【実施例】
【0094】
V. 実施例
低分子を腸に送達するための薬学的方法は公知であるが、適切な免疫認識のために腸へ大きな生物製剤を送達する能力はほとんど理解されていない。マウスは、丸剤を嚥下することができないため、動物モデルにおいて錠剤による試験を行うことは難しい。さらに、遺伝子導入抗原への反応を誘発するためにワクチンベクターを送達するのに最適な場所の位置は、ヒトでは特徴づけられていない。ヒツジでは、空腸が、アデノウイルスにコードされた遺伝子導入抗原への免疫反応を誘発するのに最も有効な標的であることが示されている(Mutwari et al. (1999) Immunology 97:455)。本明細書において、本発明者らは、生物学的作用物質の送達用の改善されたヒト経口剤形を用いた、複数のヒトまたは非ヒト霊長類の試験の結果を示す。
【0095】
実施例1
小腸のどの領域が抗原に対する免疫反応を誘導するのに最も有効であるかを決定するために、ヒトにおいて試験を行った。無線制御型カプセルを健康な正常志願者に与え、小腸の初期(空腸)または小腸の後期(回腸)のいずれかでワクチンを放出させた。低分子薬物の送達用の無線制御型カプセルの使用は記載されているが、ワクチン送達については記載されていない(Digenis et al. (1991) Crit. Rev. Ther. Drug Carrier Syst. 7:309)。
【0096】
ワクチンは、A/CA/04/2009由来のインフルエンザ抗原HAを発現する組換えアデノウイルス(rAd-HA-dsRNA)から構成された(例えば、US2012/0244185を参照)。合計で10
11感染単位(IU)を0日目に各対象に与えた。ワクチンの投与後0日目および7日目に抗体分泌細胞 (ASC)アッセイにより、末梢血中の循環プレ形質B細胞の数を測定した。結果は、抗原HAを認識するASCの数のみを測定する。
【0097】
結果は、処置群のそれぞれにおいて免疫化後7日目にASCを測定できたことを示す(
図1)。平均反応は、空腸投与群より回腸投与群で高かった。0日目のバックグラウンドASCは無視できるものであった。回腸に関して、7日目に、340 +/- 111(標準誤差)IgG ASCおよび74 +/- 18 IgA ASCの平均値を認めた。空腸に関して、平均値および標準誤差反応は、118 +/- 30 IgG ASCおよび28 +/- 8 IgA ASCであった。回腸群は、プラセボとは有意に異なっていた(7日目のIgA ASCはP=0.03、IgG ASCはより高い傾向でp=0.07)。ヒツジでの結果に反して、ヒトでの結果は、回腸送達は、空腸送達よりIgGまたはIgA抗体反応の誘発で強力であることを示している。
【0098】
ELISPOT(登録商標)アッセイを用いてインターフェロンγ放出(IFN-γ)を検出することにより、T細胞応答についても決定した。
図2は、投与後7日目に、回腸投与群の12/12は、空腸投与群の8/12と比較して、IFN-γのレベルが上昇していたことを示す。加えて、IFN-γレベルは、空腸投与群より回腸投与群で有意に高かった。
【0099】
インフルエンザA/CA/07/2009に対するマイクロ中和(MN)抗体価を測定した。MN抗体レベルの上昇は、中和抗体反応の指標である。40より大きな初期中和抗体反応を有した対象を除外した後(Faix et al. (2012) PloS One 7:e34581)、MN価の増加倍数を個々の対象についてプロットした。正の増加を示す対象の数は、回腸送達ワクチンでは10人のうち9人であったのに対して、空腸送達ワクチンでは10人のうち6人であった(
図3)。幾何平均力価(GMT)は2群間でほぼ同等であり、回腸GMTが22から92に上昇するのに対し、空腸GMTは18から90に上昇した。結果は、おそらくインフルエンザに対して保護された対象の割合の増大につながる、インフルエンザに対する中和抗体反応の誘導では、回腸放出がより信頼性が高いことを示している。
【0100】
実施例2
流動性補助剤(flow aid)としてヒュームドシリカおよび錠剤滑沢剤としてステアリン酸マグネシウムを含み、放射線不透過性物質として10%硫酸バリウムを組み込む、微結晶セルロース(PH-101、FMC)およびデンプン(Starch 1500、Colorcon)を用いて、錠剤を手作りした。腸溶性コーティングを加えたかどうかのガイドとして10%コーティング固形物重量増加を用いて、7.14 mm直径かつ150 mg重量の錠剤をパンコーティング機(pan coater)でEudragit(登録商標)L-100によりコーティングした;コーティング固形物は、クエン酸トリエチルを1およびタルクを1に対してEudragit(登録商標)ポリマーを4の割合で含んだ。腸溶性コーティング性能の初回試験として、4匹のカニクイザルに経口胃管を用いて錠剤を与えた。経口胃管は固体かつ硬質であるが、液体を注入するために下方がくり抜かれている。経口胃管は、硬質管の先端部に、適所に小さな錠剤を保持することができる柔軟なシリコン管を備える。先端部が噴門括約筋を通過し胃の中に入るまで、管と丸剤との装置を拘束したサルの食道の下へと挿入した。丸剤を胃の中へと移動させるために、オレンジジュースの流れを用いた。設定した時点でX線撮影を行い、錠剤の位置および溶解を調べた。表1は結果を要約する。
【0101】
(表1)L-100コーティング性能
【0102】
図4は、錠剤が胃の低pH環境中で完全に無傷であったこと;錠剤の早すぎる溶解の証拠がなかったことを示す。サルにとっては大きいにもかかわらず、錠剤は無傷で胃を通過し腸内に入ることができた。腸では、それらは適度な速度で溶解し、4匹のうち3匹のサルで完全に溶解した。4匹目のサルでは、丸剤は3時間後しばらくして胃から離れ、最後のX線撮影の時には溶解していなかった。全体として、錠剤は許容可能な形で機能し、Eudragit(登録商標)L-100コーティングを今後のヒト試験のために選択した。
【0103】
実施例3
H1季節性インフルエンザに対する組換えAd血清型5(rAd5)ベースの経口ワクチンの安全性および免疫原性を評価するために、無作為化プラセボ対照コホートによる第1相の連続登録方式の臨床試験を完了した。rAd5ベクター(A/CA/04/2009由来のHAを有するrAd-HA-dsRNA)を実施例1に記載した。試験は、およそ3ヶ月の試験期間を有し、適用可能なGood Clinical Practiceガイドライン、the United States Code of Federal Regulation、およびInternational Conference on Harmonizationガイドラインにしたがって実施された。リスクの説明の後に全ての対象からインフォームド・コンセントを得た。対象への投薬前にIRB承認が与えられた。
【0104】
優良医薬品製造基準(GMP)グレードのrAd-HA-dsRNAを、Lonza Biologicals (Houston, TX)にてWave(登録商標)バッグ(GE Healthcare, Waukesha, WI)で作製した。イオン交換クロマトグラフィ、続いてバッファー交換により、精製を行った。精製したベクターを賦形剤と混合し、凍結乾燥し、次いで、錠剤化バルクとして微結晶セルロースおよびデンプンを用いてLonzaにて錠剤化した。Vector HiCoater(登録商標)LDCS-5コーティング機(Vector Freund, Cedar Rapids, IA)を用いて、Eudragit(登録商標)L 100(Evonik Industries, Darmstadt, Germany)で錠剤を腸溶性コーティングした。最終製品を一括して1ロットで吐出し、標準的なIUアッセイにより力価を測定した。腸溶性コーティングされていない、150 mgの微結晶セルロースを含む同様のサイズかつ形状の錠剤として、プラセボを準備した。試験は、導入遺伝子に対する免疫反応を誘発する能力について10
9 IU、10
10 IU、およびプラセボで処置した対象を比較した。対象には0日目と28日目に錠剤が与えられた。
【0105】
末梢血中の循環プレ形質B細胞の数を、初回投薬後の0日目および7日目、ならびに2回目の投薬後の28日目および35日目(2回目の投薬は28日目に送達された)にASCアッセイにより測定した。結果は、処置群では各免疫化後7日目にASC数が測定できたが、プラセボ群では測定できなかったことを示す(
図5)。平均反応は7日目で高く、低用量群より高用量群でより高かった。0日目および28日目のバックグラウンドASCは無視できるものであった、また、プラセボ群では全ての時点で無視できるものであった。高用量群に関して、7日目および35日目それぞれについて、105 +/- 33 ASCおよび27 +/- 12 ASCの平均値が認められた。低用量群に関して、平均ASCは、7日目および35日目についてそれぞれ41 +/- 32および14 +/- 8であった。プラセボ群は、7日目および35日目についてそれぞれ0.3 +/- 0.3および0の平均値を有した。高用量群は、プラセボより有意に高かった(7日目および35日目についてそれぞれP=0.01および0.05)。
【0106】
インフルエンザに対する中和抗体反応をMNアッセイにより測定した。結果は、処置群対プラセボ対照におけるMN価の用量依存的増加を示す(
図6)。高用量群において少なくとも2倍増加を示すMNレスポンダーの頻度は、プラセボ群より有意に異なっていた(フィッシャーの正確確率検定によりP=0.003)のに対して、低用量は高い傾向にあるが、プラセボより有意に高いものではなかった(P=0.2)。40より大きなMN価を有した対象を除去した後、残りの対象において幾何平均力価(GMT)を計算した(表2)。56日目の幾何平均力価反応倍数(Geometric Fold Titer Response)(GMFR)も計算した(表2)。これらの結果は、インフルエンザに対する中和抗体価が経口免疫化により生じていて、高用量群では免疫化後のGMTの増加は3倍を上回ることを示す。これらの結果は、L 100でコートされた錠剤は腸へのワクチン送達のために用いることができることを示す。
【0107】
(表2)MN≦40を示す対象のMN価のGMT変化
【0108】
実施例4
本発明者らは、腸溶性コーティングのパラメーターをインビトロで試験し、種々のpHおよびコーティング割合による溶解時間を測定した。データは、回腸に到達する前の低pHでの胃曝露(胃の中など)およびその後に続く増加するpH勾配(十二指腸および空腸で認められるような)の通過による回腸送達についてのガイドラインを提供する。
【0109】
上記のように調製し、かつ有機溶媒懸濁剤として適用したEudragit(登録商標)L100、Eudragit(登録商標)L100-55、またはL100ポリマーとL100-55ポリマーとの1:1(w/w)混合物を利用して8、10、または12%総固体重量増加でコーティングした150 mg錠剤を用いて、錠剤崩壊を試験した。二つ組で、各コーティングポリマーを用いてかつ各レベルのコーティング適用で調製した錠剤を、VanKel Bio-Dis III往復運動シリンダ溶解試験装置で37℃にて10浸漬/分(DPM)の往復運動速度でUSP刺激胃液(SGF、pH 1.6、ペプシンなし)に120分間予め曝露した。次いで、錠剤をUSP刺激腸液(SIF、pH 6.8、パンクレアチンなし)に移した。錠剤を崩壊について観察し、両方の錠剤の崩壊が完了する時間を、最も近い5分単位の時間で記録した。データは、崩壊時間がポリマー組成と厚さの両方によって影響を受けることを示し、錠剤が胃を出た後のコーティングの動態に影響を与えるコーティング組成の適切な選択に関するガイダンスを提供する。
【0110】
崩壊時間に対するpHの作用を、Eudragit(登録商標)L100またはEudragit(登録商標)L100-55のいずれかによって10%総固体重量増加でコーティングされた150 mg錠剤を用いて試験した。USP SIF(パンクレアチンなし)のpHを6.8のUSP規格を包含する値に調整することにより、一連のバッファーを調製した。錠剤を、37℃かつ10 DPMで120分間USP SGF(ペプシンなし)に予め曝露し、次いで、pHを改変したUSP SIF溶液に移した。錠剤を崩壊について観察し、崩壊が完了する時間を最も近い5分単位の時間で記録した。データは、崩壊の速度は周囲のpHにより影響を受け、かつ2種類のポリマー間で異なっていることを示す。この場合も、この結果は、胃および小腸上部を通じた薬物保持を達成するためのコーティング組成の適切な選択のために用いることができる。
