【実施例】
【0122】
以下の実施例は、例示のために提供され、本願発明を限定するものではない。
【0123】
実施例1:
T細胞ゲノム工学は、HIVおよび自己免疫疾患に対する癌免疫療法および細胞療法について大きな期待が見込めるが、初代ヒトT細胞の遺伝子操作は非効率的である。本発明者らは、高い効率のCas9の送達を達成する方法を開発した。この高い効率のCas9の送達は、高い効率のゲノム編集、遺伝子サイレンシング、およびクロマチンもしくは染色体修飾のために用いることができる。送達されたCas9は、ガイドRNAとの構築済み複合体として送達することができる。これらの活性Cas9リボヌクレオタンパク質(RNP)は、初代ヒトT細胞において第1の成功したCas9-媒介性相同組換え修復(HDR)を可能にした。よって、成熟免疫細胞中の特定のヌクレオチド配列を高い効率で置換することができ、これは多様な研究および治療での応用を可能にするこの分野における長年の目標である。これらの試験によって、初代ヒトT細胞における、HDRによる効率的なDNA配列置換を含む、多様な実験的および治療上のゲノム工学応用のためのCas9(例えば、Cas9 RNP)技術が確立される。
【0124】
イントロダクション
CRISPR/Cas9システムは、哺乳類の生殖系列配列および細胞株を編集するために用いられることが多くなっている(1, 2)。初代ヒト組織において直接この強力なシステムを採用するために相当の努力が進められているが、特に、ヒトCD4
+T細胞などの初代造血細胞では、効率は限定的である。cas9およびスモールガイドRNA(sgRNA)のプラスミド送達は、他の細胞型では効率的であったが、CD4
+T細胞では、標的タンパク質発現の1〜5%を除去しただけである(3)。ヒトT細胞において重要な標的を除去し病原性ゲノム配列を修正する能力の改善は治療応用を有し、例えば、T細胞をエクスビボで編集し、次いで、患者内に再導入することを可能にする。
【0125】
転写活性化因子様エフェクターヌクレアーゼ(TALEN)およびZnフィンガーヌクレアーゼ(ZFN)による遺伝子欠失、およびウイルス形質導入による外因性遺伝子導入を含む、入手可能な技術によりT細胞ゲノムを操作する、複数の科学的試験および臨床試験が進行中である(4)。遺伝子操作は、T細胞においてHIVコレセプターCXCR4およびCCR5をノックアウトして、HIV感染に対する耐性を獲得するよう試みられている(5〜7)。T細胞を操作して血液系悪性腫瘍を認識し死滅させる顕著な成功も存在しているが、固形臓器腫瘍の免疫療法には、さらなる遺伝子修飾が必要であるように思われる(8〜10)。標的とされたT細胞ゲノム遺伝子座が、欠失ではなく特定の置換配列によって修正できる場合、さらなる治療機会が可能となる(11)。T細胞において相同組換えを促進するロバストな技術は、X連鎖免疫調節異常・多発性内分泌障害腸症候群(IPEX)を有する患者において制御性T細胞(Treg)分化を破壊し、重篤な多臓器自己免疫疾患を引き起こす変異を含む、特殊化したT細胞機能に影響を与える変異の治療的修正を可能にする(12, 13)。
【0126】
哺乳類の細胞株における最近の報告は、Cas9リボヌクレオタンパク質(RNP;インビトロで転写させたシングルガイドRNAと複合体を形成した組換えCas9タンパク質)が効率的かつ特異的なゲノム編集を達成できることを実証する(14〜16)。本実施例において、発明者らは、初代造血細胞または初代造血幹細胞へのCas9(例えば、Cas9 RNPの形態で)の送達が高い効率で実施できることを示す。sgRNAとのCas9リボヌクレオタンパク質複合体の形態でのCas9の高効率の送達は、CD4
+T細胞の高い効率のゲノム編集につながる。発明者らは、ランダムな挿入および欠失変異によってCXCR4発現を消失させることができる(CXCR4の高い細胞表面発現を有する細胞の数を最大で70%低下させる;対照処理細胞では60%に対して18%に)だけでなく、発明者らはまた、外因性一本鎖DNA鋳型を用いる相同組換え修復(HDR)によって、初代T細胞において正確に標的化されたゲノム配列を導入することもできた(高い細胞表面発現を有する細胞の数を最大で98%低下させる;対照処理細胞では60%に対して1%に)。この遺伝的「ノックイン」技術は、初代T細胞におけるCas9媒介性編集によるものは以前には報告されておらず、約15%の効率を有し、観察されたゲノム編集のおよそ半分を占め、それが、変異に関連する疾患の治療的置換では有用である可能性があることを実証する。さらに発明者らは、Cas9 RNPを用いて、Tregのマスター転写因子をコードするFOXP3を変異させる遺伝子操作の機能的意義を実証する。Cas9 RNPは、FOXP3変異が制御性T細胞分化を損なっている多臓器自己免疫疾患IPEXのヒトインビトロモデルを可能にする。これらの試験は、初代ヒトT細胞におけるゲノムの実験的および治療的編集のためのCas9 RNP技術を確立する。
【0127】
結果
発明者らは、初代T細胞の遺伝子操作における長年の課題を克服し、ロバストなゲノム操作ツールキットを確立することを目的とした。哺乳類の細胞株における最近の報告は、Cas9 RNPが効率的かつ特異的なゲノム編集を達成できることを示唆する(14〜17)。Cas9のDNA送達によるT細胞の効率的なゲノム編集の重大な課題を考慮し、発明者らは、初代ヒトT細胞における標的ゲノム編集のためのRNP送達の効率を試験した(図 1A)。
【0128】
Cas9 RNPによるHIVコレセプターCXCR4の除去
T細胞操作における主要な目的は、HIV感染のためのコレセプターおよび腫瘍免疫反応を損なう共抑制免疫チェックポイントを含む、特定の細胞表面受容体の標的化除去である。本実施例において、発明者らは、HIV進入のためのコレセプターとして機能するCD4
+T細胞上に発現したケモカイン受容体をコードする、CXCR4のコード配列を標的とするようにCas9 RNPをプログラムした(18, 19)。発明者らは、C末端で融合した2つの核移行シグナル配列(NLS)を保有する組換え化膿レンサ球菌Cas9を精製した。このCas9タンパク質をインビトロで転写させたシングルガイドRNA(sgRNA)と一緒にインキュベートし、ヒトCXCR4ゲノム配列を唯一認識するように設計した(
図1B)。これらの構築済みRNP複合体を、健常なドナーから単離したヒトCD4
+T細胞内にエレクトロポレーションした(方法)。
【0129】
CXCR4 Cas9 RNPのエレクトロポレーションは、ゲノムDNAの効率的で部位特異的な編集をもたらした。CXCR4遺伝子におけるCas9 RNP誘導型二本鎖切断は、非相同末端結合(NHEJ)、様々な挿入および欠失(インデル)を生じさせ、多くの場合フレームシフト変異をもたらす細胞における主要なDNA修復経路によって修復される可能性があった(20)。フローサイトメトリーは、低レベルのCXCR4を発現するT細胞のパーセンテージのRNP用量依存的増加を明らかにし、これはCXCR4遺伝子の変異と一致した(
図1C)。T7エンドヌクレアーゼ1(T7E1)アッセイは、ゲノム編集を評価するための簡便な方法である。本実施例において、T7E1は、CXCR4 RNPで処理した細胞におけるゲノムDNA編集を確認したが、sgRNAと複合体を形成していないspCas9タンパク質で処理した対照細胞(対照)ではそうではなかった(
図1D)。Cas9 RNP処理細胞をCXCR4発現に基づき蛍光標識細胞分取(FACS)により分離させ、発明者らは、CXCR4
hi細胞(4〜12%)と比較して、CXCR4
lo細胞(15〜17%)で編集の濃縮を見いだした。編集事象を直接特定するために実施される、標的CXCR4ゲノム遺伝子座のSangerシーケンシングは、T7E1は編集効率を過小評価したことを示唆した。CXCR4
lo細胞中のCXCR4遺伝子の配列決定は、8/9クローンが変異/欠失を有した一方で、そのような変異/欠失は、CXCR4
hi細胞および対照処理CXCR4
lo細胞ではそれぞれ4/10クローンおよび0/9クローンのみで観察されたことを示した。CXCR4
hi集団で観察された編集はいずれも、コード配列を終了させ(1つのミスセンス変異および3つのインフレーム欠失)、タンパク質発現の維持と一致した。これに対して、CXCR4
lo集団は、該遺伝子座においてより広範な変異負荷を伴う細胞について濃縮された(
図1E)。これらの知見は、ヒトCD4
+T細胞におけるCas9 RNPによるゲノムターゲティングの成功およびタンパク質発現に対する機能的作用を実証した。FACSは、編集された細胞を精製することができ、初代T細胞におけるCas9 RNP適用のためのさらなる有用なツールをもたらす。
【0130】
相同組換え修復(HDR)による効率的な遺伝子「ノックイン」
外因性鋳型媒介性HDRは、特定の変異配列の実験的および治療的編集を可能にする正確な遺伝子改変にとって強力な技術である。Cas9 RNPの高い編集効率を考慮し、発明者らは次に、初代T細胞において外因性鋳型媒介性HDRを達成できるかどうか試験した。発明者らは、Cas9 RNP切断部位でCXCR4遺伝子座と組み換えるために、90ヌクレオチド(nt)のホモロジーアームを有する一本鎖オリゴヌクレオチドDNA鋳型(ssODT)を用いた(15)。ssODTを、ヒト参照ゲノムから12 nt置換し、新たなHindIII制限酵素切断部位を導入するように設計した(
図2A)。Cas9 RNPを、4種類の異なる濃度のssODT(0、50、100および200 pmol)の存在下で初代CD4
+T細胞内にエレクトロポレーションした。ssODTなしのCas9 RNPは再び、CXCR4
Hi細胞のパーセンテージを低下させた。特に、ssODTの添加はCXCR4の除去の効率を大幅に改善した。本実施例に示した実験において、発明者らは、100 pmol ssODTおよびCas9 RNPにより、高い細胞表面CXCR4発現を有する細胞の数の最大で98%の低下を達成することができた(対照処理細胞では60%に対して1%に) (
図2BおよびC)。
【0131】
Cas9 RNPおよびssODTで処理した細胞において顕著な効率のHDRを観察した(
