【解決手段】加熱手段と送風手段を内設し無通気性及び断熱性を有する加熱箱と、断熱性能測定対象物の高温側の雰囲気温度と、断熱性能測定対象物の低温側の雰囲気の温度をそれぞれ測定する複数の温度測定手段と、制御部と、を備え、加熱箱の周壁部の全域に亘って、周壁部の厚みが一定の場合は複数のサーモパイル又は複数の熱流計を、又は、周壁部の厚みが一定でない場合は複数の熱流計を、予め定めた所定の等面積間隔で直列接続させた回路を形成するように配設し、複数のサーモパイル又は複数の熱流計を直列接続させた回路からの出力電圧がゼロになるように、加熱箱内の加熱手段と送風手段を制御し、温度測定手段からの温度情報を基に熱貫流率を出力することにより課題解決できた。
前記加熱箱の周壁部の厚みが全域で略均一の場合は、前記加熱箱の周壁部の内部側全表面又は外部側全表面に亘って複数の熱流計を、又は、前記加熱箱の周壁部の内部側全表面及び外部側全表面に亘って複数のサーモパイルを、略等面積間隔で1つずつ配設したことを特徴とする請求項1に記載の熱貫流率測定装置。
前記加熱箱の周壁部の厚みが全域で不均一の場合は、前記加熱箱の周壁部の内部側全表面又は外部側全表面に亘って複数の熱流計を略等面積間隔で1つずつ配設したことを特徴とする請求項1に記載の熱貫流率測定装置。
前記略等面積間隔の設定は、前記サーモパイルを配設する場合は前記加熱箱の周壁部の内部側及び外部側のそれぞれの全表面を同じ等面積間隔とし、又は、前記熱流計を配設する場合は前記加熱箱の周壁部の内部側又は外部側の全表面を等面積間隔とし、ならびに、前記等面積間隔として5等面積分割〜80等面積分割のうちのいずれかの等面積分割数で分割して得られる略等面積を間隔として設定することを特徴とする請求項1〜3のいずれかに記載の熱貫流率測定装置。
前記加熱箱が前記箱状体から取外し可能に設置され、かつ前記加熱箱が、無通気性、断熱性及び可撓性を有する周壁部を備えた袋状の形態を有する加熱袋であることを特徴とする請求項1〜4のいずれかに記載の熱貫流率測定装置。
前記低温側の空間を形成する筐体に、熱交換器で該筐体内の空気を冷却する水冷式、又は、該筐体内に冷風を送り込む空冷式の冷却手段を備えたことを特徴とする請求項1〜5のいずれかに記載の熱貫流率測定装置。
前記低温側の空間を形成する筐体の、前記断熱性能測定対象物と対向する側の壁部に、前記筐体の外方に設けた光源からの前記筐体内の前記断熱性能測定対象物に対するふく射を可能とするガラス壁部を設けたことを特徴とする請求項6に記載の熱貫流率測定装置。
前記ガラス壁部と前記断熱性能測定対象物との間に、前記断熱性能測定対象物に略平行に設けた板状のバッフル板を、前記光源からの前記断熱性能測定対象物に対するふく射を可能とするガラス板とすることを特徴とする請求項7に記載の熱貫流率測定装置。
前記筐体内の前記断熱性能測定対象物に対する前記ふく射の強度を調整するためのふく射強度調整手段を設けたことを特徴とする請求項7又は8に記載の熱貫流率測定装置。
前記ガラス壁部と前記断熱性能測定対象物との間であって、前記ガラス壁部近傍に送風手段を設け、かつ前記送風手段により発生する気流の速度を、自然条件の風速の中から選択した風速を再現可能にする気流速度制御手段を設けたことを特徴とする請求項7〜9のいずれかに記載の熱貫流率測定装置。
【発明の概要】
【発明が解決しようとする課題】
【0008】
ハイブリッド車や電気自動車等の自動車の空調性能の効率化や燃費改善のために自動車の車内の断熱性能の向上が求められている。そこで、自動車の乗員が乗る車内の周壁を形づくる部品、例えばバックドア、フロントドア、リアドア又はルーフ等の部品ごとの断熱性能の評価が簡易にできる方法が求められつつある。
【0009】
非特許文献1では、
図5(a)に示すように、試験体25の厚さ方向の高温側に接する一方の面から低温側に接する他方の面への通過熱量から熱貫流率は、加熱箱21、保護熱箱22、冷却チャンバー23、加熱手段24、送風手段26、試験体25を備えた保護熱箱法試験装置20を使用して、試験体25の熱流に対して垂直な面積Aの値と、加熱箱21側の雰囲気温度Tniから冷却側の雰囲気温度Tneを減算した値とを乗算した値で、試験体通過熱量Φ1を除算することにより求められる。また、加熱箱21側の雰囲気温度Tni及び冷却側の雰囲気温度Tneは、一定であることを要件としている。
【0010】
前記試験体通過熱量Φ1は、加熱箱21内に内設した加熱手段24及び送風手段26の発熱量Φpから、加熱箱21の周壁部から保護熱箱22側に向けて通過する熱量Φ3と試験体25表面と平行な損失熱量Φ2を減算する。非特許文献1の「5.1 保護熱箱法」には「理想的にはΦ2=Φ3=0であるが、実際の測定においてはΦ2=Φ3=0とすることは困難であり、Φpに対してΦ2及びΦ3の校正が必要になる。」と記載されている。このため、損失熱量Φ2及び通過熱量Φ3を予め校正しなければならない煩わしさがあるという問題があった。
【0011】
非特許文献2の校正熱箱法試験装置30は、
図5(b)に示すように、高温室32、低温室33の境に設置され、加熱箱31、加熱箱31内に内設する加熱手段34、送風手段35及びバッフル36、低温室33内に設置するバッフル38及び送風手段37、試験体40を装着する高い断熱性を有する取付パネル39を備えている。熱流の流れは
図5(a)に示す保護熱箱法試験装置20とほぼ同じであるが、試験体40の表面と平行な損失熱量Φ2に該当する損失が高い断熱性を有する取付パネル39によりほぼ無視できるようにしている。よって、非特許文献2についても加熱箱31の周壁部から高温室32側に向けて通過する熱量Φ3については、事前に熱抵抗が既知の校正板を用いて校正しておかねばならない煩わしさがあるという問題があった。
【0012】
また、
図5(a)又は(b)に示すように、非特許文献1に規定する熱貫流率測定装置20及び非特許文献2に規定する熱貫流率測定装置30はいずれも建築用構成材を測定する目的で規定されており、基本的にはいずれも平板状体を測定することから、加熱箱21又は31の上端縁部形状は凹凸がない直線状の形状である。したがって、自動車部品のバックドア等の三次元で変化する形状を持つ試験体すなわち断熱性能測定対象物10の熱貫流率を測定するためには、例えば