【0111】
実施例5
本発明者らは、無作為化プラセボ対照コホートによる第1相の連続登録方式の試験を行い、H1季節性インフルエンザに対する組換えAd血清型5(rAd5)ベースの経口ワクチンの安全性および免疫原性を評価した。ワクチンを含む錠剤を本明細書に記載のようにコーティングし、回腸で溶解させた。データは、インフルエンザに対する中和抗体反応の誘発に関して、経口錠剤ワクチンが既存のワクチンに対する競争力を有している可能性があることを示す。
【0112】
赤血球凝集抑制(HAI)反応を0日目および28日目に測定した(
図7A)。プラセボ処置対象はいずれも抗体陽転しなかったが、1人のプラセボ対象はスクリーニングをくぐり抜け、0日目に高い値を有した。ワクチン対象のいずれも開始時HAI価>20を有した。免疫化後、ワクチン群では9人の対象が血清抗体保有レベル(HAI≧40)に到達した(
図7A)。ワクチン群の幾何平均力価(GMT)は、61.1(95% CI:30〜124)であり、7.9(95% CI:6〜11)の初期GMTに対して7.7倍の幾何平均増加倍数(GMFR)であった。4倍増加した11人(92%)のうち、9人は抗体陽転し(SC)、残りの2人の対象は5から20へとHAI価の4倍増加を示した。ワクチン群は、プラセボに対して4倍レスポンダーの数の統計的に有意な増加を有した(11対0、フィッシャーの正確確率検定によりP<0.0000を示す)。プラセボ対象は、0日目の11.0のGMT(95% CI:5〜23)に対して28日目に11.9のGMT(95% CI:6〜25)を有した。
【0113】
抗体反応の持続性を、免疫化後180日目のHAI反応を調べることにより測定した。ワクチン免疫群では、対象の75%(12人のうち9人)が28日目に血清抗体を保有し、75%(12人のうち9人)が180日目に未だ血清抗体を保有した。HAI GMTをプロットし(
図7B)、GMTの減少が免疫化後28日目と180日目の間で28%であることを見出した。
【0114】
インフルエンザに対する中和抗体反応をMNアッセイにより測定した。プラセボ対照に対して処置群においてMN価の有意な増加が観察された(
図7C)。ワクチン処置群における4倍MNレスポンダーの頻度は、プラセボ群とは有意に異なっており、ワクチン処置群において11人の対象が反応するのに対しプラセボ群では0人だった(フィッシャーの正確確率検定によりP<0.0000)。
【0115】
40より大きなベースラインMN価(およびHAI価)を有した対象を取り除いたのち、残りの対象において、以下の表に示すように0日目および28日目に幾何平均力価(GMT)を計算した。ワクチン群のGMTは247(95 CI:89〜685)に上昇したのに対し、プラセボでは9.6(95 CI:5〜18)の28日目GMTで上昇しなかった。対象のいずれも高い初期MN価またはHAI価を有していなかったことから、これらの計算はワクチン群への影響を有さなかった。これらの結果は、インフルエンザに対する中和抗体価が経口免疫化により生じ、免疫化後にワクチン処置群において20倍を上回るGMTの増加があることを示す。
【0116】
(表3)MN≦40を示す対象のHAI価およびMN価のGMT変化
【0117】
HAに対する総抗体反応を測定するために、免疫化後0日目および7日目に、末梢血中の循環プレ形質B細胞の数をASCアッセイにより測定した。結果は、ワクチン処置群において7日目に、ASCを確実に測定できたことを示す(
図7D)。0日目のバックグラウンドASCは概して無視できるものであった。ワクチン処置群に関して、1×10
6個のPBMCあたり992(+/-標準誤差209、95% CI:532〜1452) IgG ASCおよび337 IgA ASC(+/-標準誤差 104、95% CI:117〜580)の平均値が7日目に認められ、12人の対象のうち1人だけが検出可能なASC反応を有していなかった。プラセボ群は7日目にIgAスポットを有していなかったが、1人の対象は高いバックグラウンドスメア、および通常観察されるものより小さなスポットを示す測定可能なIgG ASC反応を有した。7日目にIgG ASCまたはIgA ASC反応を誘発する能力に関して、処置群はプラセボとは有意に異なった(T検定によりそれぞれ、P=0.0007およびP=0.008)。
【0118】
免疫化前および免疫化後の抗ベクター力価について、対象を遡及的に測定した。経口免疫化後に、ワクチン処置した数人の対象は、Ad5に対する中和抗体反応の増加を有し、プラセボ処置対象における1.0倍のGM増加倍数と比較して、2.6倍のGM中和抗体価の増加がもたらされた。ワクチン群では、HAI反応およびMN反応は、個々の対象で同様の傾向を示した。8人の対象は免疫化前にAd5陰性であり、4人は免疫化前にAd5陽性であった。Ad5陽性だった1人の対象はHAI抗体陽転しなかったが、Ad5陽性だった1人の対象は、本試験における対象の全てのなかで最も高いHAI価の増加(64倍)を有した。この同じ対象は、免疫化前および免疫化後のAd5中和抗体価を何ら増加させることなく、362倍のMN価を得た。錠剤ワクチンにより免疫化した対象では、開始時Ad5力価とMN反応(またはHAI反応)倍数の間に相関関係は認められなかった。
【0119】
さらに、本明細書に開示の錠剤ワクチンは、室温で270日を上回って安定であり、かつ短期間の高温に耐えることができ、それによってこのアプローチは技術的に実現可能なものとなる。
【0120】
実施例5 考察
米軍は、軍人において中和抗体反応に対する季節性ワクチン活動の効果を測定するために独自の試験を行い、開始時に40を上回るMN価を有した対象を明らかにした後に、三価の不活性ワクチン(TIV)注射後に5.6のMN価GMFR、および弱毒生インフルエンザワクチン(LAIV)経鼻投与後に2.2のGMFRを報告した(Faix et al. (2012) PloS one 7:e34581)。別の試験において、H1N1に対するSC率が、45 μgのHAタンパク質(アジュバントなし)の1回注射では45%であることが見出され(Gordon et al. (2012) Vaccine 30:5407)、一方別の試験では、H1N1ワクチンは、高い免疫原性を有し、1用量のスプリットワクチン後に78%のSC率が認められた(Greenberg et al. (2009) 361:2405)。
【0121】
注射型ワクチンで認められるさまざまな結果とは対照的に、本試験では、MN GMFRは、12人のワクチン処置対象について29と計算され、92%の対象が4倍を上回るMN価の上昇を示した。本錠剤試験では、ワクチン処置対象内のHAI SC率は75%であり、92%を超える対象がHAI価の4倍上昇を有した(
図7A)。MN価はHAI価より高かった。MNアッセイがより感応性であるか、またはrAdベースの経口ワクチンがタンパク質注射型ワクチンより強力な中和反応を頭部領域(head region)の外側で誘発する可能性がある。
【0122】
HAI反応は、注射型の市販のワクチンによって誘発されるが、HAI価は減弱することが公知である。例えば、非HIV感染志願者は、免疫化後1〜6ヶ月の間にGMT HAI価は67%下落する(Crum-Cianflone et al. (2011) Vaccine 29:3183)。同様に、血清抗体を保有する対象の割合も、血清反応陰性のHAI価(≦1:10)で登録したHIV陰性対象で75%から56%に下降した。汎流行性インフルエンザワクチンによる試験もまた、持続性の低下を示している。AS03トリインフルエンザワクチン試験では、GMTは2回のワクチン投薬後に563に達したが、免疫化後6ヶ月で、GMTは18に下降しており、96%減少している(Leroux-Roels et al.(2010) Vaccine 28:849)。本錠剤ワクチン試験では、血清抗体保有対象の割合は、免疫化後1ヶ月および6ヶ月で75%と一定のままであり、HAI GMT価の下降はあまり劇的ではなく、わずか28%の減少のみを示した(
図7B)。T細胞応答が増強されるため、ベクターベースのワクチンの持続性がより良好であるというのが、1つの可能性である。
【0123】
実施例5 材料と方法
臨床プロトコールおよび登録。登録の45日以内に、対象を赤血球凝集抑制(HAI)価についてプレスクリーニングした。試験参加の資格を有するためには、対象は、≦1:20の初期HAI価を有し、18〜49歳の年齢であり、かつ良好な健康状態でなければならなかった。試験の試験期間は28日目までであり、安全性をモニタリングするためのフォローアップ期間を1年間続けた。
【0124】
24人の対象を登録した。登録した全ての対象について、試験期間および180日のモニタリング期間にわたって、安全性および免疫原性の評価を完了した。
【0125】
無作為化およびマスク化。プラセボ対照を与えた12人の対象と共に、12人の対象において1×10
11 感染単位(IU)の単回投与でのワクチン(VXA-A1・1)を評価するように、試験を設計した。連続的に登録されたセンチネル(sentinel)なワクチン処置対象が3人おり、各対象は24時間毎に1回以下の頻度で投与された。1週間、ワクチン関連毒性をモニターした後、処置コホートの残りの対象(9人)を、12人のプラセボ対照と共に無作為化した。無作為化は、コンピュータが作製した割り当てによって行われ、試験薬は、情報を隠されていない薬剤師によって情報を隠されているスタッフに、氏名を隠して配布された。全ての試験実施施設のスタッフ、ならびに免疫学的アッセイまたは臨床安全性の評価に直接関与する人に、処置割り当てを隠した状態にした。本試験において全ての対象に情報が隠された。
【0126】
ワクチン。rAdベクター(非複製Ad5)は、CMVプロモーターによりその発現が駆動されるHA(A/CA/04/2009)導入遺伝子、および別のプロモーターにより駆動される分子dsRNAヘアピンをコードするDNAを保有する。GMP原薬を、Lonza Biologicals (Houston, TX)にてWaveバッグ(GE Healthcare, Waukesha, WI)で作製した。イオン交換クロマトグラフィ、続いてバッファー交換により、精製を行った。精製したベクターを賦形剤と混合し、凍結乾燥し、次いで、錠剤化バルクとして微結晶セルロースおよびデンプンを用いてLonzaにて錠剤化した。Vector Hi-Coaterシステム(Vector Freund, Cedar Rapids, IA)を用いて、Eudragit L100(登録商標) (Evonik Industries, Darmstadt, Germany)で錠剤を腸溶性コーティングした。最終産物を1ロットで吐出し、Lonzaにて標準的なIUアッセイにより力価を測定した。プラセボを、腸溶性コーティングされていない、150 mgの微結晶セルロースを含む同様のサイズかつ形状の錠剤として準備した。
【0127】
エンドポイント。試験期間を通じて、本試験の主要エンドポイントは安全性であり、二次エンドポイントは、主にHAI価およびHAI抗体陽転による、免疫原性である。さらなる免疫学的エンドポイントには、MN価およびASCが含まれる。プラセボ群では5件の有害事象が、ワクチン群では4件の有害事象があり、これらのいずれも重症度はグレード1であった。試験中、重篤な有害事象は報告されなかった。
【0128】
PBMC単離および凍結保存。血液をK
3 EDTA Vacutainer(登録商標)チューブ(BD, Franklin Lakes, NJ)中に収集し、Lymphoprep(商標)チューブ(Axis-遮蔽, Norway)を用いてPBMCを同日に単離した。製造者による説明書(Cellular Technology Ltd [CTL], Shaker Heights, OH)にしたがって、無血清試薬を用いて、PBMCを凍結および解凍した。
【0129】
抗体分泌細胞(ASC)。製造者の説明書(Mabtech, Mariemont, OH)にしたがって、IgGおよびIgA分泌B細胞に対する酵素結合免疫吸着(ELISpot)キットを実施した。CTL-Test培地で三つ組のウェルにおいて細胞を培養し(1ウェルあたり1.5×10
4個から5×10
5個の細胞)、スポットを最適化した。ビオチン化キット(Pierce, Rockford, IL)を用いて、HAタンパク質(Protein Sciences Corp, Meriden, CT)をビオチン化および定量化した。
【0130】
