【課題を解決するための手段】
【0005】
本発明によれば、上記目的は、独立請求項1に記載されている対象によって達成される。更らに、好ましい形態は、従属請求項の対象である。
【0006】
本質的に、本発明は、周辺捕捉と交通参加者予測における不確実性を回避することを目指している。自律走行では、周辺捕捉の際に、常に、周辺モデル内の不確実な領域が残る。この機能につながれている走行機能にとっての問題は、ドライバーは、タイムリーで穏やかな反応を実施する代わりとして、例えば、質の低い予測機能を有するシステムが取るであろうと思われる挙動を:即ち、典型的なシナリオとしては、「割り込む形で車線変更をする交通参加者が突然認識され、緊急ブレーキが作動する」と言った、緊急的な介入を、容認しないということにある。要するにそのドライバーは、例えば、この様な「割り込む形の車線変更」を数秒前には察知しているであろうことから、該ドライバーは、システムが、穏やかに減速する、或いは、タイムリーに車線変更することを期待しているであろう。本発明の目標は、数秒後になって緊急介入のみが可能になる前に、早期かつ快適に「不確実な領域」に反応することである。ドライバーは、後に必要が無かったことが明らかになろうとも快適な反応(例えば、実際に車線変更があろうがなかろうが、割り込む形での車線変更を可能にするためにブレーキを用いずに軽く減速すること)は、質の低い車線変更の予測に基づいた遅い時点における緊急ブレーキよりも、容認する。
【0007】
しかしながら、希であっても、セーフティ・クリティカルなケースにおいては、緊急反応は、正当であることから、低い存在確率を有するオブジェクトも無視することはできない。
【0008】
本発明は、上述の問題を、予測された挙動と予測に包含される不確定要素を含む、確率的フリー空間マップを作成することによって回避することができると言う基本アイデアに基づいている。
【0009】
よって、本発明に係る、静的及び動的オブジェクトを含む確率的フリー空間マップを作成するための方法は、以下のステップを包含している:
−既存の周辺モデルから静的オブジェクトと認識領域ポリゴンを呼び出すステップ;
−動的オブジェクトの予測された軌道を集めるステップ;
−静的オブジェクト、認識領域ポリゴン及び予測された軌道を一枚のマップに統合するステップ;
−最長予測時間を設定するステップ;
−予測時間ステップを設定するステップ;
−最新の予測時間を設定し、設定された予測期間のスタート時点を設定するために、該最新の予測時間の値を0にセットするステップ;
−信頼性領域を静的及び動的オブジェクトの周りに設定するステップ;
−少なくとも一つの静的乃至動的オブジェクトの周りに少なくとも一つの不確実な領域を設定するステップ;
−最新の予測時間用に第一確率的フリー空間マップを作成するステップ;
−少なくとも一つの予測時間ステップ用に少なくとも一枚の更なるフリー空間マップを作成するステップ;
−作成されたフリー空間マップを評価するステップ
【0010】
ここにおいて用いられた周辺モデルは、少なくとも二つの周辺センサ、例えばレーダセンサとカメラセンサのセンサデータから、例えばセンサデータ統合法によって生成されたものである。但し、静的なオブジェクトに関しては、保存されている周辺モデル、例えば、意味論的グリッドマップであっても良いが、これらに対応するデータは、GPS及び/或いはランドマーク認識を用いた自車両の自己トラッキングに基づいて呼び出される。保存されている周辺モデルを用いる場合、静的オブジェクトの如何なる変化をも信頼性高く考慮することができるように、規則的に予め定められたサイクルで更新することが好ましい。
【0011】
該認識領域ポリゴンとは、本発明の範囲においては、自車両の周りのポリゴントラックのことであり、要するに、その時点における最新の360°FOV(Field−of−view)を意味している。このポリゴンに対して影響を与える値としては、センサの到達距離も然り、道路のジオメトリ(カーブや峠など)も挙げられる。
【0012】
自車両の周りに動的オブジェクトや他の交通参加者が検出された場合、各々の動的オブジェクトに対して一本乃至複数本の軌道が、予測される。各々の軌道の予測は、例えば、移動方向、速度、及び/或いは、加速に基づいて実施される。
【0013】
これら上記のデータは、後の方法ステップの基となる共通のマップに記入される。
【0014】
更には、動的オブジェクト乃至他の交通参加者が動き得る軌道を最長どれ程予測できるかを示す最長予測時間も設定される。また、予測時間ステップも設定される。これは、どれ程の間隔で予測が更新されるかを設定できるため、好ましい。即ち、最長予測時間を、例えば10秒として、各々の予測ステップを、例えば0.5秒毎に実施することができる。
【0015】
予測を開始するためには、先ず、最新の予測時間を設定し、値を0にセットする。この時点からは、予め定められた予測時間ステップ内において複数の予測が、最長予測時間に達するまで、実施される。ここでは、最新の予測時間から、予測時間ステップ毎に、一枚の確率的フリー空間マップが、作成される。各々の予測時間ステップは、最長予測時間に達するまで、最新の予測時間に加算される。最新の予測時間に加えて、静的及び動的オブジェクトの周りに信頼性領域が、設定される。この信頼性領域は、この際、グリッドセル毎に、各々のオブジェクトによって、ある確率をもって占有されていると見ることができる範囲を記述している。付加的に、少なくとも動的オブジェクトの周りには、少なくとも一つの不確実な領域が、設定される。但し、複数の動的オブジェクトに対して、少なくとも一つの不確定な領域を設定することも考え得る。
【0016】