図11又は
図12に示すように、加熱箱71の上端縁部形状や加熱箱71を囲繞する保護熱箱72の上端縁部形状を自動車部品のバックドア等の三次元で変化する形状に合わせて専用の加熱箱71や保護熱箱72を製作しなければならなかった。
【0013】
例えば、自動車のバックドアの熱貫流率を測定するには、
図11に示すように加熱手段3及び送風手段4を備えた加熱・送風手段73を内設した加熱箱71の上縁部形状、及び、保護熱箱72の上面形状をバックドア74の形状に合うようにバックドア専用の形状を有する熱貫流率測定装置70を製作し、
図12(a)又は(b)に示すように熱貫流率測定装置70の開口部にバックドア74を載置して加熱箱71内を閉塞状態にして熱貫流率を測定する。このことは、特定部品専用の熱貫流率測定装置を異なる形状を有する部品ごとに製作しなければならないことから、投資効率が極めて低く、かつ多くの種類の熱貫流率測定装置の置き場に困るという問題があった。
【0014】
また、非特許文献1に規定する熱貫流率測定装置20、又は非特許文献2に規定する熱貫流率測定装置30は、恒温室等の部屋においての測定、及び、測定対象部品を単体で持ち込み熱貫流率測定装置に取り付けて測定することを前提としているので、例えば自動車部品のバックドア等を自動車から取り外して持ち込まなければ測定できないという煩わしい問題があった。
【0015】
さらに、非特許文献1に規定する熱貫流率測定装置20、又は非特許文献2に規定する熱貫流率測定装置30の冷却チャンバの筐体は遮光可能な断熱材で造られる。このため、例えば自動車の外板部材には自然光からのふく射熱が発生するが、前記外板部材に該当する被熱貫流率測定対象物に対する自然光からのふく射熱の影響による熱貫流率を把握できないという問題があった。
【0016】
特許文献1の発明は、保冷車体全体の断熱性能の評価をするものであり、自動車を構成する部品ごとに断熱性能を示す熱貫流率を測定することはできないという問題があった。
【0017】
本発明はこうした問題に鑑み創案されたもので、例えば自動車の複雑な形状を有する部品ごとに自動車に取り付けた状態で簡易に熱貫流率を測定できる熱貫流率測定装置及び方法を提供することを課題とする。
【課題を解決するための手段】
【0018】
請求項1に記載の熱貫流率測定装置は、断熱性能測定対象物の厚さ方向の高温側に接する一方の面から低温側に接する他方の面への通過熱量を測定する熱貫流率測定装置であって、加熱手段及び送風手段を内設し、断熱性能測定対象物の着設により開口部が塞がれ閉塞状態となる、無通気性及び断熱性を有する加熱箱と、前記断熱性能測定対象物の高温側となる前記加熱箱の内部の雰囲気温度と、前記断熱性能測定対象物の低温側となる空間の雰囲気温度をそれぞれ測定する複数の温度測定手段と、前記加熱手段を制御し熱貫流率を算出する制御部と、を備え、前記加熱箱の周壁部の全域における内部側表面と外部側表面との温度差を出力電圧で測定可能に、複数のサーモパイル又は複数の熱流計を略等面積間隔で1つずつ配設し、前記複数のサーモパイル又は前記複数の熱流計をそれぞれ直列接続させた回路を形成し、前記制御部が、前記複数のサーモパイル又は前記複数の熱流計を直列接続させた回路からの出力電圧がゼロになるように、前記加熱箱内の前記加熱手段を制御することを特徴とする。
【0019】
請求項2に記載の熱貫流率測定装置は、請求項1において、前記加熱箱の周壁部の厚みが全域で略均一の場合は、前記加熱箱の周壁部の内部側全表面又は外部側全表面に亘って複数の熱流計を、又は、前記加熱箱の周壁部の内部側全表面及び外部側全表面に亘って複数のサーモパイルを、略等面積間隔で1つずつ配設したことを特徴とする。
【0020】
請求項3に記載の熱貫流率測定装置は、請求項1において、前記加熱箱の周壁部の厚みが全域で不均一の場合は、前記加熱箱の周壁部の内部側全表面又は外部側全表面に亘って複数の熱流計を略等面積間隔で1つずつ配設したことを特徴とする。
【0021】
請求項4に記載の熱貫流率測定装置は、請求項1〜3のいずれかにおいて、前記略等面積間隔の設定は、前記サーモパイルを配設する場合は前記加熱箱の周壁部の内部側及び外部側のそれぞれの全表面を同じ等面積間隔とし、又は、前記熱流計を配設する場合は前記加熱箱の周壁部の内部側又は外部側の全表面を等面積間隔とし、ならびに、前記等面積間隔として5等面積分割〜80等面積分割のうちのいずれかの等面積分割数で分割して得られる略等面積を間隔として設定することを特徴とする。
【0022】
請求項5に記載の熱貫流率測定装置は、請求項1〜4のいずれかにおいて、前記加熱箱が前記箱状体から取外し可能に設置され、かつ前記加熱箱が、無通気性、断熱性及び可撓性を有する周壁部を備えた袋状の形態を有する加熱袋であることを特徴とする。
【0023】
請求項6に記載の熱貫流率測定装置は、請求項1〜5のいずれかにおいて、前記低温側の空間を形成する筐体に、熱交換器で該筐体内の空気を冷却する水冷式、又は、該筐体内に冷風を送り込む空冷式の冷却手段を備えたことを特徴とする。
【0024】
請求項7に記載の熱貫流率測定装置は、請求項6において、前記低温側の空間を形成する筐体の、前記断熱性能測定対象物と対向する側の壁部に、前記筐体の外方に設けた光源からの前記筐体内の前記断熱性能測定対象物に対するふく射を可能とするガラス壁部を設けたことを特徴とする。
【0025】
請求項8に記載の熱貫流率測定装置は、請求項7において、前記ガラス壁部と前記断熱性能測定対象物との間に、前記断熱性能測定対象物に略平行に設けた板状のバッフル板を、前記光源からの前記断熱性能測定対象物に対するふく射を可能とするガラス板とすることを特徴とする。
【0026】
請求項9に記載の熱貫流率測定装置は、請求項7又は8において、前記筐体内の前記断熱性能測定対象物に対する前記ふく射の強度を調整するためのふく射強度調整手段を設けたことを特徴とする。
【0027】
請求項10に記載の熱貫流率測定装置は、請求項7〜9のいずれかにおいて、前記ガラス壁部と前記断熱性能測定対象物との間であって、前記ガラス壁部近傍に送風手段を設け、かつ前記送風手段により発生する気流の速度を、自然条件の風速の中から選択した風速を再現可能にする気流速度制御手段を設けたことを特徴とする。