抗体アッセイ。HAI価およびマイクロ中和(MN)価を行い、MDCK由来のA/CA/07/2009および卵由来のA/CA/07/2009それぞれに対して測定した。10未満のHAI価およびMN価を、規制当局のアドバイスによって示唆されたように5として記録した。
【0131】
統計解析。独立スチューデント「t」検定を行い、群間有意差を試験した。本明細書に記載したように、両側フィッシャーの正確確率検定を用いて、観察された頻度が一部の解析では異なっていたかどうか判定した。両方の検定で、≦0.05のP値を有意と見なした。95%信頼区間(95 CI)が測定値に与えられた。
【0132】
実施例6
ノロウイルスワクチンの非臨床試験
序論
本発明のノロウイルスVP1ワクチン(VXA-G2.4-NSおよびVXA-G1.1-NN)は、米国特許第8,222,224号およびScallan et al. Clinical and Vaccine Immunology 2013; 20(1): 85-94に記載されているものと同じ複製欠損ウイルスベクター骨格およびアジュバントRNA配列を有する。ベクター骨格の配列はSEQ ID NO:7に提供される。
【0133】
VXA-G2.4-NSは、ノロウイルス疾患(NVD)の予防用ワクチンとしての使用のために設計されたE1/E3を欠失させた複製不全血清型5アデノウイルスベクターである。組換えアデノウイルス(rAd)ベクターは、ノロウイルス(G2.4 Sydney株)のウイルスタンパク質1(VP1)由来の1.6 kb遺伝子、およびそのTLR3アゴニスト活性を介して腸粘膜において発現させた抗原の免疫原性を増強するアジュバントdsRNA配列をコードする。VP1遺伝子は、哺乳動物細胞における発現のためにコドン最適化されており、ヒトサイトメガロウイルス中間初期領域(intermediate early region)(hCMVIE)エンハンサー/プロモーターおよびウシ成長ホルモンポリアデニル化(pA)シグナルを用いて発現する。この発現カセットには、導入遺伝子の発現を増強するためのヒトβ-グロビンの第1イントロンも含まれる。第2のhCMVIEプロモーターは、アジュバントRNA配列を発現させるために用いられる。アジュバント配列はルシフェラーゼ配列に由来し、インビトロでI型インターフェロンの誘導を刺激すると報告されている(2)。アジュバントは、低分子ヘアピン型RNAとして発現され、RNAのループを含む6個のヌクレオチドによって離間されたフォワード方向およびリバース方向のタンデム配列として21ヌクレオチド配列(GAAACGATATGGGCTGAATAC)を含む。21ヌクレオチドのフォワードおよびリバースRNA配列はアニールし、ループのステムを形成する。このアジュバントカセットは合成ポリA(SPA)を利用する。
【0134】
後述のように、マウスおよびフェレットにおける前臨床試験は、VXA-G2.4-NS(および関連するVXA-G1.1-NN)によるワクチン接種が、試験動物における全身性血清IgGおよび腸管(便中)IgA反応の両方において実質的かつ信頼性の高い抗体反応を誘発したことを示す。経口ワクチン接種によって誘発される特有の免疫反応は、B細胞の局所供給源に由来する抗体の誘導である。経口ワクチン接種または腸内感染の後、(腸上皮細胞の下の)粘膜固有層に存在するB細胞は、IgAアイソタイプの二量体抗体を優勢に産生する。IgA抗体は、促進輸送を通じて腸上皮細胞を横切り管腔内に入り、分泌成分を二量体IgAに付着させる。結果として生じる分子は、分泌型IgAまたはSIgAとして公知である。SIgAは、さらなる外部バリアとして機能し、腸内感染をブロックする。SIgAは徐々に系から流され、便サンプル中で検出することができる。
【0135】
非臨床薬理学
序論
免疫原性試験の第一の目的は、2種の異なるノロウイルス種由来のVP1を発現する経口アデノウイルス構築物が、ノロウイルスワクチンの経口免疫化後にノロウイルス抗原(VP1)に対する腸特異的SIgAならびに血清IgG免疫反応を誘発できることを実証することであった。
【0136】
免疫原性試験の第二の目的は、免疫化の2つの経路(VXA-G2.4-NSによる経口対VP1タンパク質によるi.m.)を比較することであった。VP1 VLPに基づく注入可能なワクチンは開発中の数少ないノロウイルスワクチンの1つであることから、VP1タンパク質を比較した。概して、SIgAは粘液免疫化によって誘導されるが、非経口免疫化による程度ははるかに低い。したがって、発明者らは、注入可能な組換えVP1タンパク質に基づくワクチンと比較して、経口VXA-G2.4-NS送達によって誘導された腸内SIgA反応を調査した。
【0137】
(表4)非臨床薬理学試験
a IU=感染単位
【0138】
免疫原性試験
初回マウス免疫原性試験の第一の目的は、NorwalkウイルスまたはSydney株由来のノロウイルスVP1を発現するベクター骨格が、ELISAで測定されるような、NorwalkウイルスまたはSydney株由来のVP1に対する免疫反応を誘導できるかどうか決定することであった。
【0139】
Norwalk VP2株およびdsRNAアジュバントを発現するrAd(VXA-G1.1-NN)を、0日目および28日目に胃管栄養によって経口的に送達した。用量設定を行った(試験#1および試験#2)。NorwalkウイルスVP1特異的なIgGおよびsIgA反応を8週目に血清サンプルおよび便サンプルからそれぞれ測定した。予想したように、用量が1×10
8から5×10
8、1×10
9へと増加すると、血清VP1 IgG力価は2×10
3から1×10
4、5×10
5へと用量依存的な幾何平均力価(GMT)の増加を示した(
図8)。便中VP1 IgA反応では1×10
3から2×10
3、3×10
4へと、類似しているがそれよりわずかにゆるやかな用量依存的増加も観察された(
図9)。マウスの試験は、VXA-G1.1-NNワクチンが免疫原性であり、用量依存的な血清および便中VP1 抗体反応を生じることを示した。
【0140】
次の試験(試験#3)では、VXA-G1.1-NNによる胃管栄養による経口送達(群1)およびNorwalk VP1タンパク質による筋肉内注射(群2)による2つの投与経路を介する免疫反応を比較した(
図2.2.3および2.2.4)。NorwalkウイルスVP1特異的なIgGおよびSIgA反応を4週目および8週目に血清サンプルおよび便サンプルからそれぞれ測定した。本発明の経口ワクチンは、筋肉内タンパク質ワクチンよりわずかに高い血清IgG力価の値を生じた(
図10)。便の試験では、経口ワクチンは、筋肉内タンパク質ワクチンより劇的に高い腸内SIgA免疫反応を生じた(
図11)。
【0141】
類似の試験(試験#4)を、ワクチンアジュバントである水酸化アルミニウムを含むNorwalkウイルスVP1タンパク質ワクチンを用いて行った(
図12および13)。ミョウバンと共にVP1タンパク質を用いた筋肉内注射ははるかに高い血清力価を生じた(
図12)。しかしながら、経口ワクチンは、高い便中VP1特異的IgA力価の値に示されるように、SIgAを生じる点では明確に優れていた(
図13)。強力なアジュバントであるミョウバンの存在によって、筋肉内免疫化後に数匹の動物は便中VP1 IgAを生じたのに対し、ミョウバンなしのサンプルからは便中VP1 IgAはほとんど検出できなかった。データは、本発明の経口ワクチンは注射可能なワクチンに対して免疫学的利点を有し、腸内SIgA免疫反応を生じさせることを示唆する。
【0142】
最近のノロウイルス変異体であるSydney株のワクチン(VXA-G2.4-NS)を試験した(試験#5、
図2.2.7)。4週で、Sydney株はNorwalkウイルスワクチンよりはるかに優れた力価値を生じた。加えて、4週であってもSydney株ワクチンからの力価の値は、8週でのNorwalkの値よりわずかに高かった(
図14A)。Sydney株ワクチンは、Norwalkワクチンが生じたものよりわずかに高い便中VP1 SIgA力価の値を生じた(
図14B)。Sydney株ワクチンはより免疫原性が高いように見える。したがって、発明者らは以下のフェレットの試験ではSydney株を選択した。
【0143】
フェレットの試験(試験#6)の目的は、(1)本発明の経口ワクチンが組換えSydney VP1タンパク質と比較して腸内SIgAならびに全身性血清IgG反応を誘導できるかどうか決定すること、および(2)2種の異なる免疫化スケジュールによるSIgAおよびIgG反応を比較することであった。20匹のフェレットを3群に無作為化した(群1および2それぞれにおいて4匹の雄および4匹の雌、ならびに群3では2匹の雄および2匹の雌)。0日目および2日目に、群1の動物にVXA-G2.4-NSを内視鏡で投与した。0日目および28日目に、群2の動物にVXA-G2.4-NSを内視鏡で投与し、群3の動物にSydneyノロウイルス組換えVP1タンパク質を筋肉内に投与した。群1の動物は、群2より高いIgG力価の値を生じた(3×10
4対5×10
3)。これに対して、群2の動物は群1より高いSIgA力価の値を生じた(247対92)。マウスの試験(
図4)と同様に、筋肉内VP1タンパク質ワクチンは腸内SIgA反応を生じなかったが、血清VP1 IgG反応は十分に生じた(8×10
4)(
図15)。全体として、本発明の経口ワクチンは、VP1注射用タンパク質ワクチンと同程度のレベルの血清IgG、およびVP1注射用タンパク質ワクチンより優れたレベルの便中IgAを生じる。
【0144】
薬理学試験の要約
この段落の中で要約する試験は、VXA-G2.4-NSの経口投与がノロウイルス VP1に対する実質的な抗体反応を誘発できることを、マウスおよびフェレットにおいてELISAによって実証した。局所免疫は、感染および疾患を予防する非常に重要な役割を果たすことができ、SIgAは、ノロウイルスなどの腸管病原体と戦うのに最も効果的な腸管免疫反応である可能性がある。これらの試験は、VXA-G2.4-NS経口送達が、腸内SIgA反応を生じ、VP1注射用タンパク質ワクチンより優れたレベルのSIgAを生じたことを実証する。
【0145】
ノロウイルス感染の持続期間は比較的短い。ノロウイルスは、およそ2日の潜伏時間を有し、その後、2〜4日続く嘔吐および下痢を伴う疾患が続く。TおよびB細胞反応は、感染後およそ4日で生じ始める。興味深いことに、ノロウイルスの排除は、初期段階のTおよびB細胞の活性化の発生直後に生じる。しかしながら、本発明の経口ワクチンは、免疫反応を操作することができ、個体に利益をもたらす。ノロウイルス感染前に、経口ワクチンは、腸管ホーミングB細胞を誘導し、VP1特異的SIgA抗体を分泌する。PBMCにおけるIgA濃縮腸管ホーミングB細胞は以前の試験で検出された。SIgAは腸内上皮細胞を通過し、消化管(腸管内腔)へと移動する。ノロウイルス感染後、SIgAはノロウイルス感染に対する遮断(中和)抗体として機能する。結論として、経口送達法は望ましい腸管ホーミング特性により免疫細胞を活性化し、かつ腸内SIgAは腸管病原体と戦うのに最も効果的な腸管免疫反応であることから、腸管病原体は、経口プラットフォームに極めて適合する。
【0146】
実施例7
第1相VXA-G24-NS試験概要
この試験は、健常志願者に経口で投与される、gii.4 vp1およびdsrnaアジュバントを発現する、アデノウイルスベクターに基づくノロウイルスワクチン(vxa-g2.4-ns)の安全性および免疫原性を決定するための第1相無作為化二重盲検プラセボ対照用量設定試験である。試験は、18〜49歳の健常成人志願者に対して1〜2の米国施設で実施される。試験における被験者の参加は、以下のスクリーニングおよび登録に成功した後、約1年続く。ワクチン接種後、被験者は有効性(免疫原性)について1ヶ月間、および安全性について12ヶ月間追跡調査される。
【0147】
治験薬
VXA-G2.4-NSは、ノロウイルスGII.4によって引き起こされるノロウイルス性胃腸炎の予防のためのE1/E3を欠失させた複製欠損アデノウイルス血清型5ワクチンベクターである。該ワクチンベクターは、ノロウイルス GII.4 Sydney由来の全長VP1(主要カプシドタンパク質)遺伝子をコードし、実施例6に詳細に説明される。
【0148】
GII.4 VP1遺伝子は、ヒトサイトメガロウイルス(CMV)中間初期領域(hCMVie)エンハンサー/プロモーターを用いて発現される。導入遺伝子カセットに加えて、第2のhCMVieプロモーターが、TLR3ベースのアジュバントとして機能する二本鎖RNA(dsRNA)を発現させるために用いられる。