この不確定な領域は、ここでは、この領域への動きによって、今後、動的オブジェクトによって占有される可能性を有している領域を記述している。また、確率的フリー空間マップも評価される。これは、必要とあれば、後続の走行機能に合わせることができるため好ましい。
【0017】
予測を実施するためには、例えば、ベイジアン・ネットワークを用いることができる。ある動的オブジェクトやある交通参加者が取り得る一つの軌道の確率を計算するための入力値としては、例えば、周辺部における静的乃至動的オブジェクトの有無、該当する交通参加者の速度、加速、移動方向、及び、道路の推移などが考慮される。更には、天候などの環境ファクタも考慮できるであろう。
【0018】
ある特に好ましい実施形態においては、予測時間ステップ毎に、フリー空間マップが、最長予測時間に達するまで、作成される。これは、予測時間ステップから次の予測時間ステップまでに、周辺が変化し得るため、有利である。この様にすることで、全ての変化の可能性を捕捉することを確実にできる。
【0019】
ある特に好ましい実施形態においては、少なくとも一つの不確定な領域が、既存の周辺モデルと動的オブジェクトの軌道予測に基づいて設定される。
【0020】
ある他の好ましい実施形態においては、少なくとも一つの不確定な領域は、ある動的オブジェクトの少なくとも一本の予測された軌道にそって拡張される。尚、該不確定な領域は、最長予測時間において、全ての予測し得る軌道が、不確定な領域によって少なくとも部分的に覆われるように拡張されることが特に好ましい。これは、予測が、該不確定な領域によって考慮され得る、ある程度の不確実性を、常に有しているため有利である。
【0021】
但し、不確定な領域は、タイムステップ毎に適合されることが特に好ましい。予測された軌道に沿って不確定性が増すため、予測時間が増すにつれ、不確定な領域も大きくなる。例えば、車両が、前方を走行中の車両に接近すると、時間の増加と間隔の減少により、車線変更の確率が増すため、不確定性も増加する。しかしながら、該車両は、減速することもあり得るため、予測の不確定性にもつながり得る。
【0022】
また、全対象期間用の確率的フリー空間マップの評価後に、快適性、効率および安全性に関して最適化された自車両の軌道が計画されることも好ましい。そうすることで、不確実性が大きい場合、後になって急激な制動介入や操舵介入を回避するために、自車両の車線変更を、先を見越して実施することも可能になる。そのために、例えば、不確実性のための閾値を設定することが可能である。この閾値を超えた場合、予防的な運転マヌーバが実施される。代案的に、不確定な領域の占有確率を、最適化のためのコスト・ファンクションにおいて直接的に用いる事も可能である。車線変更の代わりに、自車両の減速を予防的な対策とすることも考え得る。
【0023】
尚、少なくとも一つの走行機能及び/或いは自車両の軌道を、該コスト・ファンクションによって最適化することは、特に好ましい。この様なコスト・ファンクションを用いることにより、自車両の軌道は、例えば、目標速度、前後方向加速や前後方向の揺れ(jolt)、横方向の加速や横方向の揺れ、他の交通参加者に対する間隔、他の交通参加者に対して必要な反応(例えば、急ブレーキ)を達成すると言う観点から、及び、この先、他の交通参加者の占有領域を通過する確率、乃至、後になって快適でない介入を実施する確率と言う観点から最適化される。尚、代案的乃至付加的に、該最適化を、車線維持の正確性や車両のコース角度の車線中央のコース角度に対するずれと言う観点から実施することも考え得る。
【0024】
ある更なる特に好ましい実施形態においては、軌道の最適化のために認識領域ポリゴンも考慮される。尚、例えば、(右側通行の)アウトバーンの左カーブ内においては、センサ類が十分に先を見越せない道路の最も左縁までは、走行しないことも好ましい。道路縁に突然、例えば、失われたタイヤの一部が落ちていたと言った場合、衝突は、緊急マヌーバによってのみ回避し得る。しかしながら、動的オブジェクトによって覆われている場合の評価は、これとは異なる:ある車両の後方を追走する場合、該車両の前方の領域は、覆われている可能性はあるが、該他のオブジェクトがその走行曲線上を移動している最中であることから、そこには、数秒間走行し得るフリー空間は、存在していると仮定することができる。
【0025】
尚、方向、加速、速度及び予測された軌道は、グローバル座標系で出力することは、考え得る。また、該座標を一般的な座標系に転換することも考え得る。即ち、座標を道路座標系において出力することも好ましく可能である。
【0026】
特に、信頼性領域は、オブジェクトの存在確率、位置ベクトル並びに速度ベクトルの分散、及び、速度ベクトルと加速ベクトルの値に基づいて設定されることが、好ましい。これにより、速度と加速なども考慮されるため、静的オブジェクト用の信頼性領域のみならず、動的オブジェクト用のものも設定することが可能になる。
【0027】
ある更なる好ましい実施形態においては、不確定な領域は、軌道の確率、最後に予測されたオブジェクト(V1−V7)の軌道ポイントの位置、速度、加速の分散の値に基づいて設定される。
【0028】
更には、フリー空間マップの評価の前に、同じ占有確率を有するグリッドセルをそれぞれ、お互いから対応するポリゴントラックによって区分される領域に統合することも好ましい。ここで言う占有確率は、必ずしも、固定された値である必要はなく、ある確率の値が含まれる範囲であると解釈される。即ち、該範囲は、例えば、90%を超える占有確率を有する全てのグリッドセルを包含していることができる。この様にすることで、例えば、交通参加者の周りの信頼性領域を考慮することができる。グリッドセルの統合は、領域に統合することにより評価に必要な計算能力を低減できることからも好ましい。
【0029】
更なる構成と実施形態は、添付されている図面によって示される。図の説明: