特開2021-149938(P2021-149938A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ピース企画の特許一覧

特開2021-149938クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム
<>
  • 特開2021149938-クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム 図000003
  • 特開2021149938-クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム 図000004
  • 特開2021149938-クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム 図000005
  • 特開2021149938-クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム 図000006
  • 特開2021149938-クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム 図000007
  • 特開2021149938-クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム 図000008
  • 特開2021149938-クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム 図000009
  • 特開2021149938-クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム 図000010
  • 特開2021149938-クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム 図000011
  • 特開2021149938-クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム 図000012
  • 特開2021149938-クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム 図000013
  • 特開2021149938-クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム 図000014
  • 特開2021149938-クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム 図000015
  • 特開2021149938-クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム 図000016
  • 特開2021149938-クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム 図000017
  • 特開2021149938-クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム 図000018
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2021-149938(P2021-149938A)
(43)【公開日】2021年9月27日
(54)【発明の名称】クラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラム
(51)【国際特許分類】
   G06Q 30/02 20120101AFI20210830BHJP
【FI】
   G06Q30/02 300
【審査請求】未請求
【請求項の数】18
【出願形態】OL
【全頁数】22
(21)【出願番号】特願2020-202833(P2020-202833)
(22)【出願日】2020年12月7日
(62)【分割の表示】特願2020-45879(P2020-45879)の分割
【原出願日】2020年3月16日
(71)【出願人】
【識別番号】718000381
【氏名又は名称】株式会社ピース企画
(74)【代理人】
【識別番号】110002815
【氏名又は名称】IPTech特許業務法人
(72)【発明者】
【氏名】森田 晋平
【テーマコード(参考)】
5L049
【Fターム(参考)】
5L049BB02
(57)【要約】      (修正有)
【課題】人の移動情報に加え、訪れたスポットの情報を加味して分析し、あるスポットを訪れる人の分析や、あるエリアに訪れる人の分析、また、複数のスポットを訪れる人の分析などを行うことで、それらの特徴を把握することを可能とするクラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラムを提供する。
【解決手段】クラスタ生成装置と、ユーザ端末とが、ネットワークを介して通信可能に接続されるクラスタ生成システムにおいて、クラスタ生成装置100は、複数のユーザの位置情報と時間情報を取得するユーザ情報取得部131と、ユーザの位置情報を用いて、ユーザが訪問したスポットに基づいてユーザの分類であるクラスタを生成するクラスタ生成部132と、クラスタ生成部で生成したクラスタ毎に、クラスタに属するユーザの時間情報と位置情報から、クラスタのスポット間の移動履歴に基づいて、移動経路を生成する経路生成部133とを備える。
【選択図】図2
【特許請求の範囲】
【請求項1】
複数のユーザの位置情報と時間情報を取得するユーザ情報取得部と、
前記ユーザの位置情報を用いて、ユーザが訪問したスポットに基づいてユーザの分類であるクラスタを生成するクラスタ生成部と、
前記クラスタ生成部で生成したクラスタ毎に、該クラスタに属するユーザの時間情報と位置情報から、該クラスタのスポット間の移動履歴に基づいて、移動経路を生成する経路生成部と
を備えるクラスタ生成装置。
【請求項2】
前記クラスタ生成部は、前記ユーザの位置情報が前記スポットの位置情報から一定の範囲内にあるときに前記ユーザが該スポットを訪問したとしてクラスタ生成を行う請求項1に記載のクラスタ生成装置。
【請求項3】
前記クラスタ生成部は、訪問したスポットの共通性に基づきクラスタ生成を行う請求項1又は請求項2に記載のクラスタ生成装置。
【請求項4】
前記クラスタ生成部は、一部のユーザのみが訪問するスポットにレアリティを付与し、訪問したスポットの共通性に基づいてクラスタを生成する際に、クラスタに属するスポットのレアリティの合計値が高いものから優先してクラスタを生成する請求項3に記載のクラスタ生成装置。
【請求項5】
前記クラスタ生成部は、クラスタの分類に際し、さらに前記スポットの訪問時刻、訪問回数、滞在時間のうちいずれか一以上に基づき、クラスタ生成を行う請求項3又は請求項4に記載のクラスタ生成装置。
【請求項6】
前記クラスタ生成部は、クラスタの分類に際し、さらにユーザの購買情報に基づき、クラスタ生成を行う請求項3から請求項5のいずれか一項に記載のクラスタ生成装置。
【請求項7】
前記経路生成部は、前記クラスタ生成部で分類したクラスタ毎に、該クラスタに属するユーザのスポット間の移動履歴に基づいて、ユーザの多数が移動した該クラスタ内の共通スポット間を主たる移動経路として結び付け移動経路を生成する請求項1から請求項6のいずれか一項に記載のクラスタ生成装置。
【請求項8】
前記経路生成部は、前記クラスタ生成部で分類したクラスタ毎に、該クラスタに属するユーザのスポット間の移動履歴に基づいて、閾値を設定し、閾値を超えるが主たる移動経路とならなかった経路を従たる移動経路として移動経路を生成する請求項7に記載のクラスタ生成装置。