【0149】
対照物
ワクチン錠剤と外見および数で区別ができないプラセボ錠剤製剤。
【0150】
レジメンおよび投薬
1×10
10 IUの低用量、1×10
11 IUの高用量でのVXA-G2.4-NS、またはプラセボの単回投与。1用量あたりの錠剤の数は、製剤の放出アッセイの結果に基づき計算される。2つのセンチネル群(sentinel group)は、無作為化対照コホート(コホート2および4)のいずれかを登録する前に、それぞれオープンラベルな方式でVXA-G2.4-NSを受ける3人の対象を登録する(コホート1および3)。二重盲検群(コホート2および4)内では、プラセボ対象はワクチン対象と同じ数の錠剤を受ける。対象は、高用量群での投薬を開始する前に低用量群で登録および投薬される。
コホート 1: 1×10
10 IU±0.5 log (n=3)
コホート 2: 1×10
10 IU±0.5 log (n=20)またはプラセボ(n=10)
コホート 3: 1×10
11 IU±0.5 log (n=3)
コホート 4: 1×10
11 IU±0.5 log (n=20)またはプラセボ(n=10)
【0151】
コホート2および4における対象は、2:1の比率で、それぞれ1×10
10 IU(低用量)もしくは1×10
11 IU(高用量)でのVXA-G2.4-NS、またはプラセボに無作為化される。
【0152】
目的
第一の目的は、VXA-G2.4-NSノロウイルスワクチン候補の安全性を判定することである。第二の目的は、2つの用量レベルでのVXA-G2.4-NSノロウイルスワクチン候補の免疫原性を判定することである。
【0153】
試験デザイン
これは、アデノウイルスベクターに基づく経口ノロウイルスGII.4ワクチンおよびdsRNAアジュバントの安全性、反応原性および免疫原性を評価するための、第1相無作為化プラセボ対照二重盲検(初回オープンラベルリードイン(lead-in)後の)用量設定試験である。全ての対象は単回ワクチン投与を受ける。
【0154】
試験は4つのコホートに登録される:
コホート 1: 1×10
10 IU(低用量)でのVXA-G2.4-NSセンチネル
コホート 2: 1×10
10 IU(低用量)でのVXA-G2.4-NSまたはプラセボ
コホート 3: 1×10
11 IU(高用量)でのVXA-G2.4-NSセンチネル
コホート 4: 1×10
11 IU(高用量)でのVXA-G2.4-NSまたはプラセボ
【0155】
コホート1(低用量センチネル群)は、3人の対象を登録し、0日目に1×10
10 IUでのVXA-G2.4-NSの単回投与を受ける。3人の対象は、オープンラベル方式で連続して(1日1人)登録される。3人全員において7日目の訪問を完了した際に、これらのセンチネル対象で用量規制毒性が観察されない(以下の中止規則を参照)場合は、コホート2で登録が始まる。
【0156】
コホート2(低用量無作為化群)は、二重盲検の方式で1×10
10 IU(低用量)でのVXA-G2.4-NS(n=20)またはプラセボ(n=10)のいずれかを受けるように、30人の対象を2:1の比率で無作為化する。
【0157】
予め決められた中止規則の基準を満たさない限り、試験はこのフェーズの間、継続的に登録を行う(以下参照)。これが起こった場合には、その後の対象の登録は、その試験のSafety Monitoring Committee(SMC)が安全性データの検討を完了し、続行するという提言がなされるまで開始されない。安全性評価は、コホート2においてコード化された治療割り付けによって行われる。SMCがAE/SAEを評価するために治療情報を必要とする場合、コードがその対象について明らかにされる。
【0158】
30人の対象全員において7日目の訪問を完了した際に、これらの対象で用量規制毒性が観察されない(以下の中止規則を参照)場合は、コホート3で登録が始まる。コホート3(高用量センチネル群)は、3人の対象を登録し、0日目に1×10
11 IUでのVXA-G2.4-NSの単回投与を受ける。3人の対象は、オープンラベル方式で連続して(1日1人)登録される。3人の対象全員において7日目の訪問を完了した際に、これらのセンチネル対象で用量規制毒性が観察されない(以下の中止規則を参照)場合は、コホート4で登録が始まる。
【0159】
コホート4(高用量無作為化群)は、二重盲検の方式で1×10
11 IU(高用量)でのVXA-G2.4-NS(n=20)またはプラセボ(n=10)いずれかの単回投与を受けるように、30人の対象を2:1の比率で無作為化する。
【0160】
予め決められた中止規則の基準を満たさない限り、試験はこのフェーズの間、継続的に登録を行う(以下中止規則を参照)。これが起こった場合には、その後の対象の登録は、SMCが安全性データの検討を完了し、続行するという提言がなされるまで開始されない。安全性評価は、コホート4においてコード化された治療割り付けによって行われる。SMCがAE/SAEを評価するために治療情報を必要とする場合、コードがその対象について明らかにされる。
【0161】
試験薬(ワクチンまたはプラセボ)を受ける全ての対象は、ワクチン接種後1ヶ月間で安全性および免疫原性評価を完了させる。免疫原性評価は、ワクチン接種前のベースライン時、ならびにワクチン接種後7日目および28日目に得られる。対象は、180日目に持続的免疫原性についても評価され、ワクチン接種後12ヶ月間の安全性について追跡調査される。
【0162】
サンプルサイズ
この試験で計画された登録は以下のように66人の対象である:
コホート 1: VXA-G2.4-NS(1×10
10 IU ± 0.5 log):n=3、センチネル
コホート 2: VXA-G2.4-NS(1×10
10 IU ± 0.5 log):n=20、またはプラセボ:n=10;合計で30人の対象、2:1比率
コホート 3:VXA-G2.4-NS(1×10
11 IU ± 0.5 log):n=3、センチネル
コホート 4:VXA-G2.4-NS(1×10
11 IU ± 0.5 log):n=20、またはプラセボ:n=10;合計で30人の対象、2:1比率
【0163】
脱落者に代わるための追加の対象を登録する可能性がある。
【0164】
試験集団
18〜49歳の年齢の男性または女性の健常志願者
【0165】
選択/除外基準
選択基準には以下が含まれる:
1. 18〜49歳(18歳と49歳を含む)年齢の男性または女性志願者
2. 書面によるインフォームド・コンセントを提出することができる
3. スクリーニング時の病歴、身体検査、12誘導ECG、およびバイタルサインから判断して、健常(臨床的に重大な健康上の懸念なし)
4. 安全性臨床検査値がベースライン時に以下の範囲の基準内である:
a. アルカリホスファターゼ(ALP)、アラニンアミノトランスフェラーゼ(ALT)、アスパラギン酸アミノトランスフェラーゼ(AST)、ビリルビン、リン(低リン血症)、好中球、潜血、白血球細胞(WBC)、および尿中タンパク質について正常範囲;
b. アルブミン、アミラーゼ、血液尿素窒素(BUN)、カルシウム、クレアチンホスホキナーゼ(CPK)、クレアチニン、グルコース、マグネシウム、カリウム、ナトリウム、総タンパク質、好酸球(増加)、ヘモグロビン、リンパ球(減少)、および血小板について正常または臨床的重要性のない(NCS)グレード1の異常;
c. 血液尿について陰性またはNCSでの陽性;
5. スクリーニング時に17〜35の肥満度指数
6. 全ての評価を完了しかつ予定された訪問および連絡に応じる能力および意思を伴う試験要件に対する理解;
7. 女性参加者はベースライン時に妊娠検査陰性であり、かつ以下の基準の1つを満たしていなければならない:
a. 閉経後少なくとも1年;
b. 外科的に妊娠ができない;
c. ワクチン接種前30日間およびワクチン接種後60日まで経口用、埋め込み型、経皮型または注射用の避妊薬の使用の意思がある;
i. 信頼性の高い避妊の方式は治験責任医師により承認されなければならない(例えば、二重障壁法(double barrier method)、Depo-Provera、子宮内避妊用具、Norplant、経口避妊薬、避妊パッチ、禁欲法)
【0166】
除外基準には以下が含まれる:
1. 試験ワクチン接種前2年以内にいずれかのノロウイルスワクチンを受けた
2. ワクチン接種前の8週以内にいずれかの治験ワクチン、薬物またはデバイスの投与、または試験期間中から12ヶ月の安全性追跡調査期間を通じて上述のものの使用の計画
3. ワクチン接種前30日以内にいずれかの認可されたワクチンの投与
4. スクリーニングの3ヶ月以内での管理不良の症状または薬物毒性のための新たな内科的/外科的治療または重大な用量変更の設定を含む、重大な管理不良の内科的または精神的疾患(急性または慢性)の存在、およびベースライン時の再確認
5. ワクチン接種前に30日以内に以下のECG知見のいずれか1つ:
a. QTc(Bazett)間隔時間>450 msec(男性)または>470 msec(女性)、
b. 120 msecを上回るQRS間隔、
c. 220 msecを上回るPR間隔、
d. 臨床的に重大なST-T波形変化または病的なQ波
6. HIV-1もしくはHIV-2、またはHBsAgもしくはHCV抗体について血清学的検査による陽性
7. 過去3年以内に癌、または癌治療のための治療(基底細胞癌または扁平上皮癌を除く)
8. 真性糖尿病を含む、免疫抑制、または免疫応答異常に関連する可能性がある医学的状態の存在
9. ワクチン接種前3ヶ月間、アレルギー注射、免疫グロブリン、インターフェロン、免疫調節剤、細胞障害性薬物、もしくは重大な主要臓器毒性に関連することが公知の他の薬物、または全身性コルチコステロイド(経口または注射用)などの免疫系に有害な影響を与える可能性があるいずれかの医薬または治療薬の投与。吸入および局所コルチコステロイドは可能。
10. ワクチン接種前2ヶ月以内にAd4またはAd7ワクチンを受けている同居家族の存在
11. 新生児、妊婦、または造血幹細胞移植もしくは臓器移植のレシピエントである同居家族の存在
12. ワクチン接種前1年以内の薬物乱用、アルコールの乱用、または化学物質乱用の履歴
13. ワクチン接種前6ヶ月の血液または血液製剤の投与、または追跡調査試験期間中の投与の予定
14. ワクチン接種前4週間以内に血液または血液製剤の献血、または試験期間中の献血の予定
15. 発熱を伴うまたは伴わない中等度または重度の疾患の存在として定義される、ワクチン接種前72時間以内の急性疾患(病歴および理学的検査によって治験責任医師により判定される)
16. ベースライン時に経口的に測定した≧38℃の熱の存在
17. スクリーニング時に潜血を伴う便サンプル
18. スクリーニング時に薬物の乱用について尿中薬物スクリーニング検査陽性
19. ワクチン接種前2ヶ月以内の一貫した/習慣的な喫煙
20. アナフィラキシー、呼吸器疾患、じんま疹または腹痛などの、ワクチン接種に対する重篤な反応の履歴
21. 採血を困難にする可能性がある出血障害または重大な皮下出血もしくは出血困難の診断
22. 小腸の粘膜を標的とする経口投与されたワクチンの分布/安全性評価に影響を与える可能性がある過敏性腸疾患または他の炎症性の消化もしくは胃腸の状態の病歴。
そのような状態には限定されないが以下が含まれる可能性がある:
26. 治験責任医師が判断した、第一の試験目的を評価する能力を妨げうる任意の状態
試験スケジュール 以下の試験訪問/電話が試験期間中に実施される:
・スクリーニング期間(ワクチン接種前30日以内)
・−2日目(ベースライン安全性臨床検査サンプル収集)
・0日目訪問(ベースライン;ワクチン接種の日)
・2日目訪問
・7日目訪問
・28日目訪問
・180日目訪問
・365日目試験連絡の最後
【0167】
対象は、1日目、3〜6日目および14日目に1日1回の電話連絡を介して追跡調査される。彼らはまた、28日目の訪問と180日目の訪問との間およびさらに180日目の訪問後365日目(試験の最後)にかけて月1回連絡をうける。試験手順の詳細なスケジュールについては表1を参照。
【0168】
安全性および免疫原性の評価
安全性:
安全性と忍容性は、局所(経口、食道および胃腸管)および全身反応原性(応答型症状(solicited symptom))、ならびに臨床および検査評価によって評価される。理学的検査、定期尿検査、全血球数および血清化学検査は、スクリーニングおよびベースライン時(−2日目に安全性検査)の投与前ならびに試験2日目、7日目および28日目に収集される。バイタルサインは、スクリーニングおよびベースライン時の投与前ならびに試験2日目、7日目、28日目および180日目に記録される。