【0028】
請求項11に記載の熱貫流率測定方法は、加熱袋を用いて自動車のドアの熱貫流率を測定する方法であって、前記加熱袋は、略中央部に配設した加熱・送風手段と、該加熱・送風手段を囲繞可能な周壁部とを備え、前記周壁部は、無通気性、断熱性及び可撓性を有し、前記周壁部の厚みが全域で不均一である場合は、前記周壁部の内部側の全表面又は外部側の全表面にわたり、複数の熱流計を5等面積分割〜80等面積分割のうちのいずれかの等面積分割数で分割して得られる略等面積の間隔で1つずつ配設して、前記複数の熱流計を直列接続させた回路を備え、前記加熱袋を自動車のドア開口部の内部に設置し、前記加熱袋の周壁部が挟着されるように前記ドアを閉じて開口部を塞ぎ、前記加熱袋内部を閉塞状態とし、前記自動車のドアを断熱性能測定対象物として、前記周壁部に取り付けられた前記複数の熱流計を直列接続させた回路からの出力電圧がゼロとなるように前記加熱袋内の加熱手段を制御し、さらに前記自動車の車内雰囲気温度が安定するように前記車内雰囲気温度を制御し熱貫流率を算出することを特徴とする。
【0029】
請求項12に記載の熱貫流率測定方法は、加熱袋を用いて自動車のドアの熱貫流率を測定する方法であって、前記加熱袋は、略中央部に配設した加熱・送風手段と、該加熱・送風手段を囲繞可能な周壁部とを備え、前記周壁部は、無通気性、断熱性及び可撓性を有し、前記周壁部の厚みが全域で略均一である場合は、前記周壁部の内部側及び外部側の2面それぞれの全表面にわたり、複数のサーモパイルを前記2面それぞれ5等面積分割〜80等面積分割のうちのいずれかの同じ等面積分割数で分割して得られる略等面積の間隔で1つずつ配設して、前記複数のサーモパイルを直列接続させた回路、あるいは、前記周壁部の内部側の全表面又は外部側の全表面にわたり、複数の熱流計を5等面積分割〜80等面積分割のうちのいずれかの等面積分割数で分割して得られる略等面積の間隔で1つずつ配設して、前記複数の熱流計を直列接続させた回路、を備え、前記加熱袋を自動車のドア開口部の内部に設置し、前記加熱袋の周壁部が挟着されるように前記ドアを閉じて開口部を塞ぎ、前記加熱袋内部を閉塞状態とし、前記自動車のドアを断熱性能測定対象物として、前記周壁部に取り付けられた前記複数のサーモパイルを直列接続させた回路からの出力電圧又は前記複数の熱流計を直列接続させた回路からの出力電圧がゼロとなるように、前記加熱袋内の加熱手段を制御し、さらに前記自動車の車内雰囲気温度を安定させるように前記雰囲気温度を制御し熱貫流率を算出することを特徴とする。
【0030】
請求項13に記載の熱貫流率測定方法は、請求項11又は12において、前記ドアが、フロントドア、リアドア又はバックドアのいずれかであることを特徴とする。
【発明の効果】
【0031】
請求項1〜4のいずれかに記載の熱貫流率測定装置は、加熱箱の周壁部から箱状体側への熱流収支をゼロとみなすことが実現できたことから、非特許文献1の保護熱箱法試験装置で規定する「加熱箱の周壁部からの損失熱量Φ3」を事前に把握して校正しておくことをしなくてもよいという顕著な効果を奏する。これにより、前記保護熱箱法試験装置の構成要件である保護熱箱を加熱箱と一体的に組み立てたものでなければならないという制約を解除することができ、例えば、前記保護熱箱を自動車のボディで代用させることができるようになった。
【0032】
また、非特許文献1の保護熱箱法試験で測定した熱貫流率と、本発明の熱貫流率測定装置により測定した熱貫流率との測定誤差を最小化できるという効果を奏する。
【0033】
請求項5に記載の熱貫流率測定装置は、従来ならば3次元で形状変化する断熱性能測定対象物を測定するときは、無通気性と断熱性を有する材料で断熱性能測定対象物の外面形状に合わせた保護熱箱及び加熱箱を製作しなければならず、その断熱性能測定対象物のみしか使用できないのを、加熱箱の周壁部の材質を可撓性を有する部材にすることが実現できたことにより、1つの加熱袋で3次元で変化する形状を有する断熱性能測定対象物に対応できるので、加熱箱を形状の異なる断熱性能測定対象物ごとに専用で製作しなくても1つの加熱袋でよいという効果を奏する。
【0034】
請求項6に記載の熱貫流率測定装置は、冷却手段を手軽に持ち運びできるので、低温の恒温室で測定しなくとも、あるいは、非特許文献1又は非特許文献2に規定する加熱箱と一体的な冷却チャンバーを用いなくても、部屋の内外のいずれの測定場所であっても精度の高い熱貫流率を得ることができるという効果を奏する。
【0035】
請求項7〜9に記載の熱貫流率測定装置は、例えば自動車の外板部材に発生する、太陽等の自然光から発生するふく射熱の影響を受けたときの熱貫流率を測定できるという効果を奏する。
【0036】
請求項10に記載の熱貫流率測定装置は、自然条件である風速の影響を受けたときの熱貫流率を測定できるという効果を奏する。
【0037】
請求項11〜13のいずれかに記載の自動車のドアの熱貫流率測定方法は、自動車にドアを装着した状態で加熱袋を装着して熱貫流率を測定することができるという効果を奏する。
【発明を実施するための形態】
【0039】
本発明である熱貫流率測定装置1及び方法は、断熱性能測定対象物10の熱貫流率を測定する装置及び方法である。非特許文献1又は非特許文献2で問題であった、第一に加熱箱2の周壁部から保護熱箱6側に向けて通過する熱量Φ3を事前に熱抵抗が既知の校正板を用いて校正しておかねばならないという煩わしさの問題、及び、第二に加熱箱2及び保護熱箱6のそれぞれの断熱性能測定対象物10を受ける上縁部形状を断熱性能測定対象物10の三次元で変化する形状に合わせて専用の加熱箱2や保護熱箱6を製作しなければならないという問題を解決させるべく、発明者は本発明の熱貫流率測定装置1及び方法を想到した。
【0040】
本発明の熱貫流率測定装置1は、
図2(a)又は
