【解決手段】複数の気筒を有しかつ機関出力軸Acを車両前後方向に沿って配置させてなるエンジンEの吸気通路構造において、エンジンEは、車両後方に向かって機関出力軸Acを下降傾斜させた状態で自動車100に搭載される。吸気通路構造が適用された吸気装置2は、エンジンEのシリンダヘッド1bに形成された吸気ポート11の入口部11aに取り付けられるサージタンク8を備え、サージタンク8の内周面のうちの天井面81aは、機関出力軸Acに沿って下降傾斜し、天井面81aには、エンジンEの吸排気方向に沿って延びかつサージタンク8の内周面のうちの底面82aに向かって突出する第1突出部84が形成される。
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、本願発明者らは、車両前後方向に沿って機関出力軸を配置させてなる車載エンジン(所謂「縦置きエンジン」)の開発に際し、プロペラシャフトのレイアウト等の事情から、車両前後方向に対して機関出力軸を平行に延ばすのではなく、車両前後方向のいずれか一方(車両後方または車両前方)に向かって機関出力軸を下降傾斜させるという着想に至った。
【0006】
ここで、機関出力軸を下降傾斜させた場合、気筒列方向も下降傾斜することになる。この場合、前記特許文献1及び2等に記載されたサージタンクの天井面もまた、機関出力軸、ひいては気筒列方向に沿って下降傾斜することになる。
【0007】
本願発明者らが、天井面を下降傾斜させたサージタンクについて懸念点を洗い出したところ、冬季、寒冷地等、低温環境下に特有の課題が新たに見出された。具体的に、例えば駐車中に空気中の水分が氷結することで、サージタンクの天井面から延びるように氷柱が形成されるケースが想定される。この場合、エンジンの始動後に氷柱は融解されるものの、その融解によって生じた水は、前述したように下降傾斜させた天井面を伝って流れてしまい、最下方に位置する吸気ポートを通じて、特定の気筒に偏って吸い込まれる可能性がある。特定の気筒への水の吸入は、ウォーターハンマー等、好ましくない事象を招き得る。
【0008】
ここに開示する技術は、かかる点に鑑みてなされたものであり、その目的とするところは、機関出力軸に対してサージタンクの天井面を傾斜させた場合に、氷柱の溶融によって生じた水を、各気筒に偏りなく吸い込ませることにある。
【課題を解決するための手段】
【0009】
本開示の第1の態様は、複数の気筒を有しかつ機関出力軸を車両前後方向に沿って配置させてなる車載エンジンの吸気通路構造に係る。
【0010】
本開示の第1の態様によれば、前記車載エンジンは、前記車両前後方向のいずれか一方に向かって前記機関出力軸を下降傾斜させた状態で車両に搭載され、前記車載エンジンのシリンダヘッドに形成された吸気ポートの入口部に取り付けられるサージタンクを備え、前記サージタンクの内周面のうちの天井面は、前記機関出力軸に沿って下降傾斜し、前記天井面には、前記車載エンジンの吸排気方向に沿って延びかつ前記サージタンクの内周面のうちの底面に向かって突出する第1突出部が形成される。
【0011】
ここで、「車両エンジンの吸排気方向に沿って延びる」の語は、吸排気方向と平行に延びることに加え、吸排気方向に対して若干傾斜しつつ延びることも含む。好ましくは、第1突出部の延び方向と吸排気方向とがなす角度は、該延び方向と機関出力軸とがなす角度に比して小さい。
【0012】
前記第1の態様によれば、サージタンクの天井面に第1突出部を設けるとともに、その第1突出部を吸排気方向に沿って延ばすことで、機関出力軸方向(=気筒列方向)に沿って天井面を伝う水の流れを遮ることができる。水の流れを遮ることで、特定の気筒(具体的には、最下方に位置する気筒)への水の吸入を抑制することができる。こうして、氷柱の溶融によって生じた水を、各気筒に偏りなく吸い込ませることが可能になる。
【0013】
また、本開示の第2の態様によれば、前記天井面は、前記吸気ポートの入口部における内周面の上面に比して、車高方向においてより高い位置に配置される、としてもよい。
【0014】
前記第2の態様によれば、サージタンクの天井面と吸気ポートの上面との高低差を利用することで、第1突出部によって遮られた水の流れを、その第1突出部付近の気筒へとスムースに導くことができる。これにより、各気筒へのスムースな吸入と、特定の気筒への吸入の抑制と、を両立することが可能になる。
【0015】
また、本開示の第3の態様によれば、前記第1突出部の突出量は、前記吸排気方向に沿って前記吸気ポートの入口部に近接するに従って大きくなる、としてもよい。
【0016】