【請求項9】
前記クラスタ生成部が生成したクラスタ毎に該クラスタに属するスポット間のネットワーク図を表示し、及び/又は、前記経路生成部が生成したスポットの移動経路を表示する表示部をさらに備える請求項1から請求項8のいずれか一項に記載のクラスタ生成装置。
【請求項10】
前記表示部は、前記主たる移動経路と前記従たる移動経路を識別可能なように前記移動経路を表示する請求項9に記載のクラスタ生成装置。
【請求項11】
前記表示部は、前記移動経路を地図上に表示する請求項9又は請求項10に記載のクラスタ生成装置。
【請求項12】
前記表示部は、前記移動経路とともに、ユーザの購買情報を表示する請求項9から請求項11のいずれか一項に記載のクラスタ生成装置。
【請求項13】
少なくとも前記スポットが属するクラスタを要素として表示するサマリ表示部をさらに備える請求項1から請求項12のいずれか一項に記載のクラスタ生成装置。
【請求項14】
前記サマリ表示部は、一定の範囲をエリアとして、該エリアに属するクラスタを少なくとも要素として表示する請求項13に記載のクラスタ生成装置。
【請求項15】
前記サマリ表示部は、該クラスタ内の共通スポットの情報に基づいて、該クラスタの属性を推定してクラスタサマリとして表示する請求項13に記載のクラスタ生成装置。
【請求項16】
商品、役務の推薦又は訪問すべきスポットの推薦を行うレコメンド部をさらに備える請求項1から請求項15のいずれか一項に記載のクラスタ生成装置。
【請求項17】
複数のユーザの位置情報と時間情報を取得するユーザ情報取得ステップと、
前記ユーザの位置情報を用いて、ユーザが訪問したスポットに基づいてユーザの分類であるクラスタを生成するクラスタ生成ステップと、
前記クラスタ生成ステップで生成したクラスタ毎に、該クラスタに属するユーザの時間情報と位置情報から、該クラスタのスポット間の移動履歴に基づいて、移動経路を生成する経路生成ステップ
をコンピュータにより実行するクラスタ生成方法。
【請求項18】
複数のユーザの位置情報と時間情報を取得するユーザ情報取得ステップと、
前記ユーザの位置情報を用いて、ユーザが訪問したスポットに基づいてユーザの分類であるクラスタを生成するクラスタ生成ステップと、
前記クラスタ生成ステップで生成したクラスタ毎に、該クラスタに属するユーザの時間情報と位置情報から、該クラスタのスポット間の移動履歴に基づいて、移動経路を生成する経路生成ステップ
をコンピュータにより実行するためのクラスタ生成プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、ユーザの位置情報及びユーザが訪れたスポット情報に基づいてユーザを分類するクラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラムに関する。
【背景技術】
【0002】
近年のスマートフォンの普及に伴い、ユーザの位置情報を簡単に取得することが可能となっている。複数のユーザの位置情報を取得することができれば、人の流れを可視化することが可能となり、どのような人々がどのような場所に集うのか、また、人がどこからどこへ流れていくのかを分析し、人が集まる場所を把握・分析することにより、地域振興・文化保護・ビジネスなどに役立てることが可能である。
【0003】
例えば、特許文献1では、GPSなどの情報を用いて人流を可視化し、都市の効率的な運用を支援することを目的として、地図上に人の流れを図示する方法を提案している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】国際公開第2016/067369号
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、特許文献1に開示された技術は、人の移動情報をもとに、ある地点に訪れる人はどこからくるか、あるいはどこへ行くかなど人の流れを分析するにとどまる。特許文献1に開示された技術は、訪れた場所に関する情報を用いてデータを分析する視点は含まれていない。
【0006】
そこで、本開示では、人の移動情報に加え、訪れたスポットの情報を加味して分析し、あるスポットを訪れる人の分析と、あるエリアに訪れる人の分析、また、複数のスポットを訪れる人の分析などを行うことで、それらの特徴を把握することを可能とするクラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラムを提供することを目的とする。
【課題を解決するための手段】
【0007】
本開示の一態様におけるクラスタ生成装置は、複数のユーザの位置情報と時間情報を取得するユーザ情報取得部と、ユーザの位置情報を用いて、ユーザが訪問したスポットに基づいてユーザの分類であるクラスタを生成するクラスタ生成部と、クラスタ生成部で生成したクラスタ毎に、クラスタに属するユーザの時間情報と位置情報から、クラスタのスポット間の移動履歴に基づいて、移動経路を生成する経路生成部とを備える。
【0008】
本開示の一態様におけるクラスタ生成方法は、複数のユーザの位置情報と時間情報を取得するユーザ情報取得ステップと、ユーザの位置情報を用いて、ユーザが訪問したスポットに基づいてユーザの分類であるクラスタを生成するクラスタ生成ステップと、クラスタ生成ステップで生成したクラスタ毎に、クラスタに属するユーザの時間情報と位置情報から、クラスタのスポット間の移動履歴に基づいて、移動経路を生成する経路生成ステップとを備える。
【0009】
本開示の一態様におけるクラスタ生成プログラムは、複数のユーザの位置情報と時間情報を取得するユーザ情報取得ステップと、ユーザの位置情報を用いて、ユーザが訪問したスポットに基づいてユーザの分類であるクラスタを生成するクラスタ生成ステップと、クラスタ生成ステップで生成したクラスタ毎に、クラスタに属するユーザの時間情報と位置情報から、クラスタのスポット間の移動履歴に基づいて、移動経路を生成する経路生成ステップとをコンピュータに実行させるためのプログラムである。
【発明の効果】
【0010】
本開示によれば、ユーザの位置情報と、ユーザが訪問するスポットに関する情報を用いて、クラスタ生成を行うことで、どのスポットに多くの人が集まるかなどスポットの分析、エリア内の人の行動経路などエリアの分析、クラスタに属する平均的な人物の行動パターンと趣向などクラスタの分析を行うことが可能となる。
【図面の簡単な説明】
【0011】
図1】本開示のクラスタ生成システムの構成の一例を示す図である。
図2】本開示の実施形態1に係るクラスタ生成装置の構成の一例を示す図である。
図3】ユーザ情報DB121のデータ構成の一例を示す図である。
図4】スポット情報DB122のデータ構成の一例を示す図である。
図5】ユーザが訪問したスポットの共通性をもとにクラスタリングを行った一例を示す図である。
図6】ユーザが訪問したスポットの共通性の他、滞在時間や訪問回数などをもとにクラスタリングを行った一例を示す図である。
図7】スポット間の移動関係の一例を示す図である。
図8】移動経路を示すネットワーク図の一例を示す図である。
図9】移動経路を地図上に表示する一例を示した図である。
図10】クラスタ生成装置における実施形態1の処理の流れの一例を示すフローチャートである。
図11】本開示の実施形態2に係るクラスタ生成装置の構成の一例を示す図である。
図12】スポットサマリの一例を示す図である。
図13】エリアサマリの一例を示す図である。
図14】クラスタサマリの一例を示す図である。
図15】クラスタ生成装置における実施形態2の処理の流れの一例を示すフローチャートである。
図16】本開示の実施形態3に係るクラスタ生成装置の構成を示す概略ブロック図である。
【発明を実施するための形態】
【0012】