図2(b)に示すように、熱貫流率測定装置1は、断熱性能測定対象物10の厚さ方向の高温側に接する一方の面から低温側に接する他方の面への通過熱量を測定する熱貫流率測定装置1であって、加熱手段3及び送風手段4を内設し、断熱性能測定対象物10の着設により開口部が塞がれ閉塞状態となる、無通気性及び断熱性を有する加熱箱2と、前記断熱性能測定対象物10の高温側となる前記加熱箱2の内部の雰囲気温度と、前記断熱性能測定対象物10の低温側となる空間の雰囲気温度をそれぞれ測定する複数の温度測定手段15、16と、前記加熱手段3を制御し熱貫流率を算出する制御部7と、を備え、前記加熱箱2の周壁部9の全域における内部側表面と外部側表面との温度差を出力電圧で測定可能に、複数のサーモパイル11又は複数の熱流計12を略等面積間隔で1つずつ配設し、前記複数のサーモパイル11又は前記複数の熱流計12をそれぞれ直列接続させた回路を形成し、前記制御部7が、前記複数のサーモパイル11又は前記複数の熱流計12を直列接続させた回路からの出力電圧がゼロになるように、前記加熱箱2内の前記加熱手段3を制御する。
【0041】
また、熱貫流率測定装置1は、前記加熱箱2の周壁部9全体を囲繞しかつ前記加熱箱2と閉塞空間を形成する箱状体6を備え、前記箱状体6内には加熱手段19及び送風手段17が内設され、前記送風手段17は作動し続け、前記制御部7は前記箱状体6内部の雰囲気温度を一定になるように前記箱状体6内部に設けた温度測定手段(図示なし)からの温度情報に基づき前記加熱手段19を制御部7により制御する。
【0042】
前記熱貫流率測定装置1は、
図1に示すように加熱箱2aと箱状体6とは分離する形態Aと、
図2又は
図3に示すように加熱箱2と箱状体6とが一体的に組立てられる形態Bがある。前記形態Aの場合は、箱状体6は例えば自動車80の乗員が乗る車内を形成するボディが相当する。
【0043】
すなわち、前記熱貫流率測定装置1は、前記形態Aの場合は、前記箱状体6の筐体を自動車80のボディで代用することができ、加熱手段19、送風手段17、車内雰囲気温度測定手段及び制御手段を備えた車内温度安定化手段を自動車80の車内に持ち込むことにより、前記箱状体6の機能と同じ機能を発揮させることができる。
【0044】
前記熱貫流率測定装置1は、
図2又は
図3に示すように、断熱性能測定対象物10は加熱箱2の断熱性を有する周壁9のみで支持され箱状体6とは隔離されているので断熱性能測定対象物10の表面と平行な損失熱量をゼロとみなすことができ、かつ、前記加熱箱2の周壁部9の全域における内部側表面と外部側表面との温度差を表す出力電圧をゼロに制御するので加熱箱2の周壁部9から箱状体6側への熱流収支をゼロとみなすことができる。これによって、第一の問題であった「加熱箱2の周壁部から保護熱箱6側に向けて通過する熱量Φ3及び試験体表面と平行な損失熱量Φ2を事前に熱抵抗が既知の校正板を用いて校正しておかねばならないという煩わしさ」を解消できた。
【0045】
したがって、前記熱貫流率測定装置1は、前記加熱手段3及び前記送風手段4において消費される電力の計測値から算出される、前記加熱箱2の内部から前記断熱性能測定対象物10の厚さ方向に沿って前記低温側となる空間へ前記断熱性能測定対象物10を通過する熱量と、前記断熱性能測定対象物10における熱流に対して垂直な面積と、前記加熱箱2の内部の雰囲気温度と、前記断熱性能測定対象物10の低温側となる空間の雰囲気の温度とを用いて、前記断熱性能測定対象物10の熱貫流率を算出できる。したがって、前記熱貫流率測定装置1を使用すると、前記加熱手段3及び前記送風手段4において消費される電力の計測値から算出される加熱箱内供給熱量Φpを把握すれば、前記通過熱量Φ3及び前記損失熱量Φ2を考慮しなくても前記通過熱量Φ1を容易に求められるという顕著な効果を奏する。
【0046】
本発明の熱貫流率測定装置1の前記加熱箱2は、
図2に示すように、加熱手段3と送風手段4を内設し、前記断熱性能測定対象物10の着設により開口部が塞がれ閉塞状態となる。前記加熱箱2の周壁部9は無通気性及び断熱性を有し、前記加熱箱2の内部の温度は一定に維持される。前記加熱手段3は加熱できるものであればよく例えばヒータがあり、前記送風手段4は送風ができるものであればよく例えばファンがある。前記加熱手段3は前記制御部7で制御されるが、前記送風手段4は前記制御部7で制御することなく常時作動させる。
【0047】
前記加熱箱2は、
図2、
図3に示すように、上部に開口部を有する筐体であり、上部開口部の周縁部に前記断熱性能測定対象物10を載置する構成にし、前記断熱性能測定対象物10が箱状体6と接触しないように隔離するようにしている。そして、加熱箱2の周壁部9は少なくとも無通気性及び断熱性を有する部材から造られる。前記加熱箱2内には、加熱手段3、送風手段4、温度測定手段15が内設されている。
【0048】
この前記断熱性能測定対象物10を加熱箱2の周縁部9のみで支持し前記周縁部9としか接触しないようにする構成により、前記断熱性能測定対象物10の側面での損失熱量をゼロとみなすことができる。
【0049】
前記複数の温度測定手段15、16は、少なくとも前記断熱性能測定対象物10の高温側となる前記加熱箱2の内部の雰囲気温度を測定する温度センサー15と、前記断熱性能測定対象物10の低温側となる空間の雰囲気の温度を測定する温度センサー16を備える。前記温度センサー15、16からの温度情報は制御部7内に設置したデータロガー(図示なし)に記憶される。前記加熱箱2の内部の雰囲気温度と低温側となる空間の雰囲気の温度は熱貫流率を算出するためのデータとして制御部7で演算される。
【0050】
次に、前記制御部7は、前記複数のサーモパイル11を直列接続させた回路からの出力電圧又は前記複数の熱流計12を直列接続させた回路からの出力電圧がゼロになるように、加熱箱2内に内設した加熱手段3を制御し、温度センサー15からの加熱箱2内部の雰囲気温度及び温度センサー16からの前記断熱性能測定対象物10の低温側となる空間の雰囲気の温度をデータロガー(図示なし)に入力して記憶させ、予め既知の前記断熱性能測定対象物10の伝熱面積(前記断熱性能測定対象物10における熱流に対して垂直な面積)、前記加熱手段3及び送風手段4の供給熱量をもとに熱貫流率を導き出し出力する制御を行う。前記出力は制御部7に設けたディスプレイや接続させたパソコンの画面に表示することができる。
【0051】
前記箱状体6は、前記加熱箱2の周壁部9の全体を囲繞しかつ前記加熱箱2と閉塞空間を形成する。非特許文献1における保護熱箱22や、非特許文献2における高温室32を本発明では改良を行ったものであり、本発明では加熱箱2と閉塞空間を形成可能なものであればよく、保護熱箱や高温室でなく自動車の車内でもよいようにできた。例えば