水の流れをより確実に遮るためには、第1突出部の突出量を可能な限り大きくすることが望まれる。一方、第1突出部の突出量を過度に大きくしてしまっては、サージタンク内での吸気の流通に支障を来し、サージタンク本来の機能である吸気の分配性能が損なわれてしまう虞がある。
【0017】
そこで、前記第3の態様のように、吸気ポートの入口部からの距離に応じて第1突出部の突出量を異ならせることで、第1突出部による水の遮断性能と、吸気の分配性能と、を両立することが可能になる。
【0018】
また、本開示の第4の態様によれば、機関出力軸方向における前記第1突出部の寸法は、前記吸排気方向に沿って前記吸気ポートの入口部に近接するに従って長くなる、としてもよい。
【0019】
水の流れをより確実に遮るためには、機関出力軸方向における第1突出部の寸法を可能な限り長くすることが望まれる。一方、第1突出部の寸法を過度に長くしてしまっては、サージタンクの容積が小さくなり、サージタンク本来の機能である吸気の分配性能が損なわれてしまう虞がある。
【0020】
そこで、前記第4の態様のように、吸気ポートの入口部からの距離に応じて第1突出部の寸法を異ならせることで、第1突出部による水の遮断性能と、吸気の分配性能と、を両立することが可能になる。
【0021】
また、本開示の第5の態様によれば、前記底面には、前記吸排気方向に沿って延びかつ前記天井面に向かって突出する第2突出部が形成される、としてもよい。
【0022】
前記第5の態様によれば、第1突出部によって遮られた水がサージタンクの底面に落下した場合に、その底面を伝う水の流れを第2突出部によって遮ることができる。これにより、特定の気筒への水の吸入を抑制することができる。
【0023】
また、本開示の第6の態様によれば、機関出力軸方向における前記底面の中央部には、前記サージタンク内に空気を導入する導入口が設けられ、前記底面は、前記導入口に向かって下降傾斜し、前記第2突出部は、前記導入口に向かって延びる、としてもよい。
【0024】
前記第6の態様によれば、第2突出部に沿って水を流し、その水を導入口まで導くことができる。そのことで、導入口から水を排出することができるようになる。
【0025】
また、本開示の第7の態様によれば、前記サージタンクは、前記吸気ポートの入口部にそれぞれ接続される複数の分岐管を有し、前記複数の分岐管は、前記機関出力軸に沿って下降傾斜するように配列され、前記第1突出部は、機関出力軸方向において、前記複数の分岐管の間のスペースに配置される、としてもよい。
【0026】
前記第7の態様によれば、複数の分岐管の間のスペースに第1突出部を配置することで、各分岐管を通じた吸気の流通に干渉することなく、第1突出部による水の遮断を実現することができるようになる。
【0027】
また、本開示の第8の態様によれば、前記第1突出部のうちの少なくとも一部は、前記複数の分岐管のうち車両前方に位置する分岐管に近接するようにオフセットして配置される、としてもよい。
【0028】
前記第8の態様によれば、天井面を伝う水の流れを、より早いタイミングで確実に遮ることができるようになる。
【発明の効果】
【0029】
以上説明したように、本開示によれば、機関出力軸に対してサージタンクの天井面を傾斜させた場合に、氷柱の溶融によって生じた水を、各気筒に偏りなく吸い込ませることができる。
【発明を実施するための形態】
【0031】
以下、本開示の実施形態を図面に基づいて説明する。なお、以下の説明は例示である。
【0032】
図1は、車載エンジンとしてのエンジンEの構成を例示する側面図である。また、
図2は、エンジンEの構成を例示する正面図であり、
図3は、エンジンEの構成を例示する斜視図であり、
図4は、エンジンEの構造を例示する断面図である。また、
図8は、エンジンEが搭載された車両としての自動車100の構成を例示する図である。
【0033】
なお、以下の説明において、「前方」とは車両前後方向における車両前方(具体的には、自動車100の推進方向)を指し、「後方」とは車両前後方向における車両後方(具体的には、自動車100の逆走方向)を指す。
【0034】
同様に、「上方」とは車高方向における車両上方を指し、「下方」とは車高方向における車両下方を指す。また、「内方」とは吸排気方向に沿ってエンジンEに向かう方向を指し、「外方」とは吸排気方向に沿ってエンジンEから離間する方向を指す。
【0035】
<自動車の全体構成>
図8に示すように、本実施形態に係る自動車100は、車両前方にエンジンEを搭載してなる後輪駆動式の4輪車、いわゆるフロントエンジン・リアドライブ式の4輪車(FR車)として構成されている。具体的に、