以下、本開示の実施形態に係るクラスタ生成装置、クラスタ生成方法及びクラスタ生成プログラムについて図面を参照しながら説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本開示の内容を不当に限定するものではない。また、実施形態で説明される構成の全てが、本開示の必須構成要件であるとは限らない。また、実施形態を説明する全図において、共通の構成要素には同一の符号を付し、繰り返しの説明を省略する。
【0013】
<実施形態1>
実施形態1では、ユーザの位置情報、時間情報とユーザが訪問したスポットから、ユーザの分類であるクラスタを生成し、クラスタ毎のスポットの訪問経路を表示する。図1に示すように、本実施形態に係るクラスタ生成システムは、クラスタ生成装置100と、ユーザ端末200とを備える。
【0014】
クラスタ生成装置100と、ユーザ端末200とは、ネットワークNWを介して通信可能に接続される。ネットワークNWは、WAN(World Area Network)、LAN(Local Area Network)等から構成される。クラスタ生成システム1は、ユーザの位置情報、時間情報を定期的に取得し、ユーザが訪問したスポットからクラスタを生成する。
【0015】
クラスタ生成装置100は、通信事業者、情報分析を行う事業者などの事業者によって管理される。クラスタ生成装置100は、ユーザ端末200を通して、ユーザの位置情報、時間情報を定期的に取得する。クラスタ生成装置100は、ユーザが訪問したスポットを把握した上で、ユーザが訪問したスポットに基づいて、ユーザの分類であるクラスタを生成する。
【0016】
ユーザ端末200は、ユーザによって使用される。ユーザ端末200は、例えば、スマートフォン、タブレット端末等の位置情報を取得する機能と、通信機能を有する端末装置である。なお、ユーザ端末200は、必ずしも単体で位置情報を取得する機能を有しなくとも、例えば、ユーザを識別するICカードとスポットに設置されたIC読取端末の組合せであって、ユーザの訪問時刻と位置情報を取得する構成であってもよい。
【0017】
<クラスタ生成装置の構成>
以下、クラスタ生成装置100の構成を詳細に説明する。図2に示すように、クラスタ生成装置100は、他の装置と通信を行う通信部110と、各種データを記憶する記憶部120と、装置全体の制御を行う制御部130とを備える。これらの構成要素は、バスラインBLによって相互に接続される。
【0018】
通信部110は、有線通信又は無線通信を行うためのNIC(Network Interface Card controller)を備える通信インタフェースである。通信部110は、ネットワークNWを介して、ユーザ端末200と通信を行う。
【0019】
記憶部120は、RAM(Random Access Memory)、ROM(Read Only Memory)等から構成される。記憶部120は、各種制御処理を実行するためのプログラム、各種データ等を記憶する。
【0020】
また、記憶部120は、ユーザを識別するユーザID、ユーザ端末200から通信部110を介して取得したユーザの位置情報及び取得した時間である時間情報を記憶するユーザ情報DB121を有する。
【0021】
加えて、記憶部120は、スポットを識別するスポットID、位置情報、スポット名、スポットの分類・属性などの情報を記憶するスポット情報DB122を有する。
【0022】
制御部130は、CPU(Central Processing Unit)等から構成される。制御部130は、記憶部120に記憶されているプログラムを実行することにより、クラスタ生成装置100の全体の動作を制御する。
【0023】
以下、制御部130の機能的な構成を説明する。制御部130は、ユーザ情報取得部131、クラスタ生成部132、経路生成部133、表示部134として機能する。
【0024】
ユーザ情報取得部131は、通信部110及びネットワークNWを介して、ユーザ端末200より、ユーザの位置情報及び時間情報を取得する。ユーザの位置情報は、例えば、緯度、経度などの情報である。また、時間情報は、位置情報を取得した時点の時間情報である。
【0025】
ユーザの位置情報の取得には、ユーザが所持するスマートフォン、スマートウォッチなどに搭載されたGPS(Global Positioning System)などの情報を用いてもよい。また、スポットなどに磁気リーダ、ICリーダなどの端末を設置し、ユーザがこれらの端末に自らの端末等を読み取らせたことをもって位置情報を取得してもよい。
【0026】
また、ユーザ情報取得部131は、SNS(Social Networking Service)に発信された情報に基づいて位置情報を取得してもよい。
【0027】
ユーザ情報取得部131は、ユーザより、一定の時間的間隔をもって、定期的に位置情報及び時間情報を取得する。ユーザの位置情報を取得する間隔は、短ければ短いほど詳細な分析が可能となるため、望ましい。
【0028】
一方で、位置情報を取得する時間的間隔が長ければ、システム及びネットワークへの負担を軽減することが可能であり、間隔が短ければ、ユーザの行動をより詳細に分析できる可能性が高まる。したがって、分析の対象とシステムの負荷を考慮しつつ時間的間隔を設定してもよい。
【0029】
ユーザ情報取得部131は、ユーザより取得した位置情報を、ユーザID、取得した時間情報とともに、ユーザ情報DB121に記憶する。クラスタ生成装置100では、様々な観点からクラスタ分析ができるよう、ユーザの位置情報は一度記憶部120に記憶しておくことが望ましい。
【0030】
クラスタ生成部132は、ユーザが訪問したスポットに基づいて、ユーザの分類であるクラスタを生成する。なお、スポットとは、店舗、施設など緯度及び経度により特定することのできる一定の場所のことをいう。また、特徴的な施設などがない場合には、一定の間隔ごとに仮想的なスポットを設置してもよい。
【0031】
クラスタ生成部132は、初めに、ユーザ情報取得部から取得した情報と、スポット情報DB122の情報に基づいて、ユーザがどのスポットにチェックインしたか、すなわち訪問したかを把握する。
【0032】
クラスタ生成部132がユーザのスポット訪問を判定するためには、例えば、ユーザの緯度経度などの位置情報と、スポットの緯度経度などの位置情報を照らし合わせ、その場所が一致する場合に訪問と判定する。
【0033】
また、厳格に位置情報が一致することをもって訪問とみなすと、ユーザがどのスポットも訪問していないと判定される可能性がある。そこで、ある閾値Lを設定しておき、スポットとユーザの距離がL以下である場合には、ユーザがスポットを訪問したとみなしてもよい。これにより、位置情報の誤差を吸収することが可能となる。そのほか、一般的なアルゴリズムを用いてユーザがスポットを訪問したことを判定してもよい。
【0034】
クラスタ生成部132がユーザのスポット訪問を判定するに際して、ユーザとスポットの位置情報が一致することをもって判定するが、このとき、単に一致することをもって訪問と判定してもよいし、連続する時間の一致情報を用いて、通過、訪問、利用を区別して判定してもよい。
【0035】
例えば、ユーザ情報取得部131が一定の時間的間隔をもってユーザの位置情報を取得する際に、ユーザとスポットの位置情報が一致したとしても、それはユーザがスポットを訪問したのではなく、スポットを通過したに過ぎない場合もある。この場合には、通過と判定してもよい。また、時間的に連続する一定の回数(第1の閾値)以上ユーザとスポットの位置情報が一致する場合には、そのスポットを訪問したと判定してもよい。さらに、映画館、温泉施設、テーマパークなどのスポットにおいて、時間的に連続する一定の回数(第2の閾値)以上ユーザとスポットの位置情報が一致する場合には、そのスポットを利用したと判定してもよい。さらに、時間的に連続する一定の回数(第3の閾値)以上ユーザとスポットの位置情報が一致する場合には、そのスポットにおいて就業していると判定してもよい。