図2D)。発明者らは、T7E1アッセイにより測定される、ssODTなしで24%の総編集(Cas9切断部位にインデルを生じるNHEJ事象およびHDR事象全ての合計として定義される)を観察した。50 pmol ssODTの存在下では、最大で33%の総編集が観察された。この濃度では、標的遺伝子座のHindIII消化によって14%HDRが観察され、>40%の編集がHDRからもたらされたことが示された(観察された編集の残りの約60%はNHEJから生じた可能性がある)。HDRのパーセンテージは100 pmol ssODTではわずかに低い(12%)が、総編集に対してより高い比率のHDRが計算された(100 pmで0.48に対して、50 pmolで0.42)。この条件でのCXCR4染色のほぼ完全な消失は、HDRによって導入された変異(84DLLFV88→84ESLDP88;SEQ ID NO:1および2)が、CXCR4の細胞表面発現または抗体によるその認識に強力な影響を与えることを実証する(
図2BおよびC)。この実験では、編集効率は200 pmol ssODTで低下した。
【0132】
総編集およびHDRの両者とも、CXCR4
lo集団を選別することによって濃縮することができるが、その作用は
図1のものより顕著なものではなく、未選別の集団ではCXCR4
lo細胞の割合がより大きかったことと一致した。これらの実験では、より厳密なゲートを適用して、CXCR4の最も高い発現を有する細胞を分離しており、このCXCR4
hi集団では編集は観察されなかったことを留意すべきである。これらの試験は集合的には、初代ヒトT細胞において標的DNA配列を正確に置換する、ssODTと連結させたCas9 RNPの能力を実証した。
【0133】
Treg分化時のFOXP3変異の機能的作用
発明者らは次に、Cas9 RNP媒介性ゲノム編集が、病原体および悪性腫瘍に対する防御に関連する炎症誘発性エフェクターT細胞サブセットと、自己免疫の発生を防ぐのに必須である抑制性FOXP3
+ Tregとの間のバランスを変更できるかどうか試験した。FOXP3は、マウスにおいて機能的Tregに必須である(21〜24)。ヒトにおけるFOXP3遺伝子の変異は、IPEX、多臓器自己免疫症候群を引き起こすTreg分化および機能の障害につながる(12, 13)。Cas9 RNP媒介性ゲノム編集は、ヒトFOXP3遺伝子内に変異を実験的に導入し、Tregの分化に対するその作用を試験する独自の機会を提供する。
【0134】
FOXP3変異の機能的意義を試験するために、発明者らは2カ所のエクソン部位をCas9 RNPによる標的とした(
図3A)。X染色体上のFOXP3遺伝子座における編集の解釈を助けるために、これらの実験を男性ドナーからの細胞により実行した。発明者らは、以前に記載したようにヒト男性ドナーから単離した初代CD4
+CD25
+CD127
loTregにおけるCas9 RNPの効果を試験した。(25)。FOXP3 Cas9 RNPで処理したTregにおいて、T7E1アッセイによりゲノム編集の成功を検出したが、Cas9タンパク質のみをトランスフェクトとした対照細胞ではそうではなかった(
図3B)。FOXP3 Cas9 RNPは、細胞内染色により評価したFOXP3陰性細胞のパーセンテージの増加をもたらした(
図3C)。フローサイトメトリーの結果は、Cas9 RNP処理の結果として、細胞の最大で40%がFOXP3発現を消失した(対照処理細胞では85%のFOXP3
+に対して、FOXP3 Cas9 RNP1では63%、FOXP3 Cas9 RNP2では46%、およびFOXP3 Cas9 RNP 1と2の組み合わせでは54%)を示した。当初FOXP3 Cas9 RNP処理はTregにおいて増殖欠損を引き起こしているように見えることから、FOXP3除去細胞の割合はより高くなる可能性がある(データは示さず)。
【0135】
Cas9 RNP編集は、初代ヒトTregにおいてFOXP3除去の表現型的意義を明らかにした。フローサイトメトリーは、CD127(IL7Rα)のレベル増加によりFOXP3 Cas9 RNP処理細胞におけるサイトカイン受容体発現の変化を確認した(
図3D)。CD127はFOXP3によって直接的に転写抑制され(25)、Cas9 RNP処理がTregのマスター制御因子の消失から予測される調節不全をもたらすことを示唆する。この知見は、Cas9 RNP媒介性FOXP3除去の結果としてTreg機能に必要とされる遺伝子発現プログラムの不安定化と一致した。
【0136】
発明者らは次に、IPEX患者におけるFOXP3変異に関連する不完全なTreg分化をインビトロで再現することを試みた。Cas9 RNPを、エクスビボで刺激されたナイーブT細胞に送達し、続いて、IL-2およびTGF-βで培養し、iTregの発生を促した(26〜28)。Cas9タンパク質単独で処理した対象細胞では、30%FOXP3
+iTregが発生した。FOXP3 Cas9 RNP 1、FOXP3 Cas9 RNP 2、およびFOXP3 Cas9 RNP 1および2両方による処理は全て、FOXP3
+iTregのパーセンテージの低下をもたらした(それぞれ、8%、9%および11%) (
図4A)。FOXP3
+iTregのパーセンテージの低下、および炎症誘発性サイトカイン インターフェロンγ(IFNγ)を産生する細胞の割合の少量だが再現可能な増加が、3回の独立した実験にわたって観察された(
図4B)。
【0137】
iTreg分化時のFOXP3変異の機能的作用をさらに調べるために、発明者らは、Cas9 RNP処理細胞を、Treg抑制に関与する重要な細胞表面受容体であるCTLA-4の FACS分析に供した(29)。FOXP3 Cas9 RNPによる処理は、CTLA-4を発現する細胞のパーセンテージを低下させた(
図4C)。対照細胞では、CTLA-4はiTregならびに刺激されたFOXP3
-エフェクターT細胞で誘導された。発明者らは、FOXP3ターゲティングはCTLA-4
+FOXP3
+ iTregのパーセンテージを強力に減少させたが、FOXP3
-細胞ではCTLA-4発現に対して中程度の作用有しており、両方ともCTLA-4発現に寄与するFOXP3依存性機構およびFOXP3非依存性機構と一致することを見いだした(23, 30)。短命なCas9 RNPを伴うエレクトロポレーションは、FOXP3除去T細胞の分化能を変化させた。この技術を用いて、ヒトTreg分化に必要とされるさらなる遺伝子または調節要素についてスクリーニングすることができる。重要なことには、Cas9 RNPアプローチによるT細胞における高効率のゲノム編集は、IPEXのヒトインビトロ疾患モデルを可能にし、FOXP3変異がiTreg分化を損なうことを確認した。
【0138】
考察
初代造血細胞および/または初代造血幹細胞へのCas9の効率的な送達は、細胞、組織、および系の機能の基礎研究、ならびに細胞療法の開発および使用のための強力なプラットフォームを提供する。例えば、Cas9媒介性ゲノム操作は、炎症性および抑制性ヒトT細胞サブセットに決定的なDNA要素を実験的および治療的に標的とするために用いることができる。発明者らは本実施例において、インビトロで構築された機能的Cas9 RNPの送達によってヒトの通常型および制御性CD4
+T細胞におけるゲノム操作の成功を報告する。Cas9 RNPのエレクトロポレーションは、CXCR4細胞表面受容体の標的「ノックアウト」を可能にした。RNPはまた、第1の成功したCas9媒介性遺伝子「ノックイン」初代ヒトT細胞を促進した。成熟免疫細胞における高効率の標的DNA置換は、多様な研究および治療での応用を可能にするこの分野における長年の目標を達成する。最後に、発明者らは、刺激されたヒトナイーブT細胞およびTregにおいてFOXP3、マスター転写制御因子を標的とするCas9 RNPを利用して、IPEXを有する患者におけるTreg分化の機能不全のモデルを作製した。試験は集合的には、ヒト初代T細胞の遺伝子操作のための広く利用可能なツールキットを確立する。
【0139】
他のCRISPR/Cas9送達法と比較して、一過性RNP送達によるゲノム操作には明らかな利点がある。最近の研究は、cas9遺伝子およびガイドRNAコード配列を保有するプラスミドのトランスフェクションによって、大量のヒトCD4
+T細胞における細胞表面マーカーの除去を報告している(3)。成功しているが、効率は、他の細胞型と比較してCD4
+T細胞では明らかに低く、おそらく最適以下レベルのCas9またはsgRNA、最適以下の核移行または最適以下の細胞内RNP複合体形成(またはこれらの要因の一部組み合わせ)を原因とする。RNPに基づく送達はこれらの課題を回避する。Cas9 RNPの送達は、それらが送達の24時間以内に分解すると言われていることから、細胞において早い編集作用および迅速なタンパク質代謝回転をもたらす(14)。このCas9編集の限られた時間的ウィンドウは、より長期間にわたって細胞がCas9に曝露される他の送達方式より、Cas9 RNPを治療適用にとってより安全なものとしうる。今回発明者らの知見は、Cas9 RNPが迅速かつ効率的にヒトT細胞を編集できることを示す。
【0140】
発明者らは本実施例において、著しく効率的なHDRを達成することができ、1回の実験では、Cas9 RNP、およびCXCR4を標的とするHDR鋳型によりCXCR4
hi細胞を98%低下させた。初代T細胞における編集およびHDR効率に影響を与える残りの変数を最適化し、さらに高いゲノム編集効率を達成することができる。例えば、細胞型および細胞周期動態の変化は、Cas9 RNP効率を有意に変化させることができる(15)。初代ヒトT細胞において、編集効率はまた、T細胞ドナーに特異的な要因(例えば、遺伝的特質、最近の感染)、インビトロでのT細胞活性化状態、および標的ゲノム遺伝子座の特徴(例えば、DNA配列、クロマチン状態)によって影響されうる。
【0141】