図10に示すようにドア類をすべて閉にした自動車80の車内81に加熱箱2を設置して測定可能にできる。前記箱状体6は自動車80のボディに該当し、前記加熱箱2と前記箱状体6との間の閉塞空間は前記自動車80の全ドアを全閉した車内に該当する。
【0052】
次に、サーモパイル11又は熱流計12について説明する。前記加熱箱2の周壁部9の厚みが全域で略均一の場合は、
図1(a)、(b)、
図2(a)、(b)、又は、
図3(a)、(b)に示すように、前記加熱箱2の周壁部9の内部側全表面又は外部側全表面に亘って複数の熱流計12、又は、前記加熱箱2の周壁部9の内部側全表面及び外部側全表面に亘って複数のサーモパイル11を、略等面積間隔で1つずつ配設する。
【0053】
また、
図2(b)又は
図3(b)に示すように、前記加熱箱2の周壁部9の厚みが全域で不均一の場合は、前記加熱箱2の周壁部9の内部側全表面又は外部側全表面に亘って複数の熱流計12を略等面積間隔で1つずつ配設する。
【0054】
前記複数のサーモパイル11を直列接続させた回路からの出力電圧又は前記複数の熱流計12を直列接続させた回路からの出力電圧がゼロになった状態では、前記加熱箱2の周壁部9を通した、箱状体6により形成する空間に対する熱流収支がゼロの状態とみなせる。これにより、
図5(a)に示すような非特許文献1の保護熱箱法に規定された「加熱箱周壁からの損失熱量Φ3」を事前に把握して校正しておくという煩わしいことをしなくてもよい。
【0055】
次に、複数のサーモパイル11を前記周壁部9の内部側全表面及び外部側全表面の表裏に略等面積間隔に配設して複数のサーモパイル11による出力電圧をゼロに制御することによって、高い精度の熱貫流率を得られることを、
図6に示すようなサーモパイル配設検討用の熱貫流率測定装置1cを使用し検証した。前記熱貫流率測定装置1cは加熱箱2の周壁部9や箱状体6を備えて、前記周壁部9の5面はすべて1面が1m四方の大きさにした。加熱箱2の周壁部9の熱伝導率と厚みは既知であるので前記周壁部9の通過熱量Q2は計算上求められる。また、試験体10aの熱貫流率、伝熱面積、加熱箱内雰囲気温度と冷却側雰囲気温度は把握できるので、試験体10aの通過熱量Q1は求められる。そこで、試験体10aの通過熱量Q1を分母とし、加熱箱2の周壁部9の通過熱量Q2からサーモパイル11又は熱流計12による全熱流収支値Q3を減算した値を分子として除算した値を測定誤差として算出する。
【0056】
すなわち、計算上で求められる通過熱量Q2と、サーモパイル11又は熱流計12で測定されたQ3との比較を行った。通過熱量Q2と全熱流収支値Q3との差が大きいと測定誤差が多くなり、通過熱量Q2と全熱流収支値Q3との差が小さくなると測定誤差は小さくなる。
【0057】
試験例1は、周壁部9の展開図である
図7(a)に示すように1m四方の1面の中心に1個のサーモパイルを配置した全面で5等面積分割で等面積の場合であり、5面に配置したそれぞれのサーモパイル同士を直列接続させ5つのサーモパイルからなる複数のサーモパイル11とした。試験例2は、周壁部9の展開図である
図7(b)に示すように1m四方の1面を4つに等面積分割しそれぞれの中心に1個のサーモパイルを配置した全面で20等面積分割で等面積の場合であり、5面に配置したサーモパイル同士を直列接続させた20個のサーモパイルからなる複数のサーモパイル11とした。試験例3は、周壁部9の展開図である
図7(c)に示すように1m四方の1面を9つに等面積分割しそれぞれの中心に1個のサーモパイルを配置した全面で45等面積分割で等面積の場合であり、5面に配置したサーモパイル同士を直列接続させた45個のサーモパイルからなる複数のサーモパイル11とした。
【0058】
試験例として実施しなかったが、前記サーモパイル11を熱流計12に変えても前記サーモパイル11の場合と同じ等面積間隔を当てはめることができる。また、
図7に示すように周壁部9が5面となる形態に限らず、
図14に示すように周壁部9の全体が1面の形態でもよい。
図14に示すように周壁部9の全体が1面の形態の場合は、例えば36等面積分割ができ、複数のサーモパイル11又は複数の熱流計12を等面積間隔で配設することができる。すなわち、縦横の分割数を変えれば、例えば80等面積分割、70等面積分割、60等面積分割、50等面積分割等のように任意に設定することができる。
【0059】
また、前記試験体10aの熱貫流率を1W/m
2K(
図8において符号△)、2W/m
2K(
図8において符号□)、4W/m
2K(
図8において符号〇)と変化させて前記等面積分割数による測定誤差を検証し、その結果を
図8に示す。
図8において、分割記号Lは45等面積分割の場合を示し、分割記号Mは20等面積分割の場合を示し、分割記号Nは5等面積分割の場合を示している。なお、等面積分割をせず全面で1つしかサーモパイル11を設けなかった場合は、熱貫流率が1W/m
2Kの場合の測定誤差は79.3%、熱貫流率が2W/m
2Kの場合の測定誤差は39.6%、熱貫流率が4W/m
2Kの場合の測定誤差は19.8%であった。
【0060】
図8から、等面積分割数が5の場合より等面積分割数が20(等分割面積0.25m
2)の場合の方が、さらには等面積分割数が45の場合(等分割面積0.11m
2)の方が、すなわち等面積分割数が増加する場合の方が測定誤差が小さくなることが示されている。また、試験体10aの熱貫流率が大きい部材ほど測定誤差が小さいことが示されている。これにより、サーモパイル11を配設する等面積間隔は、測定誤差をより小さくするためには、等面積分割数は20以上が好ましく、等面積分割数は45以上がより好ましく、さらに等面積分割数は80が一層好ましい。なお、
図7(a)に示すように1m四方の1面を5つ合わせた5面とした場合の等面積は、0.25m
2以下が好ましく、分割面積0.11m
2以下がより好ましい。
【0061】