【0036】
つまり、連続する時間において、ユーザとスポットの位置情報の一致が第1の閾値未満であるときには通過、第1の閾値以上第2の閾値未満のときは訪問、第2の閾値以上第3の閾値未満のときは利用、として判定してもよい。また、各閾値は、スポット毎に設定してもよい。
【0037】
クラスタ生成部132がユーザのスポット訪問を判定するに際して、ユーザの移動方法を考慮してもよい。例えば、ユーザ情報取得部131は、一定の時間的間隔をもってユーザの位置情報を取得するが、このとき、連続する時間の位置情報の移動距離により、単位時間あたりの移動距離により移動速度を推測し、ユーザの移動方法が徒歩であるか、又は自動車、電車などの移動方法を用いているかなどを判別してもよい。そして、少なくとも自動車、電車などで移動していると判断された際には、ユーザとスポットの位置情報が一致したとしても、ユーザはスポットを通過したに過ぎず、訪問したわけではないので、クラスタ生成部132は、ユーザがスポットを訪問したとは判定しないようにしてもよい。
【0038】
ユーザの位置情報の取得に関して、例えば、スポットに設置した磁気リーダ、ICリーダなどの端末を元に取得する場合、クラスタ生成部132は、ユーザの端末がこれらの端末に読み取られたことをもってユーザがスポットを訪問したと判断してもよい。
【0039】
クラスタ生成部132は、ユーザが訪問したスポットに基づいて、ユーザの分類であるクラスタを生成する。クラスタ生成部132は、例えば、ユーザが訪問したスポットの共通性(スポットから見れば、訪問したユーザの共通性)に基づき、階層型クラスタリング、非階層型クラスタリング、または既知のアルゴリズムなどを用いてクラスタ生成を行う。このとき、クラスタ生成部132は、クラスタ生成の目標をM個とし、クラスタリングを行った後に、共通するスポット及びユーザ数の多いものからM個のクラスタを生成してもよい。
【0040】
また、クラスタ生成部132は、クラスタリングを行う際に、スポットの訪問回数、訪問時刻、滞在時間、スポットの分類の共通性などを加味してクラスタを生成してもよい。加えて、クラスタ生成部132は、総滞在時間、平均滞在時間、テレビ・雑誌・インターネット・SNSなどメディアで紹介・引用された回数、移動体などを加味してクラスタを生成してもよい。
【0041】
さらに、クラスタ生成部132は、クラスタリングを行う際に、スポットの共通性、スポットの訪問回数、訪問時刻、滞在時間、スポットの分類の共通性、総滞在時間、平均滞在時間、テレビ・雑誌・インターネット・SNSなどメディアで紹介・引用された回数、移動体、購買データ、スポットが取り扱う商品や役務の料金、商品や役務の種別・種類などの要素に対して、それらを重みづけした上で加味してクラスタを生成してもよい。
【0042】
クラスタ生成部132は、スポットに対して、意味のある場所、すなわちレアリティの高い場所に対して高い値を付与してもよい。レアリティは、一部のユーザが共通した行動をとる場合に高い値を付与する。例えば、訪問回数の少ない場所に対して、レアリティを高く付与してもよい。駅やコンビニなどは、多くの人が訪問するため、レアリティを低く付与する。一方で、特定の趣味をもった人に人気の書店や、ライブハウスなど、訪問回数の少ない場所はレアリティを高く付与する。
【0043】
また、例えば、スポットの滞在時間や一人あたりの訪問回数が大きい場所にレアリティを高く付与してもよい。これは、あるスポットの滞在時間は通常15分以内であるが、一部のユーザのみ60分以上滞在する場合にレアリティを高く付与してもよい。すなわち、通常、ある駅を利用するユーザは駅から電車に乗るために利用するが、一部のユーザは電車を撮影するために訪問時間が長い場合、60分以上滞在するユーザを通常のスポットAとは別の疑似的なスポットA2としてクラスタを生成してもよい。
【0044】
さらに、例えば、あるスポットに対して、関連するスポットが少ないスポットに対してレアリティを高く付与してもよい。
【0045】
クラスタ生成部132は、クラスタ生成を行う際に、レアリティが一定の閾値を超えるスポットのみを選択した上で、ユーザが訪問するスポットの共通性に基づき、クラスタ生成を行ってもよい。
【0046】
クラスタ生成部132は、クラスタを生成する際に、レアリティの高いスポットを多く含むクラスタのスコアを高く設定し、スコアの高いクラスタを優先的に生成し、または、クラスタ生成後にスコアの高いクラスタから並べ替えてクラスタを抽出してもよい。
【0047】
クラスタ生成部132がクラスタを生成するに際し、階層型クラスタリング、非階層型クラスタリング、あるいは、既知のクラスタリングアルゴリズムを用いてもよい。
【0048】
クラスタ生成部132がクラスタを生成するに際して、共通するスポットに基づいてクラスタを生成するのではなく、いくつかのスポットをまとめたエリアを形成し、エリアに基づいてクラスタを生成してもよい。このとき、クラスタ生成部132は、スポットと同様に、エリアの位置情報、エリアに属するスポットの分類、属性、ユーザの訪問回数などの情報を用いて、クラスタリングを行ってもよい。
【0049】
クラスタ生成部132は、クラスタを生成するに際して、分類を行うスポット、エリアの範囲を限定し、その限定された範囲内でのスポット、エリアに基づいてクラスタを生成してもよい。また、クラスタ生成部132は、一定の時間的範囲をもって、指定された時間内におけるクラスタを生成してもよい。このとき、曜日、時間帯などの範囲をもってクラスタを生成してもよい。
【0050】
さらに、クラスタ生成部132は、クラスタを生成するに際して、スポット、エリアの訪問回数、訪問時刻、滞在時間などを考慮した上で、クラスタを生成してもよい。
【0051】
スポットの共通性など、一定の要素をもとにクラスタリングを行うことで、クラスタ又はスポット毎の特性を把握することが可能となる。
【0052】
経路生成部133は、クラスタ生成部132が生成したクラスタに対して、クラスタに属するスポット及び/又はエリアをユーザがどのように移動したかその移動経路を生成する。
【0053】
経路生成部133は、移動経路の生成に際し、例えば、各スポット間の移動関係をユーザ毎にプロットしていき、経路の生成を行う。すなわち、クラスタ内にA〜Eの5つのスポットがあると仮定したとき、経路生成部133は、A〜A(滞在)、A〜B、A〜C、…B〜A、B〜B(滞在)、B〜C、…E〜D、E〜E(滞在)の移動パターンをユーザの行動毎に行列を生成する。その上で、経路生成部133は、例えば最も数の多い移動パターンを経路として生成し、クラスタに属するユーザの移動経路として生成する。
【0054】
このように移動経路を生成することで、スポット間の移動の前後関係も把握しつつ経路を生成することが可能となる。
【0055】
スポット間の移動関係を用いて経路生成を行うことで、ユーザの位置情報から移動経路を作成するのと比較して、計算量を削減することが可能となる、また、スポット間の移動関係を用いることで、クラスタ生成のもととなるユーザが訪問した共通のスポットを起点とした分析を行うことが可能となる。
【0056】
経路生成部133は、移動経路の生成に際して、クラスタリングの後に移動経路を生成するだけではなく、クラスタリングと同時に移動経路を生成してもよい。
【0057】
移動経路の生成に際しては、唯一の経路を生成するのではなく、主たる移動経路と従たる移動経路に分けて生成してもよい。例えば、スポット間の移動関係において、移動パターンのもっとも多い経路をつないだものを主たる移動経路とし、閾値Tを設定した上で、T以上の移動がある経路を従たる移動経路として生成してもよい。さらに、従たる移動経路は一つでなくともよく、複数の従たる移動経路を生成してもよい。
