値が1であることは、全反射を意味する。反射係数の絶対値が1に近い値となった場合、プラズマ発生器11が発生しているプラズマの状態が不安定な状態に固定される可能性がある。
【0102】
実施の形態1のインピーダンス調整装置13の構成では、反射係数は
図9の下側に示すような軌跡を描く。
図9の下側のスミスチャートでは、実軸及び虚軸それぞれについて、−0.1から+0.1までの範囲が示されている。インピーダンス調整装置13では、マイコン23は、可変コンデンサユニット21の容量値を127pFから128pFに変更する場合、共通の時間帯に、グループG1に属するコンデンサ回路A1,A2,A3,A4が有する4つのPINダイオード31をオフに切替える。これにより、可変コンデンサユニット21の容量値は、中継容量値として、112pFとなる。共通の時間帯に、オンに切替わるPINダイオード31と、オフに切替わるPINダイオード31とが含まれていない。従って、可変コンデンサユニット21の容量値の変更が開始されてから、可変コンデンサユニット21の容量値が現在容量値から中継容量値となるまでの過渡期において、可変コンデンサユニット21の容量値が目標容量値を超過することはない。また、可変コンデンサユニット21の容量値が中継容量値を超過することもない。
【0103】
中継容量値は、現在容量値と目標容量値との間の容量値である。このため、たとえ、グループG1に属するコンデンサ回路A1,A2,A3,A4に、共通の時間帯に、オンに切替わるPINダイオード31と、オフに切替わるPINダイオード31とが含まれている場合であっても、可変コンデンサユニット21の容量値が現在容量値から中継容量値となるまでの過渡期において、目標容量値を超過する可能性は非常に低い。
【0104】
マイコン23は、可変コンデンサユニット21の容量値を中継容量値に変更してから第1設定期間が経過した後、グループG2に関する切替えを行う。具体的には、マイコン23は、共通の時間帯に、コンデンサ回路A5,A6,A7が有する3つのPINダイオード31をオフに切替えるとともに、コンデンサ回路A8が有する1つのPINダイオード31をオンに切替える。共通の時間帯に、オンに切替わるPINダイオード31と、オフに切替わるPINダイオード31とが含まれている。従って、可変コンデンサユニット21の容量値の変更が開始されてから、可変コンデンサユニット21の容量値が現在容量値(中継容量値)から目標容量値となるまでの過渡期において、可変コンデンサユニット21の容量値は、目標容量値を超過する可能性がある。
【0105】
しかしながら、容量値は、既に中継容量値に変更された状態から目標容量値へ変更される。このため、たとえ、可変コンデンサユニット21の容量値が目標容量値を超過した場合であっても、その超過量は、全てのコンデンサ回路A1〜A8の容量値を共通の時間帯に変更する場合における超過量に比べて小さい。そのため、従来よりも反射係数が大きく変動することはない。そのため、例えば、プラズマ発生器11で発生しているプラズマの状態が不安定な状態に固定されることを防止することができる可能性は高い。
【0106】
(実施の形態2)
実施の形態1では、1つのグループに属する複数のPINダイオード31をオン又はオフに切替えることによって、可変コンデンサユニット21の容量値を中継容量値に変更する。しかしながら、中継容量値への変更を実現するために、オン又はオフに切替えるPINダイオード31の数は1であってもよい。
以下では、実施の形態2について、実施の形態1と異なる点を説明する。後述する構成を除く他の構成については、実施の形態1と共通している。このため、実施の形態1と共通する構成部には実施の形態1と同一の参照符号を付し、共通する構成部の説明を省略する。
【0107】
<調整処理>
図10及び
図11は、実施の形態2における調整処理の手順を示すフローチャートである。実施の形態2を実施の形態1と比較した場合、調整処理の内容が異なる。制御部44は、実施の形態1と同様に調整処理を周期的に実行する。実施の形態2においては、n個のコンデンサ回路A1,A2,・・・,Anのグループ分けは行われていない。1つのグループに含まれるコンデンサ回路の数として1が許容される場合、実施の形態1において、グループの数、即ち、kがnであり、かつ、各グループの属するコンデンサ回路の数が1である構成が実施の形態2の構成に相当する。
【0108】
実施の形態2における調整処理のステップS11〜S16,S19,S20,S22,S28〜S31,S34〜S36は、実施の形態1における調整処理と同様である。このため、ステップS11〜S16,S19,S20,S22,S28〜S31,S34〜S36の説明を省略する。
【0109】
実施の形態2における調整処理では、マイコン23の制御部44は、ステップS16において変数qの値を1に設定した後、コンデンサ回路AqのPINダイオード31のオン又はオフへの切替えが必要であるか否かを判定する(ステップS41)。制御部44は、PINダイオード31の切替えが必要であると判定した場合(S41:YES)、出力部42に指示して、コンデンサ回路Aqの駆動部32への出力電圧をハイレベル電圧又はローレベル電圧に切替えさせる(ステップS42)。これにより、コンデンサ回路AqのPINダイオード31はオン又はオフに切替わる。ステップS42の実行が終了した時点において、オン又はオフの切替えが必要なPINダイオード31が残っていると仮定する。この場合、ステップS42の実行により、可変コンデンサユニット21の容量値は中継容量値に変更される。
【0110】
制御部44は、ステップS42を実行した後、ステップS19を実行する。制御部44は、コンデンサ回路AqのPINダイオード31の切替えが必要ではないと判定した場合(S41:NO)、又は、第1設定時間が経過したと判定した場合(S19:YES)、ステップS20を実行する。
【0111】