したがって、前記略等面積間隔の設定は、前記サーモパイル11を配設する場合は前記加熱箱2の周壁部9の内部側及び外部側のそれぞれの全表面を同じ等面積間隔とし、又は、前記熱流計12を配設する場合は前記加熱箱2の周壁部9の内部側又は外部側の全表面を等面積間隔とし、ならびに、前記等面積間隔として5等面積分割〜80等面積分割のうちのいずれかの等面積分割数で分割して得られる略等面積を間隔として設定する。
【0062】
前記5等面積未満の等面積分割では測定誤差が大きすぎて問題となり、前記80等面積分割超では測定誤差が極小になるがサーモパイル11又は熱流計12を配設するのに多大の時間がかかり高価になるという問題があることから、前記等面積間隔として5等面積分割〜80等面積分割のうちのいずれかの等面積分割数が好ましい。
【0063】
次に、
図2に示すような熱貫流率測定装置1で、温度センサー16で測定した外気温(
図5(a)に示す保護熱箱法試験装置20の冷却チャンバー23の気温に相当し、
図5(b)に示す校正熱箱法試験装置30の低温室33の気温に相当し、本発明の断熱性能測定対象物10の低温側となる空間の気温に該当する。)と、温度センサー15で測定した加熱箱2の内部の雰囲気の温度との温度差が、熱貫流率測定に与える影響を試験した。断熱性能測定対象物10は、熱伝導率が0.02W/mKと既知の建築用断熱材を使用し、略分割面積0.11m
2の略等面積間隔で配設したサーモパイル11を直列接続させた回路からの出力電圧がゼロになる制御を制御部7で実施した。外気温と加熱箱内雰囲気温度との温度差を、温度差10℃をグラフQで、温度差20℃をグラフR,温度差30℃をグラフSで表し、その結果を
図9に示す。なお、この断熱性能測定対象物10が厚み均一の平板状体であることから、
図9では熱貫流率を熱伝導率に換算して表示している。
【0064】
図9から、前記温度差が20℃以上になると、試験に使用した建築用断熱材の熱伝導率0.02W/mKにほぼ近い値が得られている。よって、加熱箱2内の雰囲気温度と、断熱性能測定対象物10の低温側となる空間の気温との温度差を20℃以上にして熱貫流率を測定することが好ましい。
【0065】
次に、
図3に示すように、前記加熱箱2が前記箱状体6から取外し可能に設置され、かつ前記加熱箱2が、無通気性、断熱性及び可撓性を有する周壁部9aを備えた袋状の形態を有する加熱袋2aとすることができる。前記加熱袋2aを前記箱状体6から取り外すと、熱貫流率測定装置1aは
図1(a)、(b)に示すような形態となる。
【0066】
すなわち、
図3に示すような熱貫流率測定装置1の前記加熱袋2aの周壁部9aの材質を可撓性を有する部材とし、前記部材としては例えば無通気性、断熱性及び可撓性を有する発砲シール材やゴム材があり、その例として厚さ20mmのエプトシーラー(日東電工株式会社製)などがある。前記周壁部9aの厚みは、サーモパイル11又は熱流計12の装着可能性及び断熱性を考慮して少なくとも10mm以上、好ましくは20mm以上がより好ましい。
【0067】
加熱袋2aの周壁部9aを無通気性、断熱性及び可撓性を有する部材にすると、平面視の
図1(a)又は側面視の
図1(b)に示すように、平面状に拡げることができ、加熱手段3、送風手段4を内設させ、上面側に開口部8aを設けた加熱・送風手段8(加熱手段3及び送風手段4を内設している。)を中央部に配設し、無通気性、断熱性及び可撓性を有する部材にサーモパイル11又は熱流計12を等面積間隔で直列接続で配設している。可撓性を有する袋状体となることから、平板状に拡げたり、折り曲げて包み込んだ袋状体に変化させることができる。
【0068】
加熱袋2aの周壁部9aが無通気性、断熱性及び可撓性を有する部材であるので、袋状体として使用できることから、
図3(a)に示すようにサーモパイル11を備えた袋状体、又は、
図3(b)に示すように熱流計12を備えた袋状体で使用することができる。これにより、周壁部9aを袋状にしてフレキシブル性を持たすことで、断熱性能測定対象物10への取り付け部も自由度が高くなり、形状が三次元で変化する、複数の形状が異なる断熱性能測定対象物10の断熱性能を、1つの加熱袋2aを備えた熱貫流率測定装置1aで測定可能とすることができる。これにより、第二の問題であった「加熱箱2及び保護熱箱6のそれぞれの断熱性能測定対象物10を受ける上縁部形状を断熱性能測定対象物10の三次元で変化する形状に合わせて専用の加熱箱2や保護熱箱6を製作しなければならない」を解消できた。
【0069】
例えば
図10に示すように自動車80におけるフロントドア83等の開閉可能なドアは自動車80に装着した状態で熱貫流率を測定することができ、
図13(b)に示すようにバックドア74の開口部に、加熱・送風手段8と可撓性を有する周壁部9aを備える熱貫流率測定装置1aをセットし、
図13(a)に示すように前記周壁部9aの周縁部をバックドア74の開口部の縁部に挟着するようにバックドア74を閉じた状態で熱貫流率を測定することができる。
【0070】
また、例えば
図10に示すようにフロントガラス82は開閉不可であるので自動車80から取り外すが、フロントガラス82の三次元形状に合わせた新たな専用の形状の周壁部を有する加熱箱2を製作することがなく、可撓性を有する加熱袋2aを用いて熱貫流率を測定することができる。
【0071】
次に、
図4に示すように、前記低温側の空間を形成する筐体18に、熱交換器43で該筐体18内の空気を冷却する水冷式、又は、該筐体18内に冷風を送り込む空冷式の冷却手段50を備える。
【0072】
前記筐体18内の空間は、本発明の断熱性能測定対象物10の低温側となる空間に該当し、
図5(a)に示す保護熱箱法試験装置20の冷却チャンバー23の改良になり、又は、
図5(b)に示す校正熱箱法試験装置30の低温室33の改良になる。前記保護熱箱法試験装置20及び前記校正熱箱法試験装置30は、大型の建具も測定対象としていることから、恒温室等の部屋においての測定を前提としているため、前記冷却チャンバー23又は前記低温室33は大型になり容易に持ち運びできないものであった。本発明の熱貫流率測定装置1又は1aは持ち運び可能とすることができたので、これに合わせて持ち運び可能な冷却手段50を想到した。
【0073】
水冷式の冷却手段50は、