【0058】
移動経路の生成においては、上記のように、スポット間の移動関係を用いたものに限られるわけではなく、既知の経路生成アルゴリズムを用いて、クラスタに属するスポットの移動経路を生成してもよい。
【0059】
表示部134は、経路生成部133が生成した経路について、クラスタに属するスポット及び/又はエリア間の移動経路をネットワーク図を用いて作成し、表示する。このとき、表示部134は、主たる移動経路のみを表示してもよいし、主たる移動経路と従たる移動経路を併せて表示してもよい。
【0060】
表示部134は、主たる移動経路と従たる移動経路を併せて表示する際に、主たる移動経路と従たる移動経路の区別が分かるように、線種及び/又は色を分けて表示してもよい。これにより、クラスタにおける移動経路が主たる移動経路・従たる移動経路含めて視覚的に一目で把握することが可能となる。
【0061】
また、表示部134は、スポット間の移動経路をネットワーク図で表示するだけでなく、地図上にスポットを示した上で、移動経路を示してもよい。地図上に表示することにより、利用者は、移動経路の距離感を視覚的に把握することが可能となるし、他に近くにどのようなスポットがあるかなども視覚的に把握することが可能となる。
【0062】
移動経路を地図上に表示する際には、既存のアルゴリズムなどを用いて、スポット間の道に沿って経路を表示させてもよい。
【0063】
(記憶部が記憶するDBの具体例)
図3にユーザ情報DB121の具体例を示す。ユーザ情報取得部131は、ユーザより、一定の時間的間隔をもって、定期的に位置情報及び時間情報を取得する。そして、ユーザ情報取得部131は、位置情報を取得したユーザのユーザid、取得時間、ユーザの位置情報(緯度及び経度)をユーザ情報DB121に記憶する。ユーザ情報DB121が記憶する情報はこれらに限られるものではなく、ユーザの年齢(年代)、性別、居住地域など他の情報を記憶してもよい。
【0064】
図4にスポット情報DB122の具体例を示す。スポット情報DB122には、スポットを識別するための識別id、スポットの位置情報(緯度、経度)、スポット名(ショップ名など)、分類(飲食店、テーマパーク、駅などそのスポットの分類)を記憶する。また、スポット情報DBには、そのスポットの開店時間、平均予算などその他の情報を記憶しておいてもよいし、そのスポット公式ホームページ、紹介ページなどのリンクを保存しておき、スポットの各種情報を取得できるようにしておいてもよい。
【0065】
(クラスタ生成の具体例)
クラスタ生成部132は、ユーザが訪問したスポットに基づいて、ユーザの分類であるクラスタを生成する。クラスタ生成は、例えば、次に示すように、階層型クラスタリングを用いて行う。
【0066】
階層型クラスタリングでは、例えば、ユーザから見たスポットの共通性(スポットから見たユーザの共通性)を距離又は類似度に見立てて、スポットのクラスタリングを行う。具体的には、例えば、A,B,Cの3つのスポットがあり、そのスポットを訪問したユーザのidがそれぞれ、A=(01,02,03,04,05)、B=(01,02,03,04,06)、C=(01,02,07,08,09)であった場合、ユーザの共通性が高い(類似度が高い)AとBがまずはクラスタリングが行われ、そののちに、A+B,Cという形でクラスタリングが行われる。階層型クラスタリングの候補としては、A+B+C、A+B、C、A、Bというパターンが生成される。
【0067】
クラスタ生成部132は、類似するスポットを組み合わせながら階層型クラスタリングを行い、クラスタを生成する。このとき、共通スポットが少ないクラスタは、駅やコンビニエンスストアなど、一般的な場所の訪問に留まり、特徴が少ないと考えられる。したがって、共通スポットが多い(共通するユーザ数は少なくなる)クラスタを抽出して最終的なクラスタを生成してもよい。
【0068】
また、特徴のあるクラスタを選択するため、共通するスポットの数×ユーザ数により値の大きいものからクラスタを並び替えてもよい。加えて、共通するスポットの滞在時間の総和などの指標を用いてもよいし、そのほか特徴のあるクラスタを抽出するための要素を加味してもよい。さらに、これらの指標を用いて、上位M個を抽出た上で、クラスタとして構成してもよい。
【0069】
クラスタ生成部132では、階層型クラスタリングに限られず、非階層型クラスタリングや既知のクラスタリングアルゴリズムを用いてクラスタ生成を行ってもよい。
【0070】
クラスタ生成部132は、意味のある場所、すなわちレアリティを用いてクラスタを生成してもよい。例えば、一部のユーザのみが訪問するスポット(訪問するユーザ数がa以上b以下)のスポットにレアリティ10を振り、それ以外のスポットはレアリティを1とする。そして、クラスタを生成する際に、クラスタ内に含まれるスポットからレアリティを算出し、生成したクラスタをレアリティの高いものから並べ替えてもよい。このとき、レアリティの高いものからM個を抽出してもよい。
【0071】
また、レアリティを考慮するに際して、ユーザの訪問回数のみではなく、訪問時刻、滞在時間、スポットの分類の共通性、総滞在時間、平均滞在時間、テレビ・雑誌・インターネット・SNSなどメディアで紹介・引用された回数、移動体、購買データ、スポットが取り扱う商品や役務の料金、商品や役務の種別・種類などの要素を考慮してレアリティを付与してもよい。
【0072】
図5にクラスタ生成部132がクラスタリングを行った後の生成したクラスタの具体例141を示す。例えば、100のクラスタを生成することを目標とした場合に、共通するスポットが多く、構成人数が多いものから、100個のクラスタを生成した例を示す。
【0073】
クラスタ生成部132は、スポットの共通性(ユーザの共通性)だけではなく、訪問時刻、訪問回数、滞在時間、スポットの分類の共通性などの要素も加味した上で、クラスタリングを行ってもよい。このとき、クラスタ生成部132は、スポットの共通性(ユーザの共通性)、訪問時刻、訪問回数、滞在時間、スポットの分類の共通性などの各要素をそれぞれ重みづけした上で、クラスタリングを行ってもよい。
【0074】
図6にスポットの共通性(ユーザの共通性)の他、滞在時間、訪問頻度(図6ではCI頻度と示している)、滞在時間分散、訪問頻度分散、最大滞在時間、最小滞在時間、最大訪問頻度、最小訪問頻度を加味してクラスタリングを行った具体例142を示す。なお、図6では省略しているが、実際には図5と同じように、各クラスタには、複数のスポットが存在し、例えば、図6のクラスタID1のクラスタでは、スポットAのみならず、スポットBCDEも要素として存在している。
【0075】
(経路生成の具体例)
経路生成部133は、クラスタ生成部132が生成したクラスタに対して、クラスタに属するスポット及び/又はエリアをユーザがどのように移動したかその移動経路を生成する。例えば、経路生成部133は、スポット間の移動関係を用いて経路生成を行う。
【0076】
図7にスポット間の移動関係の具体例を示す。例えば、あるクラスタに属するスポットがA〜Fの6スポットだったと仮定する。このとき、A〜Fの各ユーザの移動経路をスポット間の移動関係に入力する。例えば、AスポットにいたユーザがEスポットに移動していれば、A行E列のセルに1を加点する。また、AスポットにいたユーザがAスポットにそのままとどまっていれば、A行A列のセルに1を加点する。
【0077】
経路生成部133がスポット間の移動関係を生成するときには、任意に分割した時間(ある日時からある日時までの一定の時間)において、生成してもよい。
【0078】
図7にスポット間の移動関係の具体例143を示す。このマトリクスでは、Aを起点とした場合には、Aに留まる移動が4、Bへの移動が1、Cへの移動が1、Dへの移動が2、Eへの移動が4、Fへの移動が10である。したがって、AからFへの移動が最も多数派であり、主たる移動経路として把握する。