ヒトT細胞サブセットにおいて特定のDNA配列を編集する能力は、T細胞炎症性および抑制性機能に関連づけられる転写因子、cis-調節エレメント、および標的遺伝子の実験的調査を可能にする。本実施例において発明者らは、原理証明として、下流発現プログラムおよび細胞分化に対する機能的作用を評価するために、FOXP3、重要な転写因子をノックアウトする能力を実証する。これらの実験は、メンデル型多臓器自己免疫症候群、IPEXに関連するTreg分化のインビトロでのモデルを作製する。大規模な労力によって、多様かつ特殊化したT細胞サブセットの分化および機能を制御する重要な遺伝子調節回路がマップされている(31)。発明者らは最近、ヒト自己免疫疾患のリスクに寄与する多くの原因遺伝子変異体がT細胞における重要な制御エレメントに位置することを報告した(32)。初代T細胞のゲノム編集は、制御エレメントの機能を評価し、疾患関連コード変異および非コード変異の作用を特徴付けるための強力な摂動試験を提供する。
【0142】
治療的編集は、集団中の成功裏に編集された細胞を特定する技術の改良を必要とする。編集細胞の選択は、形質転換細胞系とは異なり、培養中で長い間維持することができない初代細胞では特に困難である。本実施例では、発明者らは、細胞表面受容体発現の予想表現型変化に基づく、編集細胞のFACS濃縮を実証する。Cas9 RNP媒介性HDR成功はまた、ある特定の利用のために均一に編集された細胞を精製するための遺伝子マーカーの導入も可能にする。
【0143】
治療的T細胞操作は、初代細胞における高効率かつ正確な標的ゲノム編集を必要とする。本明細書において報告する高効率Cas9送達技術は、例えば、初代細胞における高効率かつ正確な標的ゲノム編集を提供することができる。そのような高い効率の送達は、感染、自己免疫および癌の処置のために遺伝子変異体を修正してヒトT細胞機能を操作するために用いることができる。
【0144】
材料および方法
ヒトT細胞の単離および培養
UCSF Committee on Human Research(CHR)によって承認されたプロトコールにしたがって、全血をヒトドナーからナトリウムヘパリン処理された真空採血管(Becton Dickinson)内に収集し、12時間以内に処理をした。末梢血単核球(PBMC)をフィコール密度勾配遠心分離によって単離した。血液を1:1の比率でCa
2+およびMg
2+フリーのハンクス平衡塩溶液(HBSS)と混合し、50 ml Falconチューブに移し(30 mlの血液HBSS混合物/チューブ)、12 ml Ficoll-Paque PLUS(Amersham/GE healthcare)を下張りした。密度勾配濃縮遠心分離(1000 g、20分、ブレーキなし)後、PBMC層を注意深く取り除き、細胞をCa
2+およびMg
2+フリーHBSSで2回洗浄した。製造者のプロトコールにしたがって、CD4
+T細胞をEasysepヒトCD4
+T細胞濃縮キット(Stemcell technologies)で予濃縮した。予濃縮したCD4
+T細胞を以下の抗体で染色した:αCD4-PerCp(SK3; Becton Dickinson)、αCD25-APC(BC96; TONBO Biosciences)、αCD127-PE(R34-34; TONBO Biosciences)、αCD45RA-violetFluor450(HI100; TONBO Biosciences)、およびαCD45RO-FITC(UCHL1; TONBO Biosciences)。CD4
+CD25
hiCD127
lo Treg、CD4
+CD25
loCD127
hi Tエフェクター(Teff)、およびCD4
+CD25
loCD127
hiCD45RA
hiCD45RO
-ナイーブT細胞(Tnaive)をFACS Aria Illu(Becton Dickinson)を用いて単離した。Treg、TeffおよびTnaiveの純度は>97%であった。
【0145】
Cas9 RNPトランスフェクションに関して、Treg、Teff、またはTnaiveを、αCD3(UCHT1; BD Pharmingen)およびαCD28(CD28.2; BD Pharmingen)をコートしたプレート上で48時間予め活性化した。プレートを、37℃にて少なくとも2時間 PBS中で、10μg/ml αCD3およびαCD28でコートした。iTreg分化に関して、FACSで選別したTnaiveを、100 IU/ml IL-2(Aldesleukin, UCSF Pharmacy)および10 ng/ml TGF-β1(Tonbo Biosciences)の存在下で、プレートをコートしたαCD3およびαCD28で活性化した。抗IFNγ遮断抗体および抗IL-4遮断抗体の存在下で行われた1回のiTreg分化実験は、
図4の解析から除外された。
【0146】
Teffを、RPMI完全培地(5×10
5 細胞/mlの細胞密度で、5 mmol/l 4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸(HEPES)(UCSF CCF)、2 mmol/l Glutamax(Gibco)、50μg/mlペニシリン/ストレプトマイシン(Corning)、50μmol/l 2-メルカプトエタノール(Sigma-Aldrich)、5 mmol/l非必須アミノ酸(Corning)、5 mmol/lピルビン酸ナトリウム(UCSF CCF)、および10%ウシ胎仔血清(Atlanta Biologicals)を追加したRPMI-1640(UCSF CCF))中で活性化した。エレクトロポレーション後、培地に40 IU/ml IL-2を追加した。
【0147】
TregをRPMI完全培地中で活性化した。エレクトロポレーション後に、300 IU/ml IL-2を培地に添加し、さらに細胞を拡大させた。エレクトロポレーション後1日目、3日目および5日目に、Treg、TeffまたはTnaiveにそれぞれの培地をさらに追加した。TeffおよびTeffを5×10
5/mlの細胞密度で維持した。Tregを2.5×10
5 細胞/mlの細胞密度で培養した。
【0148】
Cas9の発現および精製
本試験で用いた組換え化膿レンサ球菌(S. pyogenes)Cas9は、HAタグ、および核膜を横断する輸送を容易にする2つの核移行シグナルペプチドをC末端に保有する。タンパク質を、E. coli Rosetta 2細胞(EMD Millipore)中でプラスミドpMJ915からN末端ヘキサヒスチジンタグおよびマルトース結合タンパク質と共に発現させた。Hisタグおよびマルトース結合タンパク質をTEVプロテアーゼによって切断し、Cas9をJinek et al., 2012.に記載のプロトコールによって精製した。Cas9をpH 7.5、150 mM KCl、10%グリセロール、1 mMリン酸トリス(2-クロロエチル)(TCEP)の20 mM HEPES中で-80℃にて保管した。
【0149】
sgRNAのインビトロT7転写
T7プロモーター、20 nt標的配列およびキメラsgRNA足場をコードするDNA鋳型を、オーバーラッピングPCRにより合成オリゴヌクレオチドから構築した。簡単に言うと、CXCR4 sgRNA鋳型に関して、PCR反応は、製造者のプロトコールにしたがい、
の20 nMプレミックス、
の1μMプレミックス、200μM dNTP、ならびにPhusion Polymerase(NEB)を含有する。サーモサイクラーの設定は、95℃10秒、57℃10秒および72℃10秒を30サイクルで構成された。PCR産物をフェノール:クロロホルム:イソアミルアルコールで1回抽出し、次いで、クロロホルムで1回抽出し、その後-20℃で一晩イソプロパノール沈降した。DNAペレットを70%エタノールで3回洗浄し、真空によって乾燥させ、DEPC処理水で溶解した。FOXP3 sgRNA鋳型を、同じ手法によって、T25、SLKS1、SLKS2およびSLKS4
から構築した。
【0150】
100μl T7インビトロ転写反応は、30 mM Tris-HCl(pH 8)、20 mM MgCl
2、0.01% Triton X-100、2 mMスペルミジン、10 mM新鮮なジチオスレイトール 、5 mMの各リボヌクレオチド三リン酸、100μg/ml T7 Polおよび0.1μM DNA鋳型で構成された。反応を37℃にて4時間インキュベートし、5ユニットのRNaseフリーDNaseI(Promega)を添加してDNA鋳型を37℃にて1時間消化した。反応を60℃にて5分間、2×停止液(95%脱イオン化ホルムアミド、0.05%ブロモフェノールブルーおよび20 mM EDTA)で停止させた。RNAを、6 M尿素を含有する10%ポリアクリルアミドゲル中での電気泳動によって精製した。RNAバンドをゲルから切り取り、15 ml管中で粉砕し、5倍量の300 mM酢酸ナトリウム(pH 5)で一晩4℃にて溶出した。1当量のイソプロパノールを加えて、RNAを-20℃で沈降させた。RNAペレットを遠心分離によって収集し、70%エタノールで3回洗浄し、真空によって乾燥させた。sgRNAを再フォールディングするために、まずRNAペレットを20 mM HEPES(pH 7.5)、150 mM KCl、10%グリセロールおよび1 mM TCEP中に溶解した。sgRNAを5分間70℃に加熱し、室温まで冷却した。MgCl
2を1 mMの最終濃度まで添加した。sgRNAを再び5分間50℃に加熱し、室温まで冷却し、氷上で維持した。sgRNA濃度を、Nanodropを用いてOD
260 nmで決定し、20 mM HEPES(pH 7.5)、150 mM KCl、10%グリセロール、1 mM TCEPおよび1 mM MgCl
2を用いて100μMに調整した。sgRNAを-80℃で保管した。
【0151】
Cas9 RNP構築およびエレクトロポレーション
Cas9 RNPを、20μM Cas9を20μM sgRNAと1:1の比率で20μM HEPES(pH 7.5)、150 mM KCl、1 mM MgCl
2、10%グリセロールおよび1 mM TCEP中で37℃にて10分間、10μMの最終濃度にインキュベートすることによって、実験直前に調製した。
【0152】
T細胞をNeonトランスフェクションキットおよびデバイス(Invitrogen)によりエレクトロポレーションした。2〜2.5×10
5個のT細胞を、9μlのバッファーT(Neonキット, Invitrogen)で再懸濁する前に、PBSで3回洗浄した。Cas9 RNP(1〜2μlの10μM Cas9のみ(対照)またはCas9:sgRNA RNP;最終濃度0.9〜1.8μM)ならびにHDR鋳型(0 〜200 pmol)を細胞懸濁物に加え、混合し、Neonエレクトロポレーションデバイス(Invitrogen; 1600V、10ミリ秒、3パルス)を用いて細胞内にトランスフェクトした。HDR鋳型は、標的配列に相補的な(−鎖)一本鎖オリゴヌクレオチドであり、90-ntホモロジーアーム