図4(a)に示すように、循環水冷却装置41で冷却させた冷水が配管42内を流動し筐体18内に設けられた熱交換器43で筐体18内の空気を冷却し、その冷却空気Gが送風手段45でバッフル44のガイドにより断熱性能測定対象物10に向けて層流となって流動させている。加熱箱6内の雰囲気温度と前記冷却空気Gの温度とは20℃以上の差をつけることが好ましい。
【0074】
空冷式の冷却手段50は、
図4(b)に示すように、循環空気冷却装置41aで冷却させた冷却空気Gが、ダクト46内を流動し筐体18内に設けられた仕切り板47でガイドされながら断熱性能測定対象物10に向けて層流となって流動させている。加熱箱2内の雰囲気温度と前記冷却空気Gの温度とは20℃以上の差をつけることが好ましい。
【0075】
可搬式の冷却手段50により、熱貫流率測定をする場所の制限、例えば校正熱箱法試験装置30で規定されている低温室33という制限がなくなり、大掛かりな恒温室も必要としないので、断熱性能測定対象物10が取り付けられている場所で加熱箱2内の雰囲気温度と前記冷却空気Gの温度とは20℃以上の差をつけることが容易にできることから、断熱性能測定対象物10が取り付けられている場所での測定の精度を高めることができる。
【0076】
次に、低温側を自然条件である太陽からのふく射及び風速の影響を受けたときとの熱貫流率を測定可能な熱貫流率測定装置1bについて説明する。前記熱貫流率測定装置1bは、
図15に示すように、前記低温側の空間を形成する筐体18の、前記断熱性能測定対象物10と対向する側の壁部に、前記筐体18の外方に設けた光源60からの前記筐体18内の前記断熱性能測定対象物10に対するふく射を可能とするガラス壁部61を設けている。
【0077】
そして、筐体18内で一様な空気温度分布を得るためにバッフル板44aを設置する場合は、前記ガラス壁部61と前記断熱性能測定対象物10との間に、前記断熱性能測定対象物10に略平行に設けた板状のバッフル板44aを、前記光源60からの前記断熱性能測定対象物10に対するふく射を可能とするガラス板とする。
【0078】
そして、例えば自動車の外板が自然条件である太陽からのふく射による影響を受けたときの熱貫流率を測定可能とするためにふく射強度調整手段を設けている。前記ふく射強度調整手段は、例えば、ふく射強度を高くする、すなわちふく射熱を高くするときは前記光源温度を高くする制御を行い、ふく射強度を低くする、すなわちふく射熱を低くするときは前記光源温度を低くする制御を行う手段である。前記ふく射強度調整手段としては、前記光源60の温度を制御する、例えば制御部7内に設けた、前記光源60に印加する電圧の大きさを変換するスライダック等がある。前記ふく射強度調整手段を調整することにより、前記筐体18内の前記断熱性能測定対象物10に対する前記ふく射強度を調整する。
【0079】
また、例えば自動車の外板が自然条件である風による影響を受けたときの熱貫流率を測定可能とするために、前記ガラス壁部61と前記断熱性能測定対象物10との間であって、前記ガラス壁部61近傍に送風手段45を設け、かつ自然条件の風速の中から選択した風速を再現可能にする気流速度制御手段を制御部7内に設け、前記送風手段45により発生する気流の速度を調整している。
【0080】
まず、熱貫流率測定装置1bを使用して得られた、前記送風機45の風量と熱貫流率の関係を説明する。
図16に示すように、前記断熱性能測定対象物10として、アルミニウム板(厚さ3mm、△印)、ポリプロピレン板(厚さ0.7mm、□印)及びガラス板(厚さ4mm、〇印)の各平板状を使用した。横軸に風量を縦軸に熱貫流率を示している。なお、自然条件を再現させるために、太陽光によるふく射の影響を検証するため、光源60をライトONさせてふく射センサ63のふく射熱をモニターし、光源60のふく射強度を調整した。
【0081】
図16から、風量が増加するほど、すなわち気流の速度が速くなるほど、断熱性能測定対象物10の材質にかかわらず熱貫流率が緩やかに上昇していることが示されている。このことは自然条件で風があるときは、例えば自動車の外板を通した自動車室内からの熱の流れは、風量が増加するほど増加することを示している。よって、発明の熱貫流率測定装置1bを使用して風の影響を考慮した自動車ドア構造体の断熱性能を評価することができる。
【0082】
次に、熱貫流率測定装置1bを使用して得られた、太陽光を再現させるライト照射によるふく射と熱貫流率の関係を説明する。
図17に示すように、自然条件に近いふく射の影響を検証するため、光源60をライトONさせて自然条件に近いふく射のある昼間の時間帯と、光源60をライトOFFさせてふく射のない夜の時間帯をつくって検証した。前記断熱性能測定対象物10として、アルミニウム板(厚み3mm、△印)、ポリプロピレン板(厚み0.7mm、□印)及びガラス板(厚み4mm、〇印)の各平板状を使用した。横軸に経過時間を縦軸に熱貫流率を示している。
【0083】
図17に示すように、光源60によるふく射熱が発生しないときは、断熱性能測定対象物10の熱貫流率はいずれの材質も略同じレベルであるが、光源60によるふく射熱が発生したときは、断熱性能測定対象物10の熱貫流率は、材質により相違が発生することが示されている。例えば、アルミニウム板(△印)の場合は光源60によるふく射熱が発生するときも発生していないときも略一定であるのに対して、ポリプロピレン板(□印)やガラス板(〇印)の場合は光源60によるふく射熱が発生すると発生していないときに比較して見かけの熱貫流率が低下することが示された。これは、ふく射熱に対する遮熱性能がアルミニウム板に比べポリプロピレン板及びガラス板では悪いことを示している。
【0084】
次に、熱貫流率測定方法を説明する。周壁部9aの厚みが全域で不均一である場合は、熱貫流率測定方法の第一の方法は、
図1や
図13に示すように、加熱袋2aを用いて自動車80のドアの熱貫流率を測定する方法であって、前記加熱袋2aは、略中央部に配設した加熱・送風手段8と、該加熱・送風手段8を囲繞可能な周壁部9aとを備え、前記周壁部9aは、無通気性、断熱性及び可撓性を有し、かつ、前記周壁部9aの内部側の全表面又は外部側の全表面にわたり、複数の熱流計12を5等面積分割〜80等面積分割のうちのいずれかの等面積分割数で分割して得られる略等面積の間隔で1つずつ配設して、前記複数の熱流計12を直列接続させた回路を備え、前記加熱袋2aを自動車80のドア開口部の内部に設置し、前記加熱袋2aの周壁部9aが挟着されるように前記ドアを閉じて開口部を塞ぎ、前記加熱袋2a内部を閉塞状態とし、前記自動車80のドアを断熱性能測定対象物10として、前記周壁部9aに取り付けられた前記複数の熱流計12を直列接続させた回路からの出力電圧がゼロとなるように前記加熱袋2a内の加熱手段3を制御し、さらに前記自動車80の車内雰囲気温度が安定するように前記車内雰囲気温度を制御し熱貫流率を算出する方法である。