図8に示す自動車100は、車体101と、一対の前輪102Fと、一対の後輪102Rと、車体101の前部に搭載されるエンジンEと、エンジンEの後方に連結されるトランスミッション103と、トランスミッション103と後輪102Rを連結するプロペラシャフト104と、を備える。
【0036】
エンジンEは、多気筒式の縦置きエンジンとして構成される。具体的に、エンジンEは、複数の気筒(
図5〜
図6等に示唆されるように、本実施形態では6つの気筒)を有する。複数の気筒の並び方向(気筒列方向)は、機関出力軸Acの延び方向(機関出力軸方向)に一致する。縦置き式とされたエンジンEは、その機関出力軸Acを車両前後方向に沿って配置させてなる。この機関出力軸Acは、プロペラシャフト104と平行に配置される。
【0037】
トランスミッション103は、エンジンEの後方に連結させてなる。このトランスミッション103は、機関出力軸Acの回転数を変速し、それをプロペラシャフト104に伝達する。
【0038】
プロペラシャフト104は、車両前後方向に沿って配置される。具体的に、プロペラシャフト104は、車両前後方向に対し厳密に平行ではなく、その車両前後方向に対して下降傾斜する。特に、本実施形態に係るプロペラシャフト104は、車両後方に向かって下降傾斜しながら延びる。
【0039】
プロペラシャフト104の下降傾斜に伴って、エンジンEの機関出力軸Acも下降傾斜することになる。具体的に、エンジンEは、車両前後方向のいずれか一方に向かって機関出力軸Acを下降傾斜させた状態で自動車100に搭載される。特に、本実施形態に係る機関出力軸Acは、
図1に示すように、車両後方に向かって下降傾斜しながら延びる(
図1の傾斜角θcを参照)。
【0040】
<エンジンの概略構成>
図1〜
図3に示すように、エンジンEは、複数の気筒を有するエンジン本体1と、エンジン本体1に吸気を導入する吸気装置2と、を備える。エンジンEの構成要素のうち、後者の吸気装置2には、本開示に係る吸気通路構造が適用されている。
【0041】
エンジン本体1は、シリンダブロック1a、シリンダヘッド1b等を互いに締結してなる。エンジン本体1は、車両前後方向に対して下降傾斜させた機関出力軸Acと、その機関出力軸Acに沿って並んだ複数の気筒と、を備える。
【0042】
ここで、エンジンEのシリンダヘッド1bには、
図2に示すように、各気筒に通じる吸気ポート11が形成される(
図4も参照)。各吸気ポート11の上流端部としての入口部11aは、エンジン本体1の吸気側壁面に開口する。なお、ここでいう「吸気側壁面」とは、車幅方向におけるエンジン本体1の一壁面(本実施形態ではエンジン本体1の左側面)に相当する。
【0043】
図1〜
図3に示すように、吸気装置2は、吸気の流れ方向上流側から順に、不図示のエアクリーナと、スロットルバルブ3と、第1吸気管4と、インタークーラ5と、第2吸気管6と、ネック管7と、サージタンク8と、を備える。吸気装置2はさらに、EGRガスを還流するためのEGRガス導入管9を備える。
【0044】
スロットルバルブ3は、サージタンク8の後端部の上方に配置される。スロットルバルブ3は、矢印F1に示すように、斜め下後方に向かって吸気を流通させるとともに、その吸気の流量を調整することができる。スロットルバルブ3には、第1吸気管4が接続される。
【0045】
第1吸気管4は、サージタンク8の後方に配置される。第1吸気管4は、略上下方向に沿って延びる管状に形成される。第1吸気管4は、矢印F2に示すように、略下方に向かって吸気を流通させる。第1吸気管4の下端部には、インタークーラ5が接続される。
【0046】
インタークーラ5は、サージタンク8の右半部の下方かつ、ネック管7の内方に配置される。インタークーラ5は、矢印F3に示すように、車両後方から前方に向かって吸気を流通させるとともに、その吸気を冷却することができる。インタークーラ5の前端部には、第2吸気管6が接続される。
【0047】
第2吸気管6は、例えば
図2に示すように、サージタンク8に対し、インタークーラ5よりもさらに下方に配置される。第2吸気管6は、略吸排気方向に沿って延びる管状に形成される。第2吸気管6は、インタークーラ5を通過した吸気を略外方に向かって流通させる。第2吸気管6における外方側の端部には、ネック管7が接続される。また、第2吸気管6の下部には、ネック管7を逆流して第2吸気管6に流入した水を貯留するためのプール部6aが設けられる。
【0048】
ネック管7は、サージタンク8、特に、前後方向におけるサージタンク8の中央部の下方に配置される。ネック管7は、上下方向に沿って延びる管状に形成される。ネック管7は、矢印F4に示すように、第2吸気管6を通過した吸気を上方に向かって流通させる。ネック管7の上端部には、サージタンク8が接