と隣接しているHindIII制限配列を含有する。
【0153】
エレクトロポレーションしたTreg、TeffまたはTnaiveを、αCD3/CD28でコートした48ウェルプレート中の500μlの各培養培地に移した。エレクトロポレーションの24時間後に、細胞を再懸濁し、コートされていないウェルプレートに移した。エレクトロポレーションの4〜6日後に、T細胞をFACSおよびT7エンドヌクレアーゼIアッセイによって分析した。
【0154】
標的領域のPCR増幅
5×10
4〜2×10
5個の細胞を100μlのQuick Extraction溶液(Epicenter)で再懸濁し、添加して細胞を溶解しゲノムDNAを抽出した。細胞溶解物を65℃で20分間、次に95℃で20分間インキュベートし、-20℃で保管した。ゲノムDNAの濃度をNanoDrop(Thermo Scientific)によって決定した。
【0155】
CXCR4標的、FOXP3標的1またはFOXP3標的2の標的部位を含有するゲノム領域を、以下のプライマーセットを用いてPCR増幅した。CXCR4用:
。FOXP3標的1用:
。FOXP3標的2用:
。CXCR4プライマーを、ホモロジーアームの外側へのアニーリングによるHDR鋳型の増幅を避けるように設計した。PCR反応は、製造者のプロトコールにしたがって、高GCバッファー中に200 ngのゲノムDNAおよびKapaホットスタート高フィデリティポリメラーゼ(Kapa Biosystems)を含有した。サーモサイクラーの設定は、95℃5分間を1サイクル、98℃20秒間、62℃(CXCR4およびFOXP3標的2)または60℃(FOXP3標的1)を15秒間および72℃1分間を35サイクル、ならびに72℃1分間を1サイクルで構成された。PCR産物を、SYBR Safe(Life Technologies)を含有する2%アガロースゲル上で精製した。PCR産物を、QIAquickゲル抽出キット(Qiagen)を用いてアガロースゲルから溶出した。PCR DNAの濃度をNanoDropデバイス(Thermo scientific)により定量した。200 ngのPCR DNAをT7エンドヌクレアーゼI分析およびHindIII分析のために用いた。
【0156】
T7エンドヌクレアーゼIアッセイによる編集効率の分析
編集効率をT7エンドヌクレアーゼIアッセイによって決定した。T7エンドヌクレアーゼIは、野生型および変異DNA鎖のハイブリダイゼーションから生じるミスマッチヘテロ二本鎖DNAを認識および切断する。ハイブリダイゼーション反応は、KAPA高GCバッファーおよび50 mM KCl中に200 ngのPCR DNAを含有し、以下の設定によるサーモサイクラーで行われた:95℃、10分、-2℃/秒で95から85℃、85℃1分間、-2℃/秒で85から75℃、75℃1分間、-2℃/秒で75から65℃、65℃1分間、-2℃/秒で65から55℃、55℃1分間、-2℃/秒で55から45℃、45℃1分間、-2℃/秒で45から35℃、35℃1分間、-2℃/秒で35から25℃、25℃1分間、および4℃で保持。バッファー2および5ユニットのT7エンドヌクレアーゼI(NEB)を添加し、再アニールしたDNAを消化した。37℃でのインキュベーションの1時間後に、反応を、70℃10分間の6×青色ゲルローディング色素(Thermo Scientific)によって停止させた。産物を、SYBRゴールド(Life technologies)を含有する2%アガロースゲル上で分離させた。DNAバンド強度を、Image Labを用いて定量した。編集のパーセンテージを、以下の方程式(1-(1-(b+c/a+ b+c))
1/2)×100を用いて計算した、式中「a」はDNA基質のバンド強度であり、「b」および「c」は切断産物である。
【0157】
HindIII制限消化によるHDRの分析
CXCR4 HDR鋳型は遺伝子座内にHindIII制限部位を導入する。938 bp領域をPCRとしてプライマー
を用いて増幅した。反応は、CutSmartバッファー(NEB)中に200 ngのPCR DNAおよび10ユニットのHindIII高フィデリティで構成された。37℃でのインキュベーションの2時間後、反応を70℃で10分間の1倍量のゲルローディング色素により停止させた。産物を、SYBRゴールド(Life technologies)を含有する2%アガロースゲル上で分離させた。バンド強度をImage Labを用いて定量した。HDRのパーセンテージを以下の方程式(b+c/a+b+c)×100を用いて計算した、式中、「a」はDNA基質のバンド強度であり、かつ「b」および「c」は切断産物である。
【0158】
編集されたT細胞のFACS分析
CXCR4細胞表面染色を、氷上で15分間αCXCR4-APC(12G5;BD Pharmingen)を用いて実施した。抗体媒介性内部移行および抗体の分解を避けるために、細胞を染色手法の間にわたって細胞選別まで4℃で維持した。FACS Aria Illu(Becton Dickinson)を用いて、細胞を選別した。
【0159】
Cas9 RNPで編集したTregおよびiTregの分析のために、以下の抗体を用いた:αCD-PacificBlue(RPA-T4; BD Pharmingen)、αFOXP3-AlexaFluor488(206D; Biolegend)、αCD25-APC(BC96; TONBO Biosciences)、αCD127-PECy7(HIL-7R-M21; BD Pharmingen)、αIL-17a-PerCp-Cy5.5(N49-653; BD Pharmingen)、αIL-10-PE(JES3-9D7; BD Pharmingen)、αIFNγ-AlexaFluor700(B27; Biolegend)、αCTLA-4-PE(L3D10; Biolegend)。
【0160】
細胞を、100 ng/ml PMA(Sigma-Aldrich)および1μg/mlイオノマイシン(Sigma-Aldrich)で2時間刺激した。1μMモネンシン(Biolegend)を3時間のさらなる細胞刺激のために添加した。細胞を表面マーカーについてRTで20分間染色し、その次に、FOXP3/転写因子Fix/Perm(TONBO Biosciences)と共に30分インキュベーションした。FOXP3シグナルを増大させるために、Tregを、Flow Cytometry Permバッファー(TONBO Biosciences)中で100 U/ml DNAseI(Sigma-Aldrich)と共にインキュベートした。iTregは、続いての細胞選別およびT7EI分析のために、DNaseIで処理しなかった。細胞内サイトカインおよび転写因子染色をRTで30分間行った。TregはLSRFortessaDual(Becton Dickinson)によって獲得され、iTregはFACS Aria Illu(Becton Dickinson)を用いて獲得および選別された。
【0161】
統計
3回のiTreg分化実験においてFOXP3 Cas9 RNP処理後のFOXP3
+細胞およびIFNγ分泌細胞の量を、t検定を用いて対照処理後の量と比較した。標準偏差を計算し、エラーバーとして示した。分析の結果を
図4Bに示す。
【0162】
本明細書に記載した実施例および態様は例示のみを目的としていること、およびそれに照らした種々の改変または変更が当業者に示唆され、かつ本出願の精神および範囲ならびに添付の特許請求の範囲の範囲内に含まれるべきであることが理解される。本明細書において引用される全ての刊行物、特許、および特許出願は、全ての目的のついてその全体が参照により本明細書に組み入れられる。
【0163】
参考文献
【0164】
実施例2:
PD-1のエクソン1(sgRNA1により標的とされるPD-1標的1(SEQ ID NO:75)、およびsgRNA2により標的とされるPD-1標的2(SEQ ID NO:74))およびエクソン2(sgRNA3により標的とされるPD-1標的3(SEQ ID NO:72)、およびsgRNA4により標的とされるPD-1標的4(SEQ ID NO:73))に対するsgRNAを設計した(
図5A)。sgRNA標的部位で誘導される二本鎖切断の鋳型指向性修復をもたらすHDRオリゴヌクレオチド(SEQ ID NO:71)も作製した(
図5A)。sgRNA1〜4を含有するCas9 RNPを作製し、初代ヒトエフェクターT細胞(CD4
+CD25
loCD127
hi)に送達し、細胞を回収した。FACSによる回収後の細胞の分析は、複数のCas9 RNPおよびそれらの組み合わせを用いるPD-1の高い効率の除去を明らかにする。2種類の異なるHDR鋳型を有するPD-1コード配列を標的とするCas9 RNPの様々な組み合わせの機能的作用を、PD-1細胞表面発現のFACS分析によって評価した。除去は、2種類のHDR鋳型 (コード配列の一部を除去し、未成熟終始コドンおよび新たなHindIII制限酵素消化部位を導入するように設計された) それぞれとCas9 RNPの複数の組み合わせで観察された。
【0165】
発明者らはまた、キメラ抗原受容体を発現する(CAR) CD4
+およびCD8
+T細胞も編集した。T細胞を、前に記載したようにPD-1 Cas9 RNP(PD-1 sgRNA 2)で編集した。PD-1 Cas9 RNPによるヌクレオフェクション(Nucleofection)の後に、CAR-GFPレンチウイルスによる形質導入が続いた。CAR-GFP発現レベルおよびPD-1表面発現レベルをFACSにより評価した。発明者らは、PD-1
-/
low CAR
+T細胞を作製することができた。
【0166】
実施例3:
Cas9 RNP、FITC標識デキストラン、Pacific Blue(PB)標識デキストラン、および刺激されていないCD4