【0079】
上記と同様に、最も多数派の移動を把握していくと、B→F、C→D、D→E、E→A、F→Bとなる。この経路をつなげていくと、C→D→E→A→F→Bとなる。経路生成部133は、この経路を主たる移動経路として把握する。
【0080】
次に、図7のスポット間の移動関係143において、主たる移動経路として把握されなかったものの、多数の移動があったものを従たる移動経路として把握してもよい。例えば、閾値を10として、主たる移動経路と把握されなかったものの、10以上の移動があった経路を把握する。すると、B→C、C→Bが把握可能である。したがって、主たる移動経路の他、B→C、C→Bを従たる移動経路として把握する。
【0081】
(経路表示の具体例)
表示部134は、経路生成部133が生成した経路について、クラスタに属するスポット及び/又はエリア間の移動経路をネットワーク図を用いて作成し、表示する。図8にネットワーク図の具体例144を示す。これは、図7のスポット間の移動関係143に対して、主たる移動経路を実線、従たる移動経路を破線で示したものである。
【0082】
図8において、例えば、主たる移動経路のみ、または従たる移動経路のみを示してもよい。また、C→D、D→Eのように、向きを含めて表示してもよい。
【0083】
表示部134は、移動経路を地図上に示してもよい。図9は、移動経路を地図上に示した具体例145である。この具体例では、3つのクラスタの経路を同時に地図上に表示した例を示している。地図上に表示するのは、1つのクラスタの経路であってもよいし、任意に選択した複数のクラスタの経路であってもよい。
【0084】
(処理の流れ)
図10は、本開示の実施形態1におけるクラスタ生成装置の処理の流れを示す。
【0085】
ユーザ情報取得部131は、ユーザの位置情報と時間を取得する。そして、ユーザ情報取得部131は、取得した情報を、ユーザ情報DB121に記憶する(ステップS101)。
【0086】
クラスタ生成部132は、ユーザの位置情報、時間情報と、スポットの情報を用いて、ユーザがどのスポットを訪問したか把握する。その上で、クラスタ生成部132は、スポットを訪問したユーザの情報を用いて、クラスタを生成する(ステップS102)。各クラスタには、ユーザが共通して訪問した共通スポットが属する。
【0087】
経路生成部133は、クラスタに属する共通スポットについて、スポット間の移動関係を用いて、ユーザの移動経路を生成する(ステップS103)。このとき、経路生成部133は、主たる移動経路だけでなく、従たる移動経路を生成してもよい。
【0088】
表示部134は、ユーザの移動経路をネットワーク図を用いて表示する(ステップS104)。このとき、表示部134は、地図上に移動経路を表示してもよい。
【0089】
(効果)
本実施形態によれば、ユーザの位置情報と、ユーザが訪問するスポットに関する情報を用いて、スポット又はエリアにどのように人が集まっているか分析を行うことが可能となる。さらに、クラスタを生成して分析することにより、あるスポットを訪れたユーザが他にどのようなスポットを訪れる可能性があるか、また、地域ごとの行動経路の特性などを分析することが可能となる。
【0090】
このようなクラスタに分類した分析を行うことで、あるスポット又はエリアには、どのようなクラスタの人が集まるかを把握することが可能となる。例えば、類似するクラスタが他のスポット又はエリアではどのような行動をとるかを参考にすることにより、地域経済の活性化及び街づくりに役立てることも可能となる。
【0091】
加えて、本実施形態では、個人を特定する情報である個人情報を取得しなくとも、スポット、エリア、クラスタなどの個性、特性を把握することが可能となり、個人情報保護法などの法律による制約を受けにくい環境下において、情報を分析し、マーケティングなどのレコメンドを行うことが可能となる。
【0092】
さらに、本実施形態の分析により、滞在時間及び訪問回数の把握により、勤務地であるか、居住地であるかなどの判別も行うことが可能であり、それにより分析を進めることも可能となる。また、曜日、時間帯ごと、移動体ごとの分析を行うことも可能である。さらに、メディアで紹介された情報も参照することで、メディアによる経済効果を分析することも可能となる。
【0093】
<実施形態2>
実施形態2では、ユーザから取得した情報を用いて、スポットの訪問者数、平均滞在時間など、スポットのサマリを表示する機能をさらに備える。なお、全体のシステム構成は、図1のクラスタ生成システムと同様である。
【0094】
<クラスタ生成装置の構成>
図11に本実施形態におけるクラスタ生成装置300の構成を示す。通信部110、記憶部120の構成は、クラスタ生成装置100と同様である。また、制御部330におけるユーザ情報取得部131、クラスタ生成部132、経路生成部133、表示部134の構成もクラスタ生成装置100の制御部130と同様で、制御部330はさらにサマリ表示部335、レコメンド部336を備える。
【0095】
サマリ表示部335は、ユーザから取得した情報を用いてスポットのサマリを作成し、表示する。作成するサマリは、具体的には、スポットの訪問者数、総滞在時間、ユーザ一人当たりの平均滞在時間、ユーザ一人当たりの平均訪問回数、テレビ・雑誌・インターネット・SNSなどメディアで紹介・引用された回数、当該スポットと関係性の強いクラスタ、当該スポットと関係性の強い他のスポット、当該スポットと関係性の強いスポットの分類、属性である。
【0096】
サマリ表示部335は、スポットの訪問者数、総滞在時間、ユーザ一人当たりの平均滞在時間、ユーザ一人当たりの平均訪問回数について、ユーザから取得した情報をもとに、クラスタ生成部132が行うユーザのスポット訪問判定をもとに分析して算出する。
【0097】
サマリ表示部335は、関係性の強いクラスタを、当該スポットを共通スポットとして含むクラスタの中から、選択する。例えば、各クラスタに属する人数が多いクラスタを関係性が強いとして、予め指定した上位N件を選択してもよい。また、例えば、各クラスタから、訪問回数が多いクラスタ、総滞在時間が長いクラスタ、一人当たりの訪問回数が多いクラスタ、又は一人当たりの滞在時間が長いクラスタを関係性が強いものとして算出してもよい。
【0098】
また、サマリ表示部335は、先のようにして求めた関係性の強いクラスタの中から、当該スポットの移動先又は移動元のスポットを関係性が強いスポットとして選択してもよい。
【0099】
サマリ表示部335は、関連性の強いスポットの分類、属性について、当該スポットと同じ分類、属性が選択され、関係性が強いスポットに含まれている分類、属性を選択してもよい。
【0100】
サマリ表示部335は、上記のようにスポットの分析を行い、スポットサマリを作成する。そして、例えば、サマリ表示部335は、利用者がスポットを選択すると、当該スポットに関するスポットサマリを表示するなどして、スポットサマリを表示する。
【0101】
サマリ表示部335は、エリアの分析を行い、エリアサマリを作成して表示してもよい。エリアとは、例えば、行政区画の●●町、●●市、●●県などの他、●●駅から半径1km以内など、一定の広がりの中で、複数のスポットを含む範囲である。そして、サマリ表示部335は、エリアに含まれるスポット数、総滞在時間、一人当たり平均滞在時間、一人当たり平均訪問回数、主要クラスタ、滞在時間の多いスポット又はクラスタ、一人平均滞在時間の多いスポット又はクラスタ、一人当たり平均訪問回数の多いスポット又はクラスタなどを表示する。
【0102】
サマリ表示部335は、インターネットなどのネットワーク上の情報にアクセスして、テレビ、雑誌などで紹介された回数の多いスポットなどを表示してもよい。