【0169】
安全性は、下記の統計方法に従って実施される、標準的な血液化学検査、血液学的検査、尿検査、および分析を用いて評価される。初回ワクチン接種後14日以内に結膜炎、上気道感染、軟便および/または下痢の急性症状を経験した対象はいずれも、医学的評価およびアデノウイルス5感染についての評価のために戻ることが求められる。これらの対象では、喉および直腸のスワブのアデノウイルス培養が収集される。
【0170】
免疫原性:
免疫原性は、アッセイに応じてベースライン時(投与前)ならびに試験7日目および/または28日目に得られた血液サンプルからの細胞性および液性免疫機能アッセイを用いて評価される。加えて、持続免疫原性についての最終評価は180日目に実施される。以下の評価を実施する:血清IgG VP1;組織血液型抗原(Histo-blood group antigen)ブロッキング抗体(BT50);IgG ASC VP1;IgA ASC VP1;フローサイトメトリーB細胞免疫表現型検査;IgG VP1およびIgA VP1についてプレプラズマB細胞(Pre-plasma B cell)培養;便中IgA VP1;HAIおよび抗Ad5。
【0171】
中止規則
試験は、以下のいずれかが起こった場合に中止される(完全なSMC安全性検討の結果がでるまで新たな登録なしおよびさらなる治験薬の投与なし):コホート1および3(3人の対象のオープンラベルの方式のセンチネルリードイン群)に関して:
1. 1人以上の対象が、いずれかのグレードのワクチン関連SAEを経験する;
2. 1人以上の対象が、グレード3以上の臨床AEまたは臨床検査値異常を経験する;
3. 2人以上の対象が、いずれかのワクチン関連グレード2臨床AEまたは臨床検査値異常を経験する。
【0172】
コホート2および4(無作為化プラセボ対照群)に関して:
1. 1人以上の対象が、いずれかのグレードのワクチン関連SAEを経験する;
2. 2人以上の対象が、グレード3の臨床AEまたは検査AEを経験する;
3. 1人以上の対象が、グレード4の臨床AE、またはグレード4の臨床検査値異常を経験する;
4. 3人以上の対象が、アデノウイルス感染の症状および検出可能な複製可能なアデノウイルス5ワクチンウイルスを呈する。3人以上の対象がアデノウイルス感染の症状を呈する場合、アデノウイルス5ワクチンウイルスの検出について結果がでるまで、登録は中止される。
【0173】
エンドポイントパラメーター
安全性分析には以下が含まれる: 1)標準的な記述人口学;2)各処置群における対象の割合が、局所および全身の応答型反応原性事象およびいずれかの非応答型AEごとに表に示される。AE重症度は、“Toxicity Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive Vaccine Clinical Trials”という表題のSept. 2007 FDA Guidanceに合わせた、標準化された基準を用いて分類される;3)AE(臨床検査値異常を含む)を有する対象は、(1) MedDRA器官分類および基本語;(2)重症度;(3)関連性;および、別個に、(4)重篤度によって概説される;4)各器官分類内でのAEレポートを伴う各処置群における対象の割合は同じように比較される。重大な異質性は基本語レベルで探索される。
【0174】
免疫原性分析には以下が含まれる: 1) 血清IgG VP1および組織血液型抗原ブロッキング抗体(BT50);2)さらなる探索分析には、IgG ASC VP1;IgA ASC VP1;フローサイトメトリーB細胞免疫表現型検査;IgG VP1およびIgA VP1についてプレプラズマB細胞培養;便中IgA VP1;HAIおよび抗Ad5。
【0175】
統計手法
サンプルサイズおよび検出力:
これは、スポンサーによって行われるVXA-G2.4-NSによる最初のヒトでの臨床試験である。現在、試験薬についての臨床情報は存在しない。したがって、サンプルサイズは、典型的な第1相ワクチン試験の経験に基づき決定した。コホート2および4における1群あたりの志願者の数は、意味ある免疫原性の結果を生じるように予測される。2群間フィッシャー直接両側検定を0.05の有意水準で用い、ワクチン群における反応(血清IgG VP1で観察される)の割合が50%であり、プラセボでは0であると仮定すると、ワクチン群で20名およびプラセボ群で10名のサンプルサイズ(すなわち、2:1の無作為化比率)がおよそ86%の群間差検出をもたらす。
【0176】
データ分析:
安全性:
安全性は処置群によって要約される。局所および全身の反応原性、AE、臨床検査結果、およびバイタルサインは試験訪問によって記述的に要約される。初回ワクチン接種後14日以内に結膜炎、上気道感染、軟便および/または下痢の急性症状を経験する対象の数およびパーセンテージは、フィッシャー直接検定を用いて処置群によって比較される。
【0177】
免疫原性:
予め選択した試験訪問で収集した血液サンプルからの細胞性および液性免疫機能アッセイによって評価される免疫原性の結果は記述的に要約される。従属変数としてベースライン後の対数力価、因子として処置、および共変量としてベースライン対数力価を用いる、共分散分析法(ANCOVA)が、抗体価の分析において用いられる。最小二乗(LS)平均および該LS平均の95%CIがモデルから得られる。VXA-G2.4-NS群についてのベースライン後の幾何(LS)平均力価(GMT)、およびベースライン時の初回GMTに対する幾何(LS)平均上昇倍数(GMFR)が報告される。
【0178】
実施例8
RSV背景
呼吸器多核体ウイルス(RSV)は、乳児および幼児における下気道感染症(LRI)の最も重要な原因であり、かつそれが甚大な影響を及ぼし得る高齢の免疫不全患者ではLRT1の主な原因であり、重大な罹患率および死亡率をもたらす。1年あたり5〜10%の老人ホーム入居者にそれぞれ10〜20%および2〜5%の肺炎または死亡率で感染すると推定される(Falsey et al. 2000)。承認されたワクチンは存在しないが、リスクの高い乳児における疾患予防のためには承認済み予防的モノクローナル抗体であるパリビズマブが存在する。
【0179】
ワクチンの欠如を考慮して、Vaxartは、その経口アデノウイルスベクターによるプラットフォームを用いて送達されるRSVワクチンを評価する前臨床プログラムを開始することによってこの大きなまだ満たされていない医療ニーズに対処する。このプラットフォームは以前に、インフルエンザワクチンを患者に送達するために用いられ、有効性を有しており、有意な免疫を誘導することが実証されている。この前臨床行程における重要な戦略は、コットンラットRSVチャレンジモデルにおける疾患防御を実証することである。そのために、発明者らはそのような評価を開始し、近いうちに完全なデータセットを有する。発明者らはこのレポートにおいて、単回ワクチン接種の後ですら顕著な免疫を生じることを実証する、予備的なデータを提示する。この免疫反応に基づき、発明者らはワクチンが防御的であると予測する。
【0180】
コットンラットにおけるRSVFワクチン評価
RSVの融合タンパク質(F)およびdsRNAアジュバントを発現するワクチンベクター(Ad-RSVF)を上述のように作製した。Adワクチンベクターを293細胞において産生させ、精製し、力価を決定した。次いで、ベクターを最初にマウスで評価し、顕著な免疫反応が融合タンパク質に対して誘発されていた(データを示さず)。次に関連するRSV動物モデルであるコットンラットで評価した。経口送達法はコットンラットでは最適化されていないことから、鼻腔内経路を代替の粘膜経路送達として選択した。2種類の用量、低用量(1e8 IU)および高用量(1e9 IU)を投与した。未感染の動物を負の対照として用い、かつ野生型RSVウイルス(RSVA2)を正の対照として用いた。ホルマリン不活性化RSV(FIRSV)を、1960年代に開発されたRSVワクチンに関連する望まない負の作用についての対照として用いた。単回ワクチン接種後、低用量および高用量両方のAd-RSVFが、野生型RSV感染と比較して高い力価を誘導した(
図17)一方で、FIRSVは非常に弱い免疫反応(200〜300×低下)を誘導した。このデータは、発明者らのワクチンは、WTRSVウイルスより免疫を誘導する点で優れており、かつ初期FIRSVFワクチンより効果的であることを示す。
【0181】
抗融合タンパク質抗体全体(
図17)に加えて、発明者らは、承認済みパリビズマブ抗体と競合し得る発明者らのワクチンによって生じた抗体についても目を向けた。処置群のそれぞれからプールした血清を用いる競合アッセイにおいて、Ad-RSVFワクチンのみが検出可能な抗体価を生じた(
図18)。これらのデータは、ワクチンがRSV防御抗体を産生していることを示す。
【0182】
VXA-RSV-f非臨床試験
8.1 序論
VXA-RSV-fは、RSVの予防のためのワクチンとして使用するために設計されかつ経口経路によって投与される、E1/E3を欠失させた複製不全血清型5アデノウイルスベクターである。該組換えアデノウイルス(rAd)ベクターは、1) RSV A2株(Genbank# HQ317243.1)由来の融合(F)遺伝子、および2)そのTLR3アゴニスト活性を介して腸粘膜において発現させたF抗原の免疫原性を増強するアジュバントdsRNA配列をコードする。ワクチン骨格は、それぞれ汎流行性ならびに季節性インフルエンザ AおよびBに対する現在臨床開発中のVaxartのND1.1、VXA-A1.1およびVXA-BYW.10ワクチンにおけるものと同じであり、唯一の変更点は、VXA-RSV-fは異なる表面タンパク質(Fタンパク質)を発現するという点である。RSV Fタンパク質遺伝子は、哺乳動物細胞における発現のためにコドン最適化されており、ヒトサイトメガロウイルス中間初期領域(hCMVIE)エンハンサー/プロモーターおよびウシ成長ホルモンポリアデニル化(pA)シグナルを用いて発現する。この発現カセットには、導入遺伝子の発現を増強するためのヒトβ-グロビンの第1イントロンも含まれる。第2のhCMVIEプロモーターはアジュバントRNA配列を発現するために用いられる。アジュバント配列はルシフェラーゼ配列に由来し、インビトロでI型インターフェロンの誘導を刺激することが報告されている(1)。アジュバントは、低分子ヘアピン型RNAとして発現され、RNAのループを含む6個のヌクレオチドによって離間されたフォワード方向およびリバース方向のタンデム配列として21ヌクレオチド配列
を含む。21ヌクレオチドのフォワードおよびリバースRNA配列はアニールし、ループのステムを形成する。このアジュバントカセットは合成ポリA(SPA)を利用する。
【0183】
Vaxartは、マウスおよびコットンラットにおけるVXA-RSV-fの免疫原性能を判定するために前臨床試験を行っている。これらの試験は、VXA-RSV-fによるワクチン接種は試験動物において実質的な全身性血清IgG反応を誘発したことを示した。
【0184】
上述のように、VaxartのRSVワクチン(VXA-RSV-f)は、同社の汎流行性および季節性インフルエンザウイルスプログラムと同じ複製不全ウイルスベクター骨格およびアジュバントRNA配列を使用する。A/Indonesia/05/2005 (H5N1)汎流行性インフルエンザワクチンであるND1.1は現在、BB-IND 14660および15122のもとで試験が行われており、A/California/04/2009 (H1N1)季節性インフルエンザワクチンであるVXA-A1.1は現在、BB-IND 15198および15285のもとで試験が行われている。B/Wisconsin/1/2010(Yamagata)ワクチンは現在、BB-IND 16611のもとで試験が行われている。ワクチン間の差異は抗原遺伝子[VXA-RSV-fではFタンパク質であるのに対してVXA-A1.1, ND1.1およびVXA-BYW.10ではHA]のみであることから、ND1.1および VXA-A1.1による前臨床試験は、RSV疾患の予防のためのVXA-RSV-fワクチンの臨床開発に関連し、かつそれをサポートする。
【0185】
8.2 非臨床薬理学
8.2.1 序論