+T細胞を含有する反応混合物を提供し、SQZ細胞圧縮デバイス(SQZ Biotech)を通して圧縮させた。細胞をFACSにより二重標識(FITCおよびPB)細胞の集団および未標識細胞の集団に選別した。2つの細胞の集団を、T7エンドヌクレアーゼ1(T7E1)アッセイを用いてCas9媒介性ゲノム編集についてアッセイした。Pacific Blue(PB)標識デキストラン(3000 MW)、FITC標識デキストラン(500,000 MW)の取り込みに基づき細胞を選別し、T7エンドヌクレアーゼ1アッセイは、両方のデキストランを取り込んだ細胞における編集の濃縮を確認した。(
図6)。
【0167】
実施例4:
イントロダクション
この実施例は、実施例1で実施した実験のさらなる詳細、ならびに追加の関連実験の方法および結果を提供する。この実験者は、本明細書に記載の方法および組成物の、Cas9誘導性二本鎖DNA切断(DSB)の非相同末端結合(NHEJ)修復から生じる可能性があるランダム挿入および欠失変異により標的遺伝子を除去する能力を実証する。CXCR4中にゲノム編集を有する細胞は、低CXCR4発現に基づき選別することによって濃縮されうる。本実施例はさらに、Cas9 RNPおよび外因性一本鎖DNA鋳型を使用する相同組換え修復(HDR)によって初代T細胞においてCXCR4およびPD-1にて正確に標的ヌクレオチド置換を導入する本明細書に記載の方法および組成物を用いることができることを実証する。この技術は、「ノックイン」初代ヒトT細胞のCas9媒介性の作製を可能にした。標的部位のディープシーケンシングは、Cas9 RNPが最大約20%の効率(50 pmolのHDR鋳型で約22%、100 pmolのHDR鋳型で約18%を達成した)での「ノックイン」ゲノム修飾を促進したことを確認し、それは総編集事象のおよそ1/3までを占めた。これらの知見は、Cas9 RNP媒介性ヌクレオチド置換が疾患関連変異の治療的修正に有用であることを証明できることを示す。これは、初代ヒトT細胞におけるゲノムの実験的および治療的なノックアウト編集およびノックイン編集に対するCas9 RNP技術の有用性を確立する。
【0168】
結果
本明細書に記載の方法および組成物は、初代T細胞の遺伝子操作における長年の課題を克服し、効率的なゲノム操作ツールキットを確立する。哺乳類細胞株における最近の報告は、Cas9 RNPが効率的かつ特異的なゲノム編集を達成できることを示唆する(15〜18)。本明細書に記載の実験は、初代ヒトT細胞における標的ゲノム編集に対するCas9 RNP送達の有効性を実証する(
図7A)。
【0169】
Cas9 RNPによるHIVコレセプターCXCR4の除去。T細胞操作の主な目標は、HIV感染のコレセプター、および腫瘍免疫応答を損なう共抑制免疫チェックポイントを含む、特定の細胞表面受容体の標的除去である。本実施例は、CD4
+T細胞上に発現しかつHIV進入のコレセプターとして機能する造血発生および細胞ホーミングにおいて複数の役割を有するサイトカイン受容体をコードする、CXCR4のエクソン配列を標的とするようにプログラムされたCas9 RNPの使用を実証する(19〜21)。C末端に融合させた2つの核移行シグナル配列(NLS)を保有する精製組換え化膿レンサ球菌Cas9を利用した。このCas9タンパク質を、ヒトCXCR4ゲノム配列を唯一認識するように設計されたインビトロ転写シングルガイドRNA(sgRNA)と一緒にインキュベートした(
図7B)。これらの構築済みCas9 RNP複合体を、健常なドナーから単離したヒトCD4
+T細胞内にエレクトロポレーションした。
【0170】
CXCR4 Cas9 RNPのエレクトロポレーションは、ゲノムDNAの効率的で部位特異的な編集をもたらした。CXCR4遺伝子におけるCas9 RNP誘導性DSBはおそらく、NHEJ、多様な挿入および欠失(インデル)を生じさせ、多くの場合フレームシフト変異および遺伝子機能の喪失をもたらす細胞中の主要なDNA修復経路によって修復されたと思われる(22)。フローサイトメトリーは、低レベルのCXCR4を発現するT細胞のパーセンテージのCas9 RNP用量依存性の増加を明らかにし、これはCXCR4遺伝子の変異と一致した(
図7C)。T7エンドヌクレアーゼI(T7E1)アッセイは、ゲノムの特異的部位での編集を評価する通常の方法である。本実施例において、T7E1アッセイは、CXCR4 Cas9 RNPで処理した細胞におけるCXCR4遺伝子座でのゲノムDNA編集を確認したが、Cas9タンパク質単独で処理した対照細胞(sgRNAなし; 対照)ではそうではなかった。Cas9 RNP処理細胞を、蛍光標識細胞分取(FACS)を用いてCXCR4発現に基づき分離した。T7E1アッセイを用いて、CXCR4
hi細胞と比較したCXCR4
lo細胞(15〜17%)における編集の濃縮を見いだした(様々な用量のCas9 RNPにより4〜12%) (
図7D)。編集事象を直接特定するために実施された標的CXCR4ゲノム部位のSangerシーケンシングは、T7E1アッセイが編集効率を過小評価している可能性があることを示唆した。T7E1アッセイは、野生型配列および変異配列の変性およびハイブリダイゼーションを利用して、ミスマッチDNA二本鎖を作製し、それは次いでT7エンドヌクレアーゼによって消化される。しかしながら、ミスマッチ二本鎖のハイブリダイゼーションは非効率である可能性があり、特に、インデル変異が野生型配列と劇的に異なっているとき、自己ハイブリダイゼーション、エネルギー的により好ましい産物を作る可能性がある。エンドヌクレアーゼアッセイによる編集効率の観察された過小評価に対する他の考えられる理由には、不完全な二本鎖融解、一塩基対インデルの非効率な切断、および大規模なゲノム編集の結果としてアガロースゲル上の予想される300および600塩基対の産物からの逸脱が含まれる(23)。CXCR4
lo細胞におけるCXCR4遺伝子のシーケンシングは、5/6クローンが変異/欠失を有したことを示した一方で、そのような変異/欠失は、CXCR4
hi細胞および対照処理CXCR4
lo細胞ではそれぞれ、4/10クローンおよび0/9クローンだけで観察された。重要なことには、CXCR4
hi集団で観察された編集はいずれも、コード配列(1つのミスセンス変異および3つのインフレーム欠失)を終了させ、これはタンパク質発現の維持と一致した。これに対して、CXCR4
lo集団は、該遺伝子座においてより広範な変異負荷を有する細胞を濃縮させた(
図7E)。これらの知見は、ヒトCD4
+T細胞におけるCas9 RNPによるゲノムターゲティングの成功およびタンパク質発現に対する機能的作用を実証した。FACSは、編集された細胞の集団を濃縮することができ、初代T細胞におけるCas9 RNP利用にさらなる有能なツールを提供した。
【0171】
相同組換え修復(HDR)による効率的な遺伝子「ノックイン」。外因性鋳型媒介性HDRは、特定の変異体配列の実験的および治療的編集を可能にする正確な遺伝子改変のための強力な技術である。Cas9 RNPの高い編集効率を考慮し、発明者らは次に、初代T細胞において外因性鋳型媒介性HDRを達成できるかどうかを試験した。90ヌクレオチドのホモロジーアームを有する一本鎖オリゴヌクレオチドDNA鋳型(HDR鋳型)を用いて、Cas9 RNP切断部位でCXCR4遺伝子座を組み換えた(16)。CXCR4 HDR鋳型を、CRISPR媒介性DNA切断に必要とされるプロトスペーサー隣接モチーフ(PAM)配列を含むヒト参照ゲノムから12ヌクレオチドを置換し、かつHindIII制限酵素切断部位を導入するように設計した(
図8A)。Cas9 RNPを、4種類の異なる濃度のCXCR4 HDR鋳型(0、50、100および200 pmol; 材料と方法の補足情報を参照)の存在下で、初代CD4
+T細胞内にエレクトロポレーションした。HDR鋳型なしのCas9 RNPは再び、CXCR4
hi細胞のパーセンテージを低下させた。特に、本実験では、CXCR4 HDR鋳型の添加はCXCR4除去の効率を改善したが、細胞表面発現に対するこの作用は全ての実験では見られなかった(
図9A)。本実施例で示す実験では、約60%の細胞が100 pmol HDR鋳型およびCas9 RNPにより高レベル細胞表面CXCR4発現を失った(対照処理細胞では60%に対して1%) (
図8BおよびC)。
【0172】
高い効率のHDRを、Cas9 RNPおよび一本鎖オリゴヌクレオチドHDR鋳型で処理した細胞において観察した(
図8D)。T7E1アッセイによって推定されるように、最大で33%の総編集(Cas9切断部位にインデルを生じる全てのNHEJおよびHDR事象の合計として定義される)を、50 pmol CXCR4 HDR鋳型の存在下で観察した。この濃度では、14%のHDRが標的遺伝子座のHindIII消化によって推定され、高い割合の編集がHDRから生じたことを示した(さらなる定量化について以下の結果を参照)。HDR鋳型の添加によるCXCR4染色のほぼ完全な消失は、HDRにより導入された変異(84DLLFV88→84ESLDP88)がCXCR4の細胞表面発現またはその抗体による認識に強い影響を与えることを示唆する(
図8BおよびC)。編集効率は、おそらく細胞毒性の結果として、200 pmol HDR鋳型では低下した。
【0173】
総編集とHDRの両方とも、CXCR4
lo集団を選別することによって濃縮できるが、その作用は
図7のものよりあまりはっきりしておらず、未選別集団におけるCXCR4
lo細胞の割合がより大きなことと一致した。これらの実験では、より厳密なゲートを適用して、CXCR4の最も高い発現を有する細胞を分離しており、このCXCR4
hi集団では編集は観察されなかったことを留意すべきである。これらの試験は集合的には、初代ヒトT細胞において標的DNA配列を正確に置換する、一本鎖オリゴヌクレオチドHDR鋳型と連結させたCas9 RNPの能力を実証した。
【0174】
標的ゲノムDNAのディープシーケンシング。標的CXCR4遺伝子座のディープシーケンシングは、ゲノム編集事象のより詳細かつ定量的な分析を可能にした。
図10で強調表示した結果は、対照処理細胞と比較した、CXCR4 HDR鋳型ありまたはなしでのCXCR4 Cas9 RNP処理細胞における、挿入、欠失、およびHDR媒介性ヌクレオチド置換の頻度を示す。CXCR4 Cas9 RNP処理細胞において、発明者らは、予想切断部位を中心とした200ヌクレオチドのウィンドウ内に少なくとも1つのインデルを含有するCXCR4標的部位と部分的に重複する55%のリードを見いだした(