制御部44は、ステップS20において、変数qの値を1だけインクリメントした後、変数qの値がnであるか否かを判定する(ステップS43)。前述したように、nは、コンデンサ回路A1,A2,・・・,Anの数である。制御部44は、変数qの値がnではないと判定した場合(S43:NO)、ステップS41を再び実行する。制御部44は、変数qの値がnであると判定した場合(S43:YES)、ステップS22を実行する。
【0112】
制御部44は、ステップS22を実行した後、コンデンサ回路AnのPINダイオード31のオン又はオフへの切替えが必要であるか否かを判定する(ステップS44)。制御部44は、PINダイオード31の切替えが必要であると判定した場合(S44:YES)、出力部42に指示して、コンデンサ回路Anの駆動部32への出力電圧をハイレベル電圧又はローレベル電圧に切替えさせる(ステップS45)。これにより、コンデンサ回路AnのPINダイオード31をオン又はオフに切替わり、可変コンデンサユニット21の容量値は目標容量値に変更される。制御部44は、コンデンサ回路AnのPINダイオード31の切替えが必要ではないと判定した場合(S44:NO)、又は、ステップS45を実行した後、ステップS34を実行する。
【0113】
実施の形態2においては、
図2に示すように、コンデンサ回路A1,A2,・・・,Anの中で、番号が大きいコンデンサ回路が有するコンデンサ30の容量値は大きい。コンデンサ回路A1が有するコンデンサ30の容量値は最小値である。コンデンサ回路Anが有するコンデンサ30の容量値は最大値である。実施の形態2における調整処理では、目標容量値への変更によって可変コンデンサユニット21の容量値が増加する場合、コンデンサ回路A1からコンデンサ回路Anまで、順次、PINダイオード31の切替えを行う。
【0114】
制御部44は、容量値が増加しない、即ち、容量値が減少すると判定した場合(S15:NO)、変数qの値をnに設定する(ステップS46)。制御部44は、ステップS46を実行した後、コンデンサ回路AqのPINダイオード31のオン又はオフへの切替えが必要であるか否かを判定する(ステップS47)。制御部44は、PINダイオード31の切替えが必要であると判定した場合(S47:YES)、ステップS42と同様に、出力部42に指示して、コンデンサ回路Aqの駆動部32への出力電圧をハイレベル電圧又はローレベル電圧に切替えさせる(ステップS48)。制御部44は、ステップS48を実行した後、ステップS28を実行する。制御部44は、PINダイオード31の切替えが必要ではないと判定した場合(S47:NO)、又は、第1設定時間が経過したと判定した場合(S28:YES)、ステップS29を実行する。
【0115】
制御部44は、ステップS31を実行した後、コンデンサ回路A1のPINダイオード31の切替えが必要であるか否かを判定する(ステップS49)。制御部44は、PINダイオード31の切替えが必要であると判定した場合(S49:YES)、出力部42に指示して、コンデンサ回路A1の駆動部32への出力電圧をハイレベル電圧又はローレベル電圧に切替えさせる(ステップS50)。これにより、コンデンサ回路A1のPINダイオード31はオン又はオフに切替わり、可変コンデンサユニット21の容量値は目標容量値に変更される。制御部44は、コンデンサ回路A1のPINダイオード31の切替えが必要ではないと判定した場合(S49:NO)、又は、ステップS50を実行した後、ステップS34を実行する。
【0116】
実施の形態2における調整処理では、目標容量値への変更によって可変コンデンサユニット21の容量値が減少する場合、コンデンサ回路Anからコンデンサ回路A1まで、順次、PINダイオード31の切替えを行う。
【0117】
<インピーダンス調整装置13の効果>
共通の時間帯にオン又はオフに切替えられるPINダイオード31の数は1であるので、共通の時間帯に、PINダイオード31のオンへの切替えと、PINダイオード31のオフへの切替えが行われることはない。従って、可変コンデンサユニット21の容量値が、中継容量値及び目標容量値を超過することはない。結果、従来よりも反射係数が大きく変動せず、プラズマ発生器11が発生しているプラズマの状態が不安定な状態に固定されることを防止することができる。更に、実施の形態2におけるインピーダンス調整装置13では、実施の形態1と同様に、中継容量値が目標容量値を超えることはない。
【0118】
<変形例>
マイコン23の制御部44が実行する調整処理は、実施の形態1,2における調整処理を組み合わせた処理であってもよい。具体的には、実施の形態1において、k個のグループG1,G2,・・・,Gkの中に、コンデンサ回路の数が1であるグループと、コンデンサ回路の数が2以上であるグループとが混在していてもよい。
【0119】
実施の形態1,2において、インピーダンス調整装置13が有する可変コンデンサユニット21の数は、1に限定されず、2以上であってもよい。実施の形態1の説明で述べたように、コンデンサ22の代わりに、可変コンデンサユニット21を配置してもよい。可変コンデンサユニット21の数が2以上である場合、各可変コンデンサユニット21についてマイコン23の制御部44は調整処理を実行する。
【0120】
実施の形態1,2において、PINダイオード31は半導体スイッチとして機能すればよい。このため、PINダイオード31の代わりに、FET(Field Effect Transistor)、バイポーラトランジスタ又はサイリスタ等を用いてもよい。高周波電源10が交流電圧を出力する負荷は、プラズマ発生器11に限定されず、例えば、非接触電力伝送装置であってもよい。また、コンデンサ回路A1,A2,・・・,Anそれぞれのコンデンサ30の容量値は、他のコンデンサ回路のコンデンサ30の容量値と一致していてもよい。
【0121】
実施の形態1,2で記載されている技術的特徴(構成要件)はお互いに組み合わせ可能であり、組み合わせすることにより、新しい技術的特徴を形成することができる。
開示された実施の形態1,2はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。