【0103】
サマリ表示部335は、エリアに属するスポットにおいて、当該スポットが属するクラスタなどの情報を用いて、当該エリアに関連のあるクラスタを表示してもよい。このとき、関連の強い上位N個を表示してもよい。
【0104】
サマリ表示部335は、例えば、クラスタに属するユーザの数の多さ、クラスタが含む共通スポットの数の多さなどに基づいて、主要クラスタを分析し、エリアサマリを作成してもよい。
【0105】
サマリ表示部335は、上記のようにエリアの分析を行い、エリアサマリを作成し、表示してもよい。
【0106】
サマリ表示部335は、クラスタの分析を行い、クラスタの属性を推定した上でクラスタサマリを作成して表示してもよい。そして、サマリ表示部335は、クラスタに含まれるユーザの総滞在時間、一人当たり平均滞在時間、一人当たり平均訪問回数、一人当たり平均滞在時間の多いスポット、一人当たり平均訪問回数の多いスポット、主要な行動経路などを作成し、表示してもよい。
【0107】
サマリ表示部335は、ユーザから、性別、年齢、居住地、ユーザの外観、よく身に着ける服装などの情報を取得しておき、それらの情報を用いて、クラスタの男女比、世代比、主要な居住地、平均的な外観などをクラスタサマリとして作成し、表示してもよい。
【0108】
サマリ表示部335がスポットサマリ、エリアサマリ、クラスタサマリを算出するに際しては、いつからいつまでといった予め日時の範囲を指定した上で分析を行ってもよい。
【0109】
このようにサマリを表示することにより、一目で情報を把握することが可能となる。
【0110】
レコメンド部336は、クラスタ分析をした上で、リコメンドを行う。例えば、レコメンド部336は、スポットのオーナーがレコメンドを受けることを想定し、サマリ表示部335において、あるスポットに関連の強いクラスタを分析したときに、当該スポットについて、ユーザが他にどのようなスポットに訪問しているか、どのような種類の商品や役務を取り扱う店舗を訪問しているか、どのような種類の商品や役務を購入しているかなどを分析する。これにより、当該スポットにおいて、取り扱う商品・役務などをレコメンドし、提携すべき店舗などをレコメンドしてもよい。
【0111】
レコメンド部336は、例えば、地域振興協会の担当者がレコメンドを受けることを想定し、サマリ表示部335において、あるエリアに関連の強いクラスタを分析したときに、当該エリアについて、ユーザがどのようなスポットを訪問しているか、どのような種類の商品や役務を取り扱う店舗を訪問しているか、他のエリアではどのようなスポットを訪問しているかなどを分析する。これにより、当該スポットにおいて、当該エリアにはないがユーザが利用する可能性が高いスポットをレコメンドし、また、ユーザが購入する可能性が高い商品・役務などをレコメンドしてもよい。
【0112】
レコメンド部336は、例えば、ユーザがレコメンドを受けることを想定し、サマリ表示部335において、ユーザの属するクラスタから、当該クラスタに属する他のユーザがどのようなスポットを訪問しているか、どのような種類の商品や役務を取り扱う店舗を訪問しているかなどを分析する。これにより、ユーザに対して、当該ユーザが訪問していない他のスポットをレコメンドし、商品や役務をレコメンドしてもよい。
【0113】
上記のようにクラスタ分析を介することで、レコメンド部336は、スポット、店舗や施設の種類、商品・役務の種類などをリコメンドしてもよい。
【0114】
(具体例)
図12にサマリ表示部335が表示するスポットサマリの具体例を示す。サマリ表示部335は、スポットサマリを表示することにより、スポットが、行動パターンの異なる複数のクラスタによって異なる活用が行われていることを視覚的に示すことが可能となる。図12に示すように、サマリ表示部335は、訪問の総数、総滞在時間、一人当たり平均滞在時間、一人当たり平均訪問時刻を表示してもよい。また、スポットAが共通するスポットとなるクラスタを表示し、クラスタごとの値を表示してもよい。さらに、関係性の強いクラスタ、関係性の強いスポット、関係性の強い分類、属性を併せて表示してもよい。
【0115】
サマリ表示部335は、スポット毎にクラスタ分析に基づいたスポットサマリを表示させることにより、当該スポットを訪れるユーザ群の分析や、ユーザによってどのように利用されているか分析することが可能となり、他のスポットやエリアとの比較も可能となる。
【0116】
図13にサマリ表示部335が表示するエリアサマリの具体例を示す。サマリ表示部335は、エリアサマリを表示することにより、エリアが、どのようなスポットとクラスタで構成されているかを視覚的に示すことが可能となる。図12に示すように、サマリ表示部335は、総スポット数、総滞在時間、一人当たり平均滞在時間、一人当たり平均訪問回数を表示してもよい。また、エリアに属するスポット毎の値を表示してもよい。さらに、当該エリアにおける主要なクラスタ、総滞在時間の多いスポット、一人当たり平均滞在時間の多いスポット、一人当たり平均訪問回数の多いスポットを表示してもよい。
【0117】
サマリ表示部335は、エリア毎にクラスタ分析に基づいたエリアサマリを表示させることにより、当該エリアを訪れるユーザ群の分析や、ユーザによってどのように利用されているか分析することが可能となり、他のスポットやエリアとの比較も可能となる。
【0118】
図14にサマリ表示部335が表示するクラスタサマリの具体例を示す。サマリ表示部335は、クラスタサマリを表示することにより、クラスタによる、共通のスポットに対する行動パターンを視覚的に示すことが可能となる。図14に示すように、サマリ表示部335は、クラスタに属するユーザの数、男女比、世代比、居住地域に加え、総滞在時間、一人当たり平均滞在時間、一人当たり平均訪問回数などを表示してもよい。また、スポット毎にこれらの値を表示してもよい。さらに、クラスタの平均的な外観、一人当たり平均滞在時間の多いスポット、一人当たり平均訪問回数の多いスポット、移動経路を表示してもよい。
【0119】
(処理の流れ)
図15は、本開示の実施形態2におけるクラスタ生成装置の処理の流れを示す。
【0120】
ユーザの情報を取得する過程と(ステップS101)、クラスタを生成する過程は(ステップS102)、実施形態1と同様である。
【0121】
また、経路を生成する過程と(ステップS103)、経路を表示する過程が(ステップS104)介在してもよい。
【0122】
サマリ表示部335は、クラスタ生成部132が生成したクラスタの情報を用いて、スポット毎の訪問回数、総滞在時間などを表示するスポットサマリ、エリア毎のスポット数、総滞在時間などを表示するエリアサマリ、クラスタ毎のユーザ数、総滞在時間などを分析して作成し、表示する(ステップS105)。
【0123】
レコメンド部336は、クラスタ生成部132が生成したクラスタの情報を用いて、スポット、エリア、クラスタに属する店舗やユーザに対して、取り扱う商品・役務の種類や他に訪問すべきスポット、購入すべき商品・役務などをリコメンドする(ステップS106)
【0124】
(効果)
本実施形態によれば、ユーザの位置情報と、ユーザが訪問するスポットに関する情報を用いるのみで、スポットやエリアにどのように人が集まっているか分析を行うことが可能となる。さらに、スポット毎に分析を行うことにより、スポットの人気度、他にどのスポットとの行き来が多いかを分析することが可能となり、マーケティングなどに役立てることが可能となる。
【0125】
加えて、エリア毎に分析を行うことにより、エリア間の比較、当該エリアにおいて、ユーザがどのようなスポットを訪問し、時間を過ごすのかを分析することで、新たな商業施設を設置するのにどのような属性の施設が適切かなどの予測を行うことが可能となる。
【0126】