図10A、B)。上述のように、T7E1アッセイは編集された遺伝子座を特定するのに有用だが、実際の編集効率を過小評価する可能性がある(
図8DにおけるT7E1アッセイの定量化は、ディープシーケンシングによって算出された55%編集効率に比べて33%編集を示唆した)。発明者らはまた、CXCR4 Cas9 RNPについて上から2つの予想される「オフターゲット」部位を配列決定した(
図10B)。極めて少ないインデルが、両方のオフターゲット部位で観察された(約1〜2%)が、Cas9タンパク質のみで処理された対照細胞における部位で観察されるものと同等の比率であった(約1〜2%)。
【0175】
ディープシーケンシングの結果は、標的領域における観察されたインデル変異およびその空間的な分布の定量的分析を可能にした。発明者らは、PAMの4ヌクレオチド上流で最も高い頻度のインデルを見いだした、これは、化膿レンサ球菌Cas9はPAM配列から約3ヌクレオチド上流を切断するという報告と一致した(
図10A)。インデルは配列決定した領域全体にわたって分布し(
図10CおよびD)、事象の大部分は切断部位の近傍であった(40ヌクレオチド内に>94%)。CXCR4 Cas9 RNP処理細胞では、切断部位から+/-100ヌクレオチド内に、リードの95%が欠失事象を含むインデルを有する一方で、10%は挿入事象を含むことを発明者らは観察した。興味深いことに、挿入事象を有するリードのうち、約50%は少なくとも1つの欠失も含有した。発明者らは、幅広いサイズの挿入および欠失を観察し、多くのリードは約80ヌクレオチドの長さまでの欠失(平均18ヌクレオチド、SD 15ヌクレオチド)、および約55ヌクレオチドの長さまでのいくつかの挿入(平均4.4ヌクレオチド、SD 4.8ヌクレオチド)を示した(
図10C、Dおよび11)。この範囲のサイズのインデルおよび位置は、
図7におけるCXCR4
lo選択細胞のSangerシーケンシングで観察された広範な変異負荷と一致した。
【0176】
ディープシーケンシングによって、Cas9 RNPおよびCXCR4 HDR鋳型の両方で処理した細胞のみにおける、CXCR4遺伝子座での12ヌクレオチドの標的置換の成功を検証した。発明者らは、50 pmol HDR鋳型でHDR鋳型配列の25%組み込み、および100 pmol HDR鋳型で21%組み込みを観察した(
図10A)。組み込まれたHDR鋳型配列を有するリードのうち、検出されたHDR鋳型リードの約14%が、組み込まれたHindIII部位の周囲のさらなる非特異的インデル、または予想切断部位を中心とする200ヌクレオチドのウィンドウ内に他の不完全な形の編集を有した。しかしながら、組み込まれたHindIII部位を有するリードにおけるインデルの頻度は、HindIII部位が検出されなかったリードと比較して低減した(
図10C、Dおよび11)。興味深いことに、CXCR4 HDR鋳型ありとなしのCXCR4 Cas9 RNPの間には、2ヌクレオチド(11%)および22ヌクレオチド(5.4%)の欠失の濃縮を伴う欠失事象の一定したパターンが存在した(
図11)。PAM配列の置換は、「ノックイン」配列の再切断を制限する助けになる可能性がある。全体的に見て、(様々な濃度のHDR鋳型による)リードの18〜22%が、配列決定されたゲノム標的部位の全体にわたってヌクレオチドを正しく置換しており、このアプローチが実験的および治療的ヌクレオチド「ノックイン」初代ヒトT細胞の作製に有用であることを証明できたことを示唆した。
【0177】
重要な細胞表面受容体の特異的「ノックイン」ターゲティング。Cas9 RNPが他のゲノム部位でHDRを媒介することを確認するために、発明者らは、PD-1(PDCD1)遺伝子座を標的とするガイドRNAおよびHDR鋳型を設計した。PD-1は、効果的なT細胞媒介性の癌の除去を阻害するおそれがある慢性的に活性化されたまたは疲弊したT細胞の表面上に見られる「免疫チェックポイント」細胞表面受容体である。PD-1のモノクローナル抗体による遮断は、進行悪性腫瘍の処置で認可されており、PD-1の遺伝的欠失は、細胞ベースの癌免疫療法のためのT細胞の操作において有用であることが判明する可能性がある(12)。初代ヒトT細胞に、PD-1の第1のエクソンにおいてフレームシフト変異を作製しかつHindIII制限部位を「ノックイン」するように設計されたPD-1 Cas9 RNPおよびPD-1 HDR鋳型をエレクトロポレーションし、それによってPAM配列を置換した(
図12A)。
【0178】
Cas9 RNP媒介性ターゲティングの特異性を調べるために、発明者らは、PD-1 Cas9 RNP対CXCR4 Cas9 RNP(PD-1遺伝子座を標的としてはならない)またはスクランブル化したガイドCas9 RNP(ヒトゲノム内に予想される切断なし)による処理後のPD-1細胞表面発現を比較した。発明者らは、2つの異なる血液ドナー、および2種類の異なるインビトロ転写プロトコールによって生じたsgRNAを用いて複製実験を並べて行った(材料および方法の補足情報を参照)。PD-1 HDR鋳型をエレクトロポレーションしたPD-1 Cas9 RNPは、PD-1 HDR鋳型によって送達されたCXCR4 Cas9 RNPおよびスクランブル化ガイドCas9 RNPの両方と比べて、高いPD-1細胞表面発現を有する細胞のパーセンテージを有意に低減させた(
図12B)。同様に、CXCR4 Cas9 RNPおよびCXCR4 HDR鋳型も、CXCR4 HDR鋳型によるPD-1およびスクランブル化ガイドCas9 RNP処理の両方と比べて、CXCR4
hi細胞の集団を低減させた(
図12C)。CXCR4の喪失は、CXCR4 Cas9 RNPと一緒に送達された一本鎖DNAの非特異的作用ではなかった;発明者らは、CXCR4 Cas9 RNPおよびCXCR4 HDR鋳型によるものより、CXCR4 Cas9 RNPおよびスクランブル化HDR鋳型による処理後のCXCR4発現細胞のパーセンテージが高いことを観察した(
図9A)。これらの知見は、プログラム可能なCas9 RNPおよびHDR鋳型処理による初代T細胞における細胞表面受容体発現の標的特異的調節を確認した。
【0179】
次に、発明者らは、ヌクレオチド置換に対するHDR鋳型の特異性を試験した(
図12D;対応する細胞表面発現データの例を
図9Bに示す)。予想通り、発明者らは、PD-1 HDR鋳型、CXCR4 HDR鋳型と共に、またはいずれのHDR鋳型なしで送達されたどうかに関係なく、PD-1 Cas9 RNPによる効率的なPD-1編集を観察した。これに対して、HindIII部位は、PD-1 Cas9 RNPおよびPD-1 HDR鋳型の両方の存在下でのみPD-1内に組み込まれたが、CXCR4 HDR鋳型ではそうではなく、配列ホモロジーを欠いているためPD-1遺伝子座で組換えられないはずである。同様に、HindIII部位は、CXCR4 Cas9 RNPおよびCXCR4 HDR鋳型による処理後のCXCR4内にのみ組み込まれ;HDRは、PD-1 HDR鋳型、対照スクランブル化HDR鋳型(HindIII部位を有する)あり、またはHDR鋳型なしではCXCR4遺伝子座で観察されなかった(
図12D)。総合すると、これらの試験は、プログラム化Cas9 RNPおよび対応するHDR鋳型の特定の組み合わせは初代ヒトT細胞において標的ヌクレオチド置換をもたらすことができることを確立した。
【0180】
材料および方法
ヒトT細胞の単離および培養。ヒト初代T細胞を、新鮮な全血またはバフィーコートのいずれかから単離した。末梢血単核球(PBMC)をFicoll密度勾配遠心分離によって単離した。CD4
+T細胞を、製造者のプロトコールにしたがって、EasysepヒトCD4
+T細胞濃縮キット(Stemcell technologies)を用いて予濃縮した。予濃縮したCD4
+T細胞を以下の抗体で染色した:αCD4-PerCp(SK3; Becton Dickinson)、αCD25-APC(BC96; TONBO Biosciences)、αCD127-PE(R34-34; TONBO Biosciences)、αCD45RA-violetFluor450(HI100; TONBO Biosciences)およびαCD45RO-FITC(UCHL1; TONBO Biosciences)。CD4
+CD25
loCD127
hiTエフェクター(Teff)をFACS Aria Illu(Becton Dickinson)を用いて単離した。
【0181】
Cas9 RNPの構築およびエレクトロポレーション。Cas9 RNPを、20μM Cas9を20μM sgRNAと1:1の比率で20μM HEPES(pH 7.5)、150 mM KCl、1 mM MgCl
2、10%グリセロールおよび1 mM TCEP中で37℃にて10分間、10μMの最終濃度にインキュベートすることによって、実験直前に調製した。T細胞にNeonトランスフェクションキットおよびデバイス(Invitrogen)をエレクトロポレーションした。
【0182】
ゲノム編集の分析。編集効率をT7エンドヌクレアーゼIアッセイによって推定した。HDR鋳型を、標的遺伝子座内にHindIII部位を導入するように設計した;HDR成功を、HindIII制限酵素消化によって確認した。CXCR4オンターゲット遺伝子および2つの予測オフターゲット遺伝子についてCas9標的部位の領域に隣接する、ゲノムDNAライブラリーを、2段階PCR法によって構築し、Illumina HiSeq 2500で配列決定した。
【0183】
材料と方法の補足情報
ヒトT細胞の単離および培養。ヒト初代T細胞を、新鮮な全血またはバフィーコートのいずれかから単離した(Stanford Blood Center)。UCSF Committee on Human Research(CHR)による承認を受けて、全血をヒトドナーからナトリウムヘパリン処理された真空採血管(Becton Dickinson)内に収集し、12時間以内に処理をした。末梢血単核球(PBMC)をフィコール密度勾配遠心分離によって単離した。新鮮な血液を1:1の比率でCa
2+およびMg