RSVワクチン候補VXA-RSV-fの免疫原性試験の第一の目的は、ベクター構築物がマウスおよびコットンラットにおいて抗体反応を誘発できること、および生じた適応免疫反応はホルマリン不活性化RSVワクチンによって起こることが知られているようなRSV疾患の増強をもたらさなかったことを実証することであった。さらに、試験は、抗原特異的な免疫促進を誘導するためのアジュバントの価値を実証するために動物において行われた。
【0186】
(表5)非臨床薬理学試験
aIU=感染ユニット
b経口送達はSigmovir(Rockville, MD)によって胃管栄養により行われた。
【0187】
8.2.2 免疫原性およびチャレンジ試験
初回マウス免疫原性試験(試験番号WCB254)の第一の目的は、RSV Fタンパク質を発現するVaxartベクター骨格がELISAによって測定されるRSVに対する抗体反応を誘導できるかどうか判定することであった。マウス試験の完了後、2つのコットンラット試験を実施した。コットンラット試験の目的は、VXA-RSV-fがRSVに対する強力な抗体を誘発できること、およびワクチンがRSVに対する防御的免疫反応を誘発できることを実証することであった。さらに、コットンラット試験は、VXA-RSV-fにより誘導された適応免疫反応が、以前からのホルマリン不活性化RSVワクチン(FI-RSV)で記録されたような、RSV疾患の増強を行わなかったことを確認するために用いられた。
【0188】
マウスにおける免疫原性試験
構築物が免疫原性を有するかどうかを判定するために、3種類の異なる送達経路を用いて、マウス(6匹雌/群)をVXA-RSV-fで免疫化した。動物を、3種類の異なる送達経路(鼻腔内、筋肉内、および経口)を用いて、0週目および3週目に1×10
8 IUで免疫化した。RSVに対する抗体価を7週目に測定した。結果は、i.n.およびi.m.送達経路のどちらも抗体反応を誘発するのに強力であったこと、および経口投与はいくらかの免疫を誘発できたが、他の2種類の送達経路ほどマウスにおいて強力ではなかったことを示す。
図22を参照。
【0189】
コットンラットにおける免疫原性およびチャレンジ試験
第1のコットンラット試験(試験番号XV-95)の目的は、VXA-RSV-fの抗体反応を誘導する能力およびRSV疾患およびウイルス複製に対して防御する能力を判定することであった。コットンラットは、該動物のRSV感染に対する感受性、およびホルマリン不活性化RSVワクチン(FI-RSV)を与えた後にRSVチャレンジを行った場合の肺炎症/サイトカイン歪み表現型(skewing phenotype)の再現性のために、RSVワクチンの前臨床開発にとって重要なモデルと見なされる(2)。雌のコットンラット(1群あたりN=6)を、0週目および4週目に鼻腔内(i.n.)および筋肉内(i.m.)送達によってVXA-RSV-fで1×10
9 IUにて免疫化した。VXA-RSV-fの1×10
8 IUでの低用量i.n.送達群(VXA-RSV-f低)も用いた。VXA-RSV-fワクチン処置動物を、8週目のELISA IgG力価について、感染なし/ワクチンなし対照群(感染なし)、アデノウイルス保存バッファー単独(バッファー)群、およびRSV-A2株由来のPfizerによって製造されたストック(Lot #100)の1:100希釈でのFI-RSVワクチン群と比較した(3)。チャレンジ後の結果が抗体特異的であったことを示すために、抗原なしにアジュバントを発現するrAd(Ad-Adj)を1×10
9 IUにてi.n.で与え、対照として用いた。免疫原性および適応免疫媒介防御の正の対照として、1×10
5 PFUでの野生型RSV株A2(RSV2)の単回投与を0週目に与えた。試験処置群、時点およびエンドポイントの概要について表5を参照。
【0190】
全てのVXA-RSV-f免疫化動物はRSVに対する有意なIgG抗体価を誘導し、群平均抗体価は8週で1×10
5を上回った(
図23A)。FI-RSVおよびRSV2免疫化動物もまた有意なIgG抗体価を誘導し、平均力価は8週目に1×10
4に到達した(
図23A)。VXA-RSV-fワクチン処置動物は、競合的結合ELISAによって測定される、RSVウイルスのFタンパク質上のパリビズマブ結合部位について競合した抗体を誘導することもできた一方で、FI-RSVワクチンは、パリビズマブ結合部位を認識することができる抗体を誘導しなかった(
図23B)。野生型RSV2群(正の対照)は、パリビズマブ結合部位に競合する抗体を誘導する能力をいくらか有していた。RSVに対する中和抗体はPRNTアッセイによって測定された。全てのVXA-RSV-f群がRSVに対する有意な中和抗体を誘導することができ、パリビズマブ分析と類似の傾向が見られた一方で、FI-RSVワクチンは実質的な中和力価を誘導できなかった(
図23C)。RSV2対照ワクチンは、統計的に言うと、VXA-RSV-f群と類似の中和力価を誘発することができ、VXA-RSV-f(i.m.)は最も高い幾何平均力価を有した(Mann-Whitneyでp=0.47)。
【0191】
第2のコットンラット試験(試験番号XV-112)の目的は、コットンラットがVXA-RSV-fワクチンで経口的に免疫化され、有意な免疫反応を誘導できるかどうか判定することであった。チャレンジは、有効な経口免疫化に続いて任意であった。経口免疫化は該動物において困難である可能性があり、コットンラットにおけるrAd経口投与の以前の文書化された知識は入手できなかった。この理由から、VXA-RSV-fワクチンの用量設定は、1×10
8、1×10
9、および1×10
10 IUでの用量で行われ、ヒト経口錠剤送達に近づけるために胃を中和したコットンラットに経口胃管栄養によって与えられた。動物を0週目および4週目に免疫化し、抗体価を4および8週目に測定した。バッファー単独群を対照として用いて、免疫化なしのバックグラウンド作用を示した。
【0192】
結果は、1×10
9および1×10
10用量のどちらも4週目にRSV-Fに対する有意な抗体価を誘導でき、8週で有意に追加免疫されたことを示す(
図24A)。1×10
8 IUワクチン群は、RSVに対する総IgG抗体反応に関しては低い傾向であった。パリビズマブ結合部位と競合し得る抗体を誘導する経口VXA-RSV-fの能力の測定は、用量依存的作用を示し、高用量がより低用量の1×10
8 IU用量よりより高い平均競合力価を示した(
図24B)。RSVに対する中和抗体の誘導はより高いワクチン用量によって増大し、1×10
9および1×10
10 IU VXA-RSV-fワクチン用量はより高い中和力価を誘発した(
図24C)。
【0193】
第1のコットンラット実験(XV-95、
図23)での免疫化後、56日目に、コットンラットに野生型RSV株A2を1×10
5 PFUで与えた。5日後に肺の気道および鼻腔を収集し、コットンラット組織におけるRSV複製および疾患に対するワクチンの防御能について分析した。VXA-RSV-fワクチンによる免疫化は、肺および鼻のどちらでもRSV複製に対する完全な防御をもたらしたのに対して、ホルマリン不活性化ワクチン(FI-RSV)群およびアジュバント単独(Ad-Adj)群は、鼻ではRSV複製に対する防御をもたらさず、肺ではFI-RSVワクチンで限定された防御のみがもたらされた(
図25A)。最大の複製(バッファー対照群で見られるような)は、4.9 log
10 PFU RSV/g肺組織の平均値を有し、ワクチン誘導性免疫は、チャレンジ後のRSV力価を検出可能なレベル未満に、3 log
10を上回る減少に低下させることができた。
【0194】
肺炎症は、RSV感染後5日目に免疫組織学検査およびqRT-PCR分析によって測定された。4つ異なる領域を免疫組織学検査によって評価し、ワクチンが疾患の適応免疫促進をもたらしたかどうか判定した。VXA-RSV-fワクチンは、肺炎症の「正の」対照であるFI-RSVワクチンと比較して、細気管支周囲炎(PB)、血管周囲炎(PV)、間質性肺炎(IP)、および肺胞炎(A)の肺病理スコアの有意な増加を誘導せず(
図25B)、IL-4またはIL-13の相対的存在量の増加をもたらさなかった(
図25C)。バッファー群、RSV2群およびアジュバント対照群を含む、i.n.投与を与えられた群はPBおよびPVについては高い傾向が見られたが、IPおよびAについては必ずしもそうではなかった(
図25B)。アジュバント群(RSV Fタンパク質の発現なし)は、RSVチャレンジ後に高レベルのPBを誘導したが、低レベルのIPおよびAのみを誘導した。バッファー群およびアジュバント単独対照群は、FI-RSV群が誘導したような、IL-4またはIL-13 mRNAの相対的存在量の有意な増加を誘導しなかった(
図25B)。FI-RSVワクチン群は、それぞれ0.1および0.3を下回るVXA-RSV-fおよびRSV2ワクチン群と比較して、IL-4については1を上回りIL-13については3を上回る平均相対的存在量を誘導した(
図25C)。
【0195】
経口コットンラット免疫原性試験(試験番号XV-112)は、強力な中和抗体価が観察されるため、野生型RSVでチャレンジした。免疫化後、56日目に、コットンラットに1×10
5 PFUで野生型RSV株A2を与えた。肺の気道および鼻腔を5日後に収集し、コットンラット組織におけるRSV複製および疾患に対するワクチンの防御能について分析した。VXA-RSV-fワクチンによる経口免疫化は、肺および鼻のどちらでもRSV複製に対する用量依存的な防御を誘導し、最高用量のワクチンは肺にでは完全な防御を、鼻ではほぼ完全な防御を誘導した;8匹のうち8匹の動物が肺におけるRSV力価について陰性であり、8匹のうち7匹の動物が鼻におけるRSV複製について陰性であった(
図26A)。最大複製(バッファー対照群に見られる)は平均で5.2 log
10 PFU RSV/g肺組織を有し、ワクチン誘導性免疫は、1×10
9および1×10
10 IUワクチン群ではチャレンジ後RSV力価を3 log
10を上回って低下させることができた(
図26A)。最低用量群(1×10
8 IU)もまた実質的な防御を実証し、8匹のうち6匹の動物が完全な防御を有した。炎症は前述のように評価した。ワクチン群は、バッファー対照群と比較して炎症について高い傾向を示したが、統計的に異なるものではなかった(
図26B)。チャレンジ後の肺のサイトカイン分析は、qRT-PCRによって測定されるIL-4またはIL-13 mRNAの相対的存在量の実質的な増加を認めなかった。全てのワクチン群およびバッファー対照群は、それぞれ0.04および0.005を下回るIL-4およびIL-13 mRNAの相対的存在量レベルを有した(
図26C)。これらの値は、試験番号XV-95 (
図25C)においてFI-RSV群によって誘導されるそれぞれIL-4およびIL-13についての相対的存在量レベル1および3と比較して極めて低いものであり、これらのサイトカインの意味ある誘導はVXA-RSV-fの経口送達後に生じなかったことを示唆する。
【0196】
実施例9
経口錠剤免疫化後のインフルエンザに対する高力価中和抗体: 無作為化プラセボ対照試験
序論
季節性インフルエンザワクチン接種は、各ミニエッグバイオリアクターを回収および処理するのに十分な受精卵と大規模な装置を収集する実質的に毎年の活動を必要とする。細胞培養または植物由来の赤血球凝集素(HA)は、卵の取得および処理作業の負担を低減する可能性があるが、これらのアプローチは依然として、バイオハザードとして処分する必要がある個別の注射針を製造するために高価な無菌充填および仕上げを必要とする。大流行している間、学校は閉鎖されかつ社会的距離戦略が命令される可能性があるにもかかわらず、大規模なインフルエンザ予防接種活動は典型的には、注射のために診療所で対象を並ばせる必要がある。このジレンマを回避するために、経口インフルエンザワクチンは、郵便を通じて送ることができ、よって人と人との接触の大部分を避けることができる。郵便配達は多種多様な経口医薬で既に用いられており、大流行中に退役軍人に救急医薬を送達するための手段として既に提案されている。さらに、錠剤化は、注射型ワクチンが必要とする高価な無菌充填および仕上げ工程を必要としない、迅速で衛生的な工程である。
【0197】