【0085】
また、周壁部9aの厚みが全域で略均一である場合は、熱貫流率測定方法の第二の方法は、加熱袋2aを用いて自動車80のドアの熱貫流率を測定する方法であって、前記加熱袋2aは、略中央部に配設した加熱・送風手段8と、該加熱・送風手段8を囲繞可能な周壁部9aとを備え、前記周壁部9aは、無通気性、断熱性及び可撓性を有し、かつ、前記周壁部9aの内部側及び外部側の2面それぞれの全表面にわたり、複数のサーモパイル11を前記2面それぞれ5等面積分割〜80等面積分割のうちのいずれかの同じ等面積分割数で分割して得られる略等面積の間隔で1つずつ配設して、前記複数のサーモパイル11を直列接続させた回路、あるいは、前記周壁部9aの内部側の全表面又は外部側の全表面にわたり、複数の熱流計12を5等面積分割〜80等面積分割のうちのいずれかの等面積分割数で分割して得られる略等面積の間隔で1つずつ配設して、前記複数のサーモパイル11を直列接続させた回路、を備え、前記加熱袋2aを自動車80のドア開口部の内部に設置し、前記加熱袋2aの周壁部9aが挟着されるように前記ドアを閉じて開口部を塞ぎ、前記加熱袋2a内部を閉塞状態とし、前記自動車80のドアを断熱性能測定対象物10として、前記周壁部9aに取り付けられた前記複数のサーモパイル11を直列接続させた回路からの出力電圧又は前記複数の熱流計12を直列接続させた回路からの出力電圧がゼロとなるように、前記加熱袋2a内の加熱手段3を制御し、さらに前記自動車80の車内雰囲気温度を安定させるように前記雰囲気温度を制御し熱貫流率を算出する方法である。
【0086】
前記熱貫流率測定方法の第一の方法及び第二の方法とも、前記自動車80の車内の閉塞空間の温度は、自動車80を屋内に入庫させて屋外の太陽光の影響を受けないようにして、車内に加熱手段(図示なし)及び送風手段(図示なし)を備えた車内温度安定化手段(図示なし)を持ち込み、持ち込んだ前記送風手段を測定中は常時作動させ、持ち込んだ前記加熱手段の作動を車内雰囲気温度が安定するように制御し、車内の雰囲気温度を安定させ略一定化させる。
【0087】
自動車80の車内に持ち込む車内温度安定化手段には、加熱手段、送風手段、車内雰囲気温度測定手段、及び、前記車内雰囲気温度測定手段からの温度情報に基づき持ち込んだ加熱手段の作動を制御する制御手段が備えられている。
【0088】
前記ドアは、加熱袋2aの周壁部9aを挟んで閉じられるドアが適しており、フロントドア、リアドア又はバックドアが該当する。
【0089】
次に、
図13に示すように自動車80にバックドア74を装着した状態で熱貫流率を測定する熱貫流率測定装置1の使用例を説明する。まず、
図1に示すような、無通気性、断熱性及び可撓性を有する周壁部9aを備えた袋状の形態の加熱袋2aと、前記加熱袋2aの略中央部に配設した、加熱手段3及び送風手段4を内設した加熱・送風手段8と、加熱袋2a内部の雰囲気温度を測定する温度測定手段15と、外部の雰囲気温度を測定する温度測定手段16と、制御部7とを備える熱貫流率測定装置1aを準備する。
【0090】
前記周壁部9aの厚みは全域で略同一の場合であるので、前記加熱箱2aの周壁部9aの内部側全表面及び外部側全表面に亘って複数のサーモパイルを、等面積間隔として45等面積分割で分割して得られる略等面積の間隔で1つずつ配設したものを使用した。
【0091】
次に、太陽光の影響を受けないようにするために自動車80を屋内に移動する。そして、
図13(b)に示すように、バックドア74を開にして、加熱・送風手段8をバックドア74側にくるように可撓性を有する周壁部9aを拡げバックドア74の開口部を覆い、その状態を維持したままでバックドア74を閉じる。これにより、
図13(a)に示すように、加熱袋2a内部は閉塞空間が形成される。
【0092】
そして、加熱手段(図示なし)及び送風手段(図示なし)を備えた車内温度安定化手段(図示なし)を車内に持ち込み、背もたれを倒した上に前記車内温度安定化手段を載置し、全ドアを閉状態にする。車内も全ドアを閉とすることにより閉塞空間が形成される。この閉塞空間が保護熱箱の閉塞空間に相当する。そして、前記送風手段を作動させ、前記加熱手段の作動を車内雰囲気温度情報に基づいて制御して車内の雰囲気の温度を安定化させた。
【0093】
そして、加熱袋2a内に設置した加熱・送風手段8の送風手段4を作動させ、前記複数のサーモパイルを直列接続させた回路からの出力電圧がゼロになるように、前記加熱袋2a内の前記加熱手段3を制御する。
【0094】
そして、前記バックドア74の高温側となる前記加熱袋2aの内部の雰囲気温度と、前記バックドア74の低温側となる車外の空間の雰囲気温度と、前記加熱手段3及び前記送風手段4において消費される電力の計測値から算出される、前記加熱袋2aの内部から前記バックドア74の厚さ方向に沿って前記低温側となる空間へ前記バックドア74を通過する熱量と、前記バックドア74における熱流に対して垂直な面積とを用いて、前記バックドア74の熱貫流率を制御部7により算出する。
【0095】
このときに、高温側となる前記加熱袋2aの内部の雰囲気温度と、前記バックドア74の低温側となる車外の空間の雰囲気温度との差を20℃以上にすると精度の高い貫流率を算出できる。
【0096】
前記熱貫流率測定方法は、加熱袋2aの周壁部9aに取り付けられた前記複数のサーモパイル11を直列接続させた回路からの出力電圧又は前記複数の熱流計12を直列接続させた回路からの出力電圧をゼロになるように前記加熱袋2a内の加熱手段3を制御することによって、非特許文献1に規定する保護熱箱の筐体が、全ドアを閉にした状態の自動車に該当し、自動車にドアを装着した状態で熱貫流率を測定することができるという顕著な効果を有する。