2+フリーのハンクス平衡塩溶液(HBSS)と混合し、バフィーコートをHBSSで1:10の比率に希釈した。30 mlの各HBSS/血液溶液を50 ml Falconチューブに移し、12 ml Ficoll-Paque PLUS(Amersham/GE healthcare)を下張りした。密度勾配遠心分離(1000 g、20分、ブレーキなし)後、PBMC層を注意深く取り除き、細胞をCa
2+およびMg
2+フリーHBSSで2回洗浄した。製造者のプロトコールにしたがって、CD4
+T細胞をEasysepヒトCD4
+T細胞濃縮キット(Stemcell technologies)で予濃縮した。予濃縮したCD4
+T細胞を以下の抗体で染色した:αCD4-PerCp(SK3; Becton Dickinson)、αCD25-APC(BC96; TONBO Biosciences)、αCD127-PE(R34-34; TONBO Biosciences)、αCD45RA-violetFluor450(HI100; TONBO Biosciences)、およびαCD45RO-FITC(UCHL1; TONBO Biosciences)。CD4
+CD25
loCD127
hi Tエフェクター(Teff)をFACS Aria Illu(Becton Dickinson)を用いて単離した。Teffの純度は>97%であった。
【0184】
Cas9 RNPトランスフェクションに関して、エフェクターCD4
+T細胞を全血から単離し、αCD3(UCHT1; BD Pharmingen)およびαCD28(CD28.2; BD Pharmingen)をコートしたプレート上で48時間予め活性化した。プレートを、37℃にて少なくとも2時間 PBS中で、10μg/mlαCD3およびαCD28でコートした。バフィーコート由来T細胞を10μg/ml αCD3でコートしたプレート上で(PBS中で少なくとも2時間37℃にて)、RPMI完全培地に直接添加した5μg/ml αCD28により活性化した。
【0185】
T細胞を、RPMI完全培地(5 mmol/l 4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸(HEPES)(UCSF CCF)、2 mmol/l Glutamax(Gibco)、50μg/mlペニシリン/ストレプトマイシン(Corning)、50μmol/l 2-メルカプトエタノール(Sigma-Aldrich)、5 mmol/l非必須アミノ酸(Corning)、5 mmol/lピルビン酸ナトリウム(UCSF CCF)、および10%(v/v)ウシ胎仔血清(Atlanta Biologicals)を追加したRPMI-1640(UCSF CCF))中で活性化した。エレクトロポレーション後、培地に40 IU/ml IL-2を追加した。
【0186】
Cas9の発現および精製。本試験で用いた組換え化膿レンサ球菌Cas9は、HAタグ、および核膜を横断する輸送を容易にする2つの核移行シグナルペプチドをC末端に保有する。タンパク質を、E. coli Rosetta 2細胞(EMD Millipore)中でプラスミドpMJ915からN末端ヘキサヒスチジンタグおよびマルトース結合タンパク質と共に発現させた。Hisタグおよびマルトース結合タンパク質をTEVプロテアーゼによって切断し、Cas9をJinek et al., (2012) A programmable dual-RNA-guided DNA endnuclease in adaptive bacterial immunity. Science 337(6096):816-821に記載のプロトコールによって精製した。Cas9をpH 7.5、150 mM KCl、10%(v/v)グリセロール、1 mMリン酸トリス(2-クロロエチル)(TCEP)の20 mM HEPES中で-80℃にて保管した。
【0187】
PAGE精製によるsgRNAのインビトロT7転写。T7プロモーター、20 ヌクレオチド(nt)標的配列およびキメラsgRNA足場をコードするDNA鋳型を、オーバーラッピングPCRにより合成オリゴヌクレオチドから構築した。簡単に言うと、CXCR4 sgRNA鋳型に関して、PCR反応は、製造者のプロトコールにしたがい、
の20 nMプレミックス、
の1μMプレミックス、200μM dNTP、ならびにPhusion Polymerase(NEB)を含有する。サーモサイクラーの設定は、95℃10秒間、57℃10秒間および72℃10秒間を30サイクルで構成された。PCR産物をフェノール:クロロホルム:イソアミルアルコールで1回抽出し、次いで、クロロホルムで1回抽出し、その後-20℃で一晩イソプロパノール沈降した。DNAペレットを70%(v/v)エタノールで3回洗浄し、真空によって乾燥し、ジエチルピロカルボネート (DEPC)処理水で溶解した。PD-1 sgRNA鋳型を、同じ手法によって、T25、SLKS1、SLKS2およびSLKS11
から構築した。
【0188】
100μl T7インビトロ転写反応は、30 mM Tris-HCl(pH 8)、20 mM MgCl
2、0.01%(v/v) Triton X-100、2 mMスペルミジン、10 mM新鮮なジチオスレイトール、5 mMの各リボヌクレオチド三リン酸、100μg/ml T7 Polおよび0.1μM DNA鋳型で構成された。反応を37℃にて4時間インキュベートし、5ユニットのRNaseフリーDNaseI(Promega)を添加してDNA鋳型を37℃にて1時間消化した。反応を2×停止液(95%(v/v)脱イオン化ホルムアミド、0.05%(w/v)ブロモフェノールブルーおよび20 mM EDTA) により60℃にて5分間で停止させた。RNAを、6 M尿素を含有する10%(v/v)ポリアクリルアミドゲル中での電気泳動によって精製した。RNAバンドをゲルから切り取り、50 ml管中で粉砕し、25 mlの300 mM酢酸ナトリウム(pH 5)で優しく揺らしながら一晩4℃にて溶出した。次いで、溶液を4000 gにて10分間遠心分離し、RNA上清を0.45μmフィルターに通過させた。1当量のイソプロパノールを濾過した上清に加えて、RNAを一晩-20℃で沈降させた。RNAペレットを遠心分離によって収集し、70%(v/v)エタノールで3回洗浄し、真空によって乾燥させた。sgRNAを再フォールディングするために、まずRNAペレットを20 mM HEPES(pH 7.5)、150 mM KCl、10%(v/v)グリセロールおよび1 mM TCEP中に溶解した。sgRNAを5分間70℃に加熱し、室温まで冷却した。MgCl
2を1 mMの最終濃度まで添加した。sgRNAを再び5分間50℃に加熱し、室温まで冷却し、氷上で維持した。sgRNA濃度を、Nanodropを用いてOD
260 nmで決定し、20 mM HEPES(pH 7.5)、150 mM KCl、10%(v/v)グリセロール、1 mM TCEPおよび1 mM MgCl
2を用いて100μMに調整した。sgRNAを-80℃で保管した。
【0189】
フェノール/クロロホルム抽出によるsgRNAのインビトロT7転写。インビトロT7転写のためのDNA鋳型を、相補的な一本鎖ウルトラマー(ultramer)
をアニールすることによって作製した。ウルトラマーをヌクレアーゼフリーduplexバッファー(IDT)において1:1の比率で混合し、95℃まで2分間加熱し、続いて、RTで30分のインキュベーションを行った。
【0190】
100μl T7インビトロ転写反応は、1×転写最適化バッファー、10 mMの新鮮なジチオスレイトール、2 mMの各リボヌクレオチド三リン酸、400 U T7 Pol(Promega)、0.5 Uピロホスファターゼ (Life technologies)および2μg DNA鋳型を含有した。反応を37℃で4時間インキュベートした。5 UのRNaseフリーDNaseI(Promega)を添加し、37℃にて30分間DNA鋳型を消化した。反応を5μl 0.5M EDTAで停止させた。
【0191】
PAGE精製時のウェル間の核酸交換の可能性に対する懸念を踏まえ、発明者らは、
図12および9Aに示したように、フェノール/クロロホルム精製sgRNAをPAGE精製sgRNAと並べて試験した。フェノール/クロロホルム抽出は、190μl RNAフリーH
2Oの添加後に行われた。sgRNAを、80μl 3M酢酸ナトリウムおよび420μlイソプロパノールおよび-20℃で4時間のインキュベーションで沈降させた。RNAペレットを70%(v/v) EtOHで2回および100%(v/v) EtOHで1回洗浄した。「PAGE精製によるsgRNAのインビトロT7転写」に記載されているように、真空乾燥させたペレットを再構成し、sgRNAを再フォールディングさせた。
【0192】
Cas9 RNP構築およびエレクトロポレーション。20μM Cas9を20μM sgRNAと1:1の比率で20μM HEPES(pH 7.5)、150 mM KCl、1 mM MgCl
2、10%(v/v)グリセロールおよび1 mM TCEP中で37℃にて10分間インキュベートすることによって、Cas9 RNPを10μMの最終濃度に実験直前に調製した。
【0193】
T細胞をNeonトランスフェクションキットおよびデバイス(Invitrogen)によりエレクトロポレーションした。2.5×10
5個のT細胞を、8μlのバッファーT(Neonキット, Invitrogen)で再懸濁する前に、PBSで3回洗浄した。Cas9 RNP(2μlの10μM Cas9対照 sgRNAなし、または1〜2μl Cas9:sgRNA RNP;最終濃度0.9〜1.8μM)ならびにHDR鋳型(示した通り0 〜200 pmol)を11μlの最終量まで細胞懸濁物に加え(Cas9保存バッファーで調整)、混合した。10μlの懸濁物をNeonエレクトロポレーションデバイス(Invitrogen; 1600V、10ミリ秒、3パルス)を用いてエレクトロポレーションした。CXCR4およびPD-1用のHDR鋳型は、標的配列に相補的な(アンチセンス鎖)一本鎖オリゴヌクレオチドであり、90-ntホモロジーアームと共にHindIII制限配列を含有する。HDRが成功すると、各PAM部位は欠失され、Cas9 RNPによる編集部位の再切断が妨げられるはずである。PD-1 HDR鋳型は加えて、12 ntを11 ntと置換することによって早ければアミノ酸25位にフレームシフトおよびナンセンス変異を引き起こす