さらに、クラスタ毎に分析を行うことにより、あるスポット、エリアにおける主要なクラスタがどのような特性を持っているか、あるスポットが今後力を入れる場合に、どのような観点(例えば店舗においてどのような商品、役務を提供するかなど)で力を入れるべきかなどを分析することが可能となる。
【0127】
また、レコメンド部336がクラスタ分析をもとに、おすすめのスポットやおすすめの商品・役務などをレコメンドすることで、地域振興や消費の活性化に役立てることが可能となる。
【0128】
<実施形態3>
実施形態3では、クラスタの生成に際して、ユーザがスポットにおいて購入した商品・役務、その価格などの購買情報を用いて、クラスタリングを行う。全体のシステム構成は、図1のクラスタ生成システムと同様である。
【0129】
<クラスタ生成装置の構成>
図16に本実施形態におけるクラスタ生成装置400の構成を示す。通信部110の構成はクラスタ生成装置100と同様である。記憶部120におけるユーザ情報DB121では、ユーザの位置情報と時間情報の他、スポットで購入した商品・役務とその価格の情報なども記憶する。制御部430は、ユーザ情報取得部431、クラスタ生成部432、経路生成部133、表示部434、サマリ表示部435、レコメンド部436を含む。
【0130】
ユーザ情報取得部431は、ユーザから位置情報と時間情報の他、スポットで商品又は役務を購入した際に、その商品・役務の種類、金額、名称などの情報を取得する。これらの情報は、例えば、ユーザが使用するスマートフォンなどの端末において、スマートフォンでの決済から取得してもよい。その他、POS端末からの取得、ユーザがユーザ端末から入力するなどの方法により、取得してもよい。
【0131】
ユーザ情報取得部431は、ユーザから取得した商品・役務の購入情報を、ユーザ情報DB121に記憶する。
【0132】
クラスタ生成部432は、スポットにおいてユーザが購入した商品・役務、その種類、金額などの情報を加味してクラスタリングを行ってもよい。
【0133】
クラスタ生成部432は、例えば、スポットの共通性(ユーザの共通性)だけでなく、AスポットでP円を利用したユーザ、Aスポットで衣類を購入したユーザ、AスポットでB商品を購入したユーザ、など購買情報の共通性も加味してクラスタリングを行う。すなわち、ユーザの共通性、購入した商品・役務の共通性、購入金額の共通性、購入した商品・役務の種類・分類の共通性などをもとにクラスタリングを行う。
【0134】
クラスタ生成部432は、上記のように、ユーザが購入した商品・役務、その種類、金額などの情報も加味した上で、目標とするM個のクラスタを生成するようクラスタリングを行ってもよい。
【0135】
このように、ユーザの購買データを加味しクラスタを生成することにより、スポット、エリア、クラスタの経済的観点での分析を行うことが可能となる。
【0136】
表示部434は、クラスタにおけるユーザの移動経路を表示するに際して、スポット毎にユーザが支出した金額など購買情報を併せて表示してもよい。
【0137】
例えば、表示部434は、あるスポットにおいて支出された金員の合計である総消費金額、支出された金員のユーザ一人当たり平均である平均消費金額、そのスポットで購入数が多く人気の高い商品・役務などを表示してもよい。
【0138】
サマリ表示部435は、クラスタ生成部432が生成したクラスタを用いて、スポットサマリ、エリアサマリ、クラスタサマリを生成する。このとき、ユーザが購入した商品・役務、その種類、金額などの情報も加味した上で、スポットサマリ、エリアサマリ、クラスタサマリを生成してもよい。
【0139】
例えば、サマリ表示部435は、スポットサマリ、エリアサマリ、クラスタサマリにおいて、スポット、エリア、クラスタに属するユーザの情報から、金員を支出した金額の総額を総消費金額として、また、支出した金額の一人あたりの平均額を平均消費金額として算出し、サマリを生成してもよい。
【0140】
サマリ表示部は、時系列に沿って、それぞれのスポット、エリア、クラスタがいつ、どのような商品・役務をいくらの金額で消費したかなどの情報を作成して表示してもよい。
【0141】
本実施形態では、クラスタ生成部432において、ユーザの購買データを加味してクラスタ生成を行う例を示したが、クラスタ生成部432では、ユーザの購買データを加味せずにクラスタ生成をおこなってもよい。その上で、サマリ表示部435において、サマリを作成する際に、ユーザが購入した商品・役務、その種類、金額などの情報を加味してサマリを表示してもよい。
【0142】
クラスタ生成部432において、ユーザが購入した商品・役務の共通性、購入金額の共通性、購入した商品・役務の種類・分類の共通性などを加味しなかったとしても、サマリ表示部435において、ユーザが購入した商品・役務、その種類、金額などの情報を加味することで、それぞれのスポット、エリア、クラスタにおける購買動向を分析することが可能となる。
【0143】
(効果)
このように、クラスタ生成部432及び/又はサマリ表示部435において、ユーザが購入した商品・役務、その種類、金額などの情報も加味することで、スポット、エリア、クラスタにおける購買動向及び経済活動を分析することが可能となる。
【0144】
ユーザの購買動向を踏まえた分析を行うことで、プロファイル型のマーケティング。リコメンドツールとして利用することが期待できる。さらに、街づくり、施設集客、イベント等の効果測定に利用することも期待できる。
【0145】
以上のように、複数の観点からサマリを作成し表示することを通して、例えば、経済的活動や今後の開発の方針を設計するのに役立てることができ、行政及び事業者にとって視覚的な分析を可能とすることができる。
【0146】
以上で実施形態の説明を終了するが、上記実施形態は一例に過ぎない。そのため、クラスタ生成システム1及びクラスタ生成装置100、300の具体的な構成、処理内容等は上記実施形態で説明したものに限られない。
【0147】
また、本開示に係るベッティング受付システムは、上記装置によらず、例えば、コンピュータがプログラムを実行することで、その機能を実現してもよい。情報提供システムの機能を実現するためのプログラムは、USB(Universal Serial Bus)メモリ、CD−ROM(Compact Disc−Read Only Memory)、DVD(Digital Versatile Disc)、HDD(Hard Disc Drive)等のコンピュータ読み取り可能な記録媒体に記憶されてもよいし、ネットワークを介してコンピュータにダウンロードされてもよい。
【0148】
以上、本開示の好ましい実施形態について説明したが、本開示は係る特定の実施形態に限定されるものではなく、本開示には、特許請求の範囲に記載された発明とその均等の範囲が含まれる。また、上記実施形態及び変形例で説明した装置の構成は、技術的な矛盾が生じない限り、適宜組み合わせ可能である。
【符号の説明】
【0149】
1…クラスタ生成システム、100,300…クラスタ生成装置、200…ユーザ端末、110…通信部、120,420…記憶部、121,421…ユーザ情報DB、122…スポット情報DB、130,330,430…制御部、131,431…ユーザ情報取得部、132,432…クラスタ生成部、133…経路生成部、134,434…表示部、335,435…サマリ表示部、336、436…レコメンド部、141…クラスタの具体例1、142…クラスタの具体例2、143…スポット間の移動関係の具体例、144…移動経路ネットワーク図の具体例、145…移動経路を地図上に示す具体例、341…スポットサマリの具体例、342…エリアサマリの具体例、343…クラスタサマリの具体例
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16