複数のアデノウイルスベクターアプローチが、経口インフルエンザ免疫接種を可能にするために試みられている。2011年には、細胞培養で作製された経口アデノウイルスベクターによる鳥インフルエンザ(H5)ワクチンを用いる臨床試験が開始された。インフルエンザH5 HAに対するT細胞反応は75%を上回る対象で測定されたが、中和抗体反応は観察されなかった(Peters et al. Vaccine 2013; 31: 1752-8)。さらなる製剤開発および用量最適化を行った後に、このレポートの対象である臨床試験が、カプセルの代わりに錠剤送達形式を用いて、季節性インフルエンザについて開始された。以前のものと同じベクター骨格が用いられてたが、現在市販の季節性インフルエンザワクチン(A/California/04/2009 (H1N1))のH1N1株と類似の株由来の新たなHA配列および10倍高い用量を伴う。rAd-HA(A/CA/04/2009)-dsRNAの単回用量を安全性および免疫原性について二重盲検無作為化対照臨床試験において試験した。このレポートはこの試験の知見を要約する。
【0198】
材料および方法
臨床プロトコールおよび登録
これは、H1季節性インフルエンザに対する組換えAd血清型5(rAd5)ベースの経口ワクチンの安全性および免疫原性を評価するための、無作為化およびプラセボ対照コホートによる、第1相連続登録試験であった。この試験は、適用されるGood Clinical Practiceガイドライン、the United States Code of Federal Regulationsおよびthe International Conference on Harmonizationガイドラインにしたがって行われた。IRB承認は、対象の登録の前にAspire IRB (Santee, California; AAHRPP認証)から得られた。試験参加者は、CRO/第1相部署の既存の志願者データベースを用いて、ならびにIRBによって承認された広告活動(印刷広告、ラジオ広告およびソーシャルメディア)を用いて募集した。試験の手法および潜在的リスクの説明の後に、全ての対象からインフォームド・コンセントを得た。
【0199】
対象を登録の45日以内に赤血球凝集素阻害(HAI)力価についてプレスクリーニングした。試験参加の資格を有するためには、対象は、<1:20の初回HAI価を有し、18〜49歳の間の年齢であり、かつ健康な状態でなければならなかった。追加の登録基準をclinicaltrials.govにNCT01688297のもとで記載する。試験の活動期は28日目までであり、安全性をモニタリングするための追跡調査期は1年間続いた。
【0200】
無作為化およびマスク化
試験は、12人の対象において1×10
11感染単位(IU)の単回投与でワクチン(VXA-A1・1)を評価するように設計され、12人の対象にプラセボ対照が与えられた。連続的に登録されたセンチネルなワクチン処置対象が3人おり、各対象は24時間毎に1回以下の頻度で投与された。ワクチン関連毒性について1週間のモニタリングの後、処置コホートに残っている対象(9人)を12人のプラセボ対照と共に無作為化した。無作為化は、コンピュータが作製した割り当てによって行われ、試験薬は、情報を隠されていない薬剤師によって情報を隠されたスタッフに、氏名を隠して配布された。全ての試験実施施設のスタッフならびに免疫学的アッセイまたは臨床安全性の評価に直接関与する人は、処置割り当てが分からない状態であった。全ての対象は試験において情報を隠された。
【0201】
サンプルサイズ
意味ある結果を得るための1試験群あたりの志願者の全体数(n=12)を予測した。これは、ワクチン群では50%のレスポンダーが観察されおよびプラセボ群では誰も観察されないものとして以前の試験において定義された。2群間フィッシャー直接両側検定を0.05の有意水準で用い、ワクチン群における反応(HAI>40と定義)の割合は50%であり、プラセボでは0であると仮定すると、1群あたり12人のサンプルサイズでは、群間差を検出するために80%の検出力がある。
【0202】
ワクチン
rAdベクター(非複製性Ad5)は、以前に記載されたように(Scallan et al. Clinical and Vaccine Immunology 2013; 20(1): 85-94)、CMVプロモーターによってその発現が駆動されるHA(A/CA/04/2009)導入遺伝子、および別のプロモーターによって駆動される分子dsRNAヘアピンをコードするDNAを保有する。GMP原薬は、Lonza Biologicals (Houston, TX)にてWave Disposable Bioreactor (GE Healthcare, Waukesha, WI)で製造された。精製は、イオン交換クロマトグラフィと、その後に続くバッファー交換によって行われた。精製されたベクターを賦形剤と混合し、凍結乾燥し、次いで、錠剤化バルクとして微結晶セルロースおよびデンプンを用いてLonzaにて錠剤化した。錠剤は、Vector Hi-Coaterシステム(Vector Freund, Cedar Rapids, IA)を用いてEudragit L100(登録商標)(Evonik Industries, Darmstadt, Germany)で腸溶性コーティングした。最終産物を1つのロットで吐出し、Lonzaにて標準的なIUアッセイによって力価を測定した。プラセボを、腸溶性コーティングなしに150 mgの微結晶セルロースを含有する同様のサイズおよび形状の錠剤として調製した。
【0203】
安全性評価
主席治験責任医師(PI)が、応答型および非応答型有害事象(AE)を盲検的に評価した。SMCは試験の安全性を監視したが、AEの段階付けには参加しなかった。応答型AE(反応原性)は、7日目の応答型症状日記カードを活用して収集した。非応答型AE(全ての他の臨床上のAE)は、28日目までの非応答型日記カードを活用して収集した。治験責任医師は、the Center for Biologics Evaluation and Research (CBER) Guidance for Industry: Toxicity Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive Vaccine Trials, September 2007を用いて、AEを段階付けした。
【0204】
新規アジュバントのため、発明者らは、特に注目すべきAE(AESI)の発生および慢性疾患の新たな発症(NOCI)に関するデータを収集した。これらには、神経炎症性障害、筋骨格障害、胃腸障害、代謝疾患、皮膚障害および他の自己免疫障害が含まれる。AESIまたはNOCIは免疫後180日目まで報告されなかった。
【0205】
エンドポイント
この試験の主要エンドポイントは安全性であり、二次エンドポイントは、主にHAI価およびHAI抗体陽転による、活動期を通じての免疫原性である。追加の免疫学的エンドポイントにはMN価およびASCが含まれる。
【0206】
PBMCの単離および凍結保存
血液をK3 EDTA Vacutainer(登録商標)チューブ(BD, Franklin Lakes, NJ)中に収集し、PBMCを同じ日にLymphoprep(商標)チューブ(Axis-Shield, Norway)を用いて単離した。
【0207】
PBMCを、製造者の説明書(Cellular Technology Ltd [CTL], Shaker Heights, OH)に従い無血清試薬を用いて凍結および解凍した。
【0208】
抗体分泌細胞(ASC)
IgGおよびIgA分泌B細胞向けの酵素結合免疫吸着(ELISpot)キットを製造者の説明書(Mabtech, Mariemont, OH)にしたがって実施した。細胞を、CTL-Test培地で三つ組のウェルで培養し(1ウェルあたり個の1.5×10
4から5×10
5細胞)、スポットを最適化した。Vaxartにてビオチン化キット(Pierce, Rockford, IL)を用いてHAタンパク質(Protein Sciences Corp, Meriden, CT)をビオチン化し、定量化した。スポットをZellnet Consulting Inc(Fort Lee, NJ)にて計数した。
【0209】
抗体アッセイ
HAIおよびMN価が、以前に記載された(Greenberg et al. The New England Journal of Medicine 2009; 361(25): 2405-13)ものと同様にFocus Diagnostics(Cypress, CA)によって行われた。HAIおよびMNを、それぞれMDCK由来のA/CA/07/2009 および卵由来のA/CA/07/2009に対して測定した。10未満のHAIおよびMN価は、規制当局アドバイスによって提言されたように5と記録した。アデノウイルス中和力価は上記2で記載したように測定した。
【0210】
統計解析
一般に、連続変数の記述統計には、集計されるべきデータを有する対象の数(n)、平均、標準誤差(std err)、および95%信頼区間(95 CI)が含まれた。力価は、幾何平均および95 CIによって報告された。カテゴリー変数は、頻度数およびパーセンテージを用いて表された。処置群の差は、連続変数では2群間t検定およびカテゴリー変数ではフィッシャー直接検定を用いて比較した。全ての統計的検定は、多重性について補正することなく0.05の有意水準で両側検定を行った。共分散分析(ANCOVA)モデルを、従属変数として28日目の対数力価、因子として処置、および共変量として0日目の対数力価を用いて、(log変換した)HAI抗体価について使用した。最小二乗(LS)平均、該LS平均の95 CI、LS平均の差、およびLS平均の差の95 CIをモデルから得た。HAI抗体価の探索分析として、共変量として年齢、性別、および肥満度指数(BMI)が含まれる別のANCOVAモデルを同様に行った。
【0211】
結果
人口統計
365人の対象がスクリーニングされ、24人の対象が登録された。登録された全ての対象は、活動期を通じて、およびモニタリング期の180日目まで安全性および免疫原性評価を完了した(
図19)。プラセボおよびワクチンで処置した対象両方について人口統計を表8に記載する。
【0212】
有害事象の要約
試験物質の投与後最初の7日間に、VXA-A1・1ワクチン群およびプラセボ群において報告された応答型有害事象(AE)は合計で8件であった(表9)。これらのAEは全てグレード1の重症度であった。AEが処置に関連したかどうかについての治験責任医師の評価も示す(表9)。最も頻度の高いAEは頭痛であった(プラセボで2件、およびワクチン群で1件)。他の応答型AEは全て1件の事象であった(表9)。免疫化後28日間のワクチンおよびプラセボ群における未応答型AEは合計で8件であり、プラセボで3件の事象が生じ、ワクチン群で5件の事象が生じた。本試験で重篤な有害事象は報告されなかった。
【0213】
臨床検査値異常はワクチンおよびプラセボ群全体にわたって分布した。注目すべきことに、ワクチン群における好中球減少事象は6件、プラセボ群では4件であった。これらの事象は合計で8人の対象で生じ、そのうち4人は治療前に好中球減少性の血球数を有した。これらの対象のうち5人はまた黒人または日本人でもあり、比較的高い頻度の良性民族性好中球減少症(BEN)を有する民族集団である。(BEN)の場合と同様に、報告された好中球減少性の事象いずれかが起因した臨床症状はなかった。
【0214】
免疫原性結果
HAI反応を0日目および28日目に測定した(
図20A)。プラセボ処置対象はいずれも抗体陽転しなかったが、プラセボの1人は高い0日目の値を有した(スクリーニング時に測定される場合、対象は除外される)。ワクチン対象はいずれも>20の開始時HAI価を有さなかった。免疫化後、ワクチン群の9人の対象が抗体保有レベル(HAI≧40)に到達した(
図20A)。11人の4倍上昇した人(92%)のうち9人は抗体陽転(SC)しており、残りの2人の対象はHAI価の5から20への4倍増加を示した。ワクチン群は、プラセボに対して4倍レスポンダーの数の統計的に有意な増加を有した(11対0、フィッシャー直接検定でP<0.0000)。共変量として0日目の対数力価を考慮するANCOVAモデルを用いると、ワクチン群の幾何(LS)平均力価(GMT)は、28日目に71.5 (95 CI: 45〜114)であり、0日目の7.9(95 CI: 4.6〜13.6)の初回GMTに対して7.7倍の幾何(LS)平均上昇倍数(GMFR)と計算された。プラセボ群の28日目のGMTは、28日目に10.1(95 CI: 6.4〜16.2)であり、0日目の11.0(95 CI: 6.4〜18.9)の初回GMTに対して1.1倍のGMFRであった。プラセボと比較すると、ワクチン群は、28日目のGMTにおいて統計的に有意な増加を有した(p値<0.001)。ベースラインの共変量効果もまた統計的に有意であった(p値<0.001)。追加の共変量として年齢、性別およびBMIが含まれている別のANCOVAモデルを用いて、探索分析も行った。これらの共変量の効果は28日目に統計的に有意ではなかった[p値: 0.993 (年齢について)、0.696 (性別について)、0.201 (BMIについて)]。