。CXCR4 HDR対照ドナーは、HindIII制限部位を含有する元のCXCR4 HDR鋳型に対する配列スクランブル化バージョンである
。
【0194】
エレクトロポレーションしたT細胞を、αCD3/CD28でコートした48ウェルプレート中の500μlの各培養培地に移した。プレートを10μg/mlのαCD3(UCHT1; BD Pharmingen)およびαCD28(CD28.2; BD Pharmingen)によりPBS中で少なくとも2時間37℃にてコートした。エレクトロポレーションの24時間後に、細胞を再懸濁し、コートされていないウェルプレートに移した。エレクトロポレーションの3〜4日後に、T細胞をFACSおよびT7エンドヌクレアーゼIアッセイによって分析した。
【0195】
編集されたT細胞のFACS分析。細胞表面染色を、αCXCR4-APC(12G5; BD Pharmingen)およびαPD-1-PE(EH12.2H7; Biolegend)を用いて氷上で15分間行った。細胞を、染色手法の間にわたって細胞選別まで4℃で維持し、抗体媒介性内部移行および抗体の分解を最小化した。FACS Aria Illu(Becton Dickinson)を用いて、細胞を選別した。
【0196】
標的領域のPCR増幅。5×10
4〜2×10
5個の細胞を100μlのQuick Extraction溶液(Epicenter)で再懸濁し、添加して細胞を溶解し、ゲノムDNAを抽出した。細胞溶解物を65℃で20分間、次に95℃で20分間インキュベートし、-20℃で保管した。ゲノムDNAの濃度をNanoDrop(Thermo Scientific)によって決定した。
【0197】
CXCR4標的部位またはPD-1標的部位を含有するゲノム領域を、以下のプライマーセットを用いてPCR増幅した。CXCR4用:
。PD-1用:
。両方のプライマーセットを、ホモロジーアームの外側へのアニーリングによるHDR鋳型の増幅を避けるように設計した。PCR反応は、製造者のプロトコールにしたがって、高GCバッファー中に200 ngのゲノムDNAおよびKapaホットスタート高フィデリティポリメラーゼ(Kapa Biosystems)を含有した。サーモサイクラーの設定は、95℃5分間を1サイクル、98℃20秒間、CXCR4では62℃またはPD-1では68℃を15秒間および72℃1分間を35サイクル、ならびに72℃1分間を1サイクルで構成された。PCR産物を、SYBR Safe(Life Technologies)を含有する2%(w/v)アガロースゲル上で精製した。PCR産物を、QIAquickゲル抽出キット(Qiagen)を用いてアガロースゲルから溶出した。PCR DNAの濃度をNanoDropデバイス(Thermo scientific)により定量した。200 ngのPCR DNAをT7エンドヌクレアーゼI分析およびHindIII分析のために用いた。
図7Eに関して、PCR産物をTOPO Zero Blunt PCR Cloning Kit(Invitrogen)でクローン化し、Sangerシーケンシングに供した。
【0198】
T7エンドヌクレアーゼIアッセイによる編集効率の分析。編集効率をT7エンドヌクレアーゼIアッセイによって推定した。T7エンドヌクレアーゼIは、野生型および変異DNA鎖のハイブリダイゼーションから生じるミスマッチヘテロ二本鎖DNAを認識および切断する。ハイブリダイゼーション反応は、KAPA高GCバッファーおよび50 mM KCl中に200 ngのPCR DNAを含有し、以下の設定によるサーモサイクラーで行われた:95℃、10分、-2℃/秒で95から85℃、85℃1分間、-2℃/秒で85から75℃、75℃1分間、-2℃/秒で75から65℃、65℃1分間、-2℃/秒で65から55℃、55℃1分間、-2℃/秒で55から45℃、45℃1分間、-2℃/秒で45から35℃、35℃1分間、-2℃/秒で35から25℃、25℃1分間、および4℃で保持。バッファー2および5ユニットのT7エンドヌクレアーゼI(NEB)を添加し、再アニールしたDNAを消化した。37℃でのインキュベーションの1時間後に、反応を、70℃10分間の6×青色ゲルローディング色素(Thermo Scientific)によって停止させた。産物を、SYBRゴールド(Life technologies)を含有する2%アガロース上で分離させた。DNAバンド強度を、Image Labを用いて定量した。編集のパーセンテージを、以下の方程式(1-(1-(b+c/a+b+c))
1/2)×100を用いて計算した、式中「a」はDNA基質のバンド強度であり、「b」および「c」は切断産物である。PD-1 T7E1アッセイの定量化に関して(
図12D)、DNA基質の強度は、全ての条件で見られた2つの大きなバンドの合計として計算された。T7E1アッセイに基づく%総編集の計算は、切断効率の推定のみを可能にする。
【0199】
HindIII制限消化によるHDRの分析。HDR鋳型を標的遺伝子座内のHindIII制限部位に導入するように設計した。CXCR4遺伝子座内へのHindIII部位の導入の成功を試験するために、938 bp領域をプライマー
を用いてPCR増幅した。PD-1遺伝子座に関して、905 bp領域をプライマー
を用いて増幅した。反応は、CutSmartバッファー(NEB)中に200 ngのPCR DNAおよび10ユニットのHindIII高フィデリティで構成された。37℃にて2時間のインキュベーション後、反応を70℃で10分間の1倍量のゲルローディング色素により停止させた。産物を、SYBRゴールド(Life technologies)を含有する2%(w/v)アガロースゲル上で分離させた。バンド強度をImage Labを用いて定量した。HDRのパーセンテージを以下の方程式(b+c/a+b+c)×100を用いて計算した、式中、「a」はDNA基質のバンド強度であり、かつ「b」および「c」は切断産物である。
【0200】
オンターゲット部位およびオフターゲット部位のディープシーケンシング分析。CXCR4オンターゲット遺伝子および2つのオフターゲット遺伝子についてCas9標的部位に隣接するゲノム領域を、下記に挙げるプライマーを用いて2段階PCR法によって増幅した。CXCR4 オンターゲット
、オフターゲット#1(POUドメイン、クラス2、転写因子1アイソフォーム1 [POU2F1] 遺伝子座;
)ならびにオフターゲット#2(グルタミン酸受容体1アイソフォーム1前駆体[GRIA1]遺伝子座;
)。最初に、製造者のプロトコールにしたがって、編集された試料および対照試料由来の100〜150 ngのゲノムDNAを、Kapaホットスタート高フィデリティポリメラーゼ(Kapa Biosystems)を用いてPCR増幅した。サーモサイクラーの設定は、95℃5分間を1サイクル、ならびに98℃20秒間、63℃15秒間および72℃15秒間を15〜20サイクル、ならびに72℃1分間を1サイクルで構成された。結果として生じるアンプリコンを2%(w/v)上で分離させ、SYBR Goldで染色し、Qiagenゲル抽出キットを用いてゲル抽出した。
【0201】
Illumina TruSeq Universalアダプター
および改変Illumina RNA PCRバーコードプライマー
をKapaホットスタート高フィデリティポリメラーゼ(Kapa Biosystems)を用いる第2のPCR段階でアンプリコンに付着させた。サーモサイクラーの設定は、98℃30秒間を1サイクル、98℃20秒間、65℃15秒間および72℃15秒間を8〜10サイクル、ならびに72℃5分間を1サイクルで構成された。結果として生じるアンプリコンを2%(w/v)上で分離させ、SYBR Goldで染色し、Qiagenゲル抽出キットを用いてゲル抽出した。バーコードを付けかつ精製したDNA試料をQubit 2.0 Fluorometer(Life Technologies)によって定量し、BioAnalyzer(Agilent)によってサイズ分析し、qPCRによって定量し、そして等モル比でプールした。シーケンシングライブラリーをIllumina HiSEq 2500で配列決定した。
【0202】
ディープシーケンシングデータの分析。HDR鋳型から生じる独自の12 ntを含有したシーケンシングリードを抽出し、HDR鋳型由来の配列を含有しないものと別々に分析した。Burrows-Wheeler Aligner(BWA)を用いて、置換された12 ntを含有しなかった全てのリードを参照hg19ゲノムに対して整列させ、置換された12 ntを含有したリードの全てを予測置換を有する改変hg19ゲノムに対して整列させた。次いで、samtools mpileupユーティリティを用いて、CXCR4遺伝子の各位置に位置するリードの合計数を定量化し、CIGARストリング調べるカスタムスクリプトを用いて、各リードについて挿入および欠失の数および位置を推計した。挿入効率を、CXCR4 RNP(HDR鋳型なし)による実験について、(切断部位から+/- 100 bpに挿入を有するリードの数)/(切断部位から+/-のリードの総数)として推定した。CXCR4 RNP(HDR鋳型なし)による実験についての欠失効率を、(切断部位から+/- 100 bpに欠失を有するリードの数)/(切断部位から+/-のリードの総数)として推定した。CXCR4 RNP+HDR鋳型による実験に関して、挿入効率および欠失効率を、HDR由来の12 nt置換を含有しなかったリードのみに基づいて計算した(これらは
図10Bに示した割合である)。総編集効率を、(切断部位から+/-100 bpにインデルを有するリードの数)/(切断部位から+/-のリードの総数)として推定した。HDR効率を、(切断部位から+/-100 bpにHindIII部位を含有するリードの数)/( 切断部位から+/-100 bpのリードの総数)として推定した。挿入および欠失サイズの分布を切断部位から+/-20 bpの領域について推定した。ディープシーケンシングデータは、NCBI Sequence Read Archive(SRA, BioProject: SUB996236)で入手可能である。
【0203】
参考文献