【0215】
抗体反応の持続性を免疫後180日のHAI反応を調べることによって測定した。ワクチン免疫化群では、75%(12人のうち9人)の対象が28日目に抗体を保有し、75%(12人のうち9人)が180日目に依然として抗体を保有していた。HAI GMTをプロットし(
図20B)、GMTの減少が免疫後28日から180日の間に29%であることを見出した。
【0216】
インフルエンザに対する中和抗体反応をMNアッセイによって測定した。プラセボ対照に対して処置群においてMN価の有意な増加を観察した(
図20C)。ワクチン処置群における4倍MNレスポンダーの頻度は、プラセボ群とは有意に異なっており、ワクチン処置群では11人の対象が反応したのに対してプラセボ群では0人だった(フィッシャーの直接検定P<0.0000)。
【0217】
40を上回るベースラインMN価(およびHAI価)を有した対象を除いた後、幾何平均力価(GMT)を残りの対象において0日目および28日目に計算した(表10)。ワクチン群のGMTは247(95 CI: 89〜685)に上昇したのに対して、プラセボでは9.6(95 CI: 5〜18)の28日目GMTで上昇はなかった。対象のいずれも高い初回MNまたはHAI価を有していなかったため、これらの計算はワクチン群に対して影響を与えなかった。これらの結果は、インフルエンザに対する中和抗体価が経口免疫化によって生じ、ワクチン処置群における免疫化後GMTは20倍を上回って増加した。
【0218】
HAに対する総抗体反応を測定するために、末梢血中の循環プレプラズマB細胞の数を免疫化後0日目および7日目のASCアッセイによって測定した。結果は、ワクチン処置群において7日目にASCを信頼性をもって測定できたことを示す(
図20D)。バックグラウンドASCは概して0日目には無視できるほど少なかった。ワクチン処置群では、それぞれ1×10
6 PBMCあたり平均992(+/- std err 209、95 CI: 532〜1452)IgG ASCおよび337 IgA ASC(+/- std err 104、95 CI: 11〜580)が7日目に認められ、12人のうち1人の対象のみが検出可能なASC反応を有さなかった。プラセボ群は7日目にIgAスポットを有さなかったが、1人の対象は、高いバックグラウンドスメア、および通常観察されるものより小さなスポットによる測定可能なIgG ASC反応を有した。処置群は、7日でIgGまたはIgA ASC反応を誘発する能力に関してプラセボと有意に異なっていた(T検定でそれぞれP=0.0007およびP=0.008)。
【0219】
対象を免疫化前および免疫化後の抗ベクター力価について測定した。経口免疫化後、ワクチンで処置された数人の対象は、プラセボ処置群の1.0倍のGM上昇倍数と比較して、GM中和抗体価の2.6倍増加をもたらす、Ad5に対する中和抗体反応の増加を有した。ワクチン群では、HAIおよびMN反応は個々の対象で類似の傾向を示した。8人の対象は免疫化前にAd5陰性であり、4人は免疫化前にAd5陽性であった。Ad5陽性であった1人の対象はHAI抗体陽転しなかったが、Ad5陽性であった1人の対象は、本試験におけるあらゆる対象のうち最も高いHAI価の増加(64倍)を有した(
図21B)。この同じ対象は、免疫化前および免疫化後にAd5中和抗体価の何らかの増加なしに362倍のMN価の増加を有した(
図21A)。錠剤ワクチンにより免疫化された対象について開始時Ad5力価とMN反応(またはHAI反応)倍数との間に相関関係は観察されなかった(
図21Aおよび21B)。
【0220】
考察
米軍が、軍人における中和抗体反応に対する季節性ワクチン活動の効果を測定する独自の試験を実行したとき、開始までに40を上回るMN価を有した対象を考慮した後、三価不活性化ワクチン(TIV)注射後に5.6のMN価GMFR、および弱毒化生インフルエンザワクチン(LAIV)鼻腔内投与後に2.2のGMFRが報告された(Faix et al. PloS one 2012; 7(4): e34581)。この試験では、MN GMFRは、12人のワクチンで処置された対象について29で計算され(Table 10)、92%の対象はMN価の4倍を上回る上昇を示した。Gordon, et alによる試験では、H1N1に対するSC比率は、45 μgのHAタンパク質の1回の注射(アジュバントなし)に対して45%であると認められた(Gordon et al. Vaccine 2012; 30(36): 5407-16)。これは、H1N1ワクチンが高い免疫原性を示しかつ78%SC比率が1回用量のスプリットワクチン後に観察された、Greenberg, et al(上記)によって発表された結果とは対照をなす。発明者らの錠剤試験では、ワクチンで処置した対象のHAI SC比率は75%であり、92%を越える対象がHAI価の4倍上昇を有した(
図20A)。発明者らのMN価がHAI価よりはるかに高い理由は明らかではない。MNアッセイは単により感受性が高いか、またはrAdベースの経口ワクチンはタンパク質注射型ワクチンより頭部領域の外側でより強い中和反応を誘発する可能性がある。いずれの場合にも、発明者らの初期段階の結果は、経口錠剤ワクチンが、インフルエンザに対する中和抗体反応を誘発することに関して既存のワクチンと競合し得ることを示唆する。
【0221】
インフルエンザH1N1に対する既存免疫を有する個体を試験参加者から除いた。これは、この第1相試験における免疫反応の解析においてワクチンの効果のより良く理解する助けになる。実際には、「現実世界」では、インフルエンザに対する既存免疫の有無にかかわらず個体は免疫接種される。第2相および第3相試験での登録には、ベースライン時にワクチン抗原に対する検出可能な抗体レベルを有する個体と有さない個体が含まれる。
【0222】
HAI反応は注射型の市販のワクチンによって誘発されるが、HAI価は減弱することが知られている。Crum-Cianflone, et alによる試験では、非HIV感染志願者は、免疫化後1〜6ヶ月の間にGMT HAI価が67%下落した(Crum-Cianflone et al. Vaccine 2011; 29(17): 3183-91)。同様に、抗体保有対象のパーセンテージも、血清反応陰性のHAI価(≦1:10)10で登録したHIV陰性対象で75%から56%に下落した。汎流行性インフルエンザワクチンによる試験もまた、持続性の低下を示している。Leroux-Roels, et alによるAS03鳥インフルエンザワクチン試験では、GMTは2回のワクチン投与後に563に到達したが、免疫化後6ヶ月で、GMTは18に下落し、96%減少した(Leroux-Roels et al. Vaccine 2010; 28(3): 849-57)。血清反応陰性の対象(全対象が≦1:20)を登録した発明者らの錠剤ワクチン試験では、抗体保有対象のパーセンテージは免疫化後1ヶ月および6ヶ月で75%で一定であり、HAI GMT力価の下落はあまり劇的ではなく、29%の減少のみを示した(
図20B)。証明されていないが、1つの可能性は、T細胞反応の増強のために、持続性がベクターベースのワクチンにとってより良いものになっているというものである。これらの予備的データは、少なくとも錠剤ワクチンが抗体持続性をもたらしうるという自信を与える。
【0223】
報告された臨床有害事象の数は、本発明の他のアデノウイルスベクターによるワクチンで以前に報告されたものと同様であった。この試験では、17件の臨床有害事象が免疫化後28日目までに報告され、プラセボ群と処置群との間で合理的に均等に分配される。ヒトに注射された組換えアデノウイルスEBOVワクチンの発表された試験では、任意の有害事象の頻度はワクチンレシピエントの間で55%であり、かつプラセボレシピエントの間で25%であり、最もよく報告された有害事象は、高用量ワクチン群において頭痛(55%)、筋肉痛(46%)、および悪寒(27%)であった(Ledgerwood et al. Vaccine 2010; 29(2): 304-13)。発明者らのワクチン錠試験で最も頻度が高く報告された有害事象は頭痛であった(1人のワクチン対象および2人のプラセボ対象で報告された)。
【0224】
Ad5免疫は注射型ワクチンで問題となる可能性があるが、中和抗体価が能力を邪魔するように思われない非複製性ベクターによる経口免疫接種には当てはまらない可能性がある(Xiang et al. Journal of virology 2003; 77(20): 10780-9)。インフルエンザに対する中和免疫反応を誘発する能力は、ワクチン錠剤による経口免疫化後に影響されるように見えなかった(
図21)。開始まで最も高い抗Ad5力価を有する対象の1人は、MNおよびHAIアッセイよって最も高い測定した中和抗体反応の増加を有した(
図21)。i.m.免疫化は100%Ad5抗体陽転および50倍を上回るGMT上昇をもたらすことができる(O'Brien et al. Nat Med 2009; 15(8): 873-5の
図2bから推定)のに対して、1×10
11 IU錠剤による中和力価の増大ははるかに少なめであった。経口免疫化は、ベクターと比較して導入遺伝子に対する免疫反応のはるかに選択的な増加をもたらすように見え、2.6のAd5力価の増加と比較して29のGMT MN価の上昇をもたらした。ヒトにおける非複製性Ad5ベースのワクチンによる結果とは対照的に、複製性ベクターの経口投与は、ベクターに対する抗体反応が導入遺伝子に対する抗体反応をはるかに上回る反対の傾向を示す。例として、経口複製性Ad4-HA試験では、対象の80%が初回免疫接種時にAd4に対して抗体陽転したが、3回の免疫接種後にHAに対する有意な中和抗体反応は有さなかった(ワクチン群で最大で19% SC) (Gurwith et al. The Lancet infectious diseases 2013; 13(3): 238-50)。
【0225】
経口製剤は、特に、迅速な配布が必要とされる大流行時に、ワクチン投与を著しく促進することができる。2009 H1N1大流行時に、ワクチンが不足したとき、カリフォルニア州の個々の群保険局は配布のための計画を立てる必要があった。ロサンゼルス郡では、およそ60の配布地点(POD)にワクチンを投与する仕事を課した。1時間あたりおよそ247名の人が整列し、免疫接種の速度は各PODで1時間あたりおよそ239人であった(Saha et al. Emerging infectious diseases 2014; 20(4): 590-5)。ロサンゼルス郡でのPODに関して、これは言い換えると1日あたり143,000人の人々になった。9百万人の都市において、供給品または有資格者が不足した場合、免疫接種活動を完了するのに60日を越える日数がかかる。代替として、H1N1汎流行性ワクチンが米国郵便によって送達され、錠剤によって自己投与される場合、9百万人の対象全員が、人々が列に並ぶ必要および高まる大流行への曝露の危険性なく一日以内に免疫接種することができる。克服すべき規制上のハードルは存在するものの、発明者らの錠剤ワクチンは270日間を越えて室温にて安定であるように見え、より高温での短期間逸脱を容認することができ(G. Trager、未発表のデータ)、これはこのアプローチを技術的に実現可能にするはずである。
【0226】
要約すると、rAdに基づく経口インフルエンザワクチンの投与は、90%を上回る対象においてインフルエンザに対する抗体反応を誘発できる。これは初期の臨床段階の試験であり、相互作用および季節毎の反復使用などの問題に対処する複数の試験を完了させる必要があるが、これらの結果は、安全性および免疫原性について自信を与えるものであるように見える。
【0227】
本明細書に記載の実施例および態様は単に例示を目的としたものであり、それらに照らし種々の変更または変形が当業者に提示され、また、本出願の精神および範囲ならびに添付の特許請求の範囲の範囲内に含まれるべきであることが理解される。本明細書で引用した全ての刊行物、特許、特許出願、ウェブサイト、およびデータベースアクセッションエントリは、あらゆる目的のために参照によりその全体が本明細書に組み入れられる。
【0228】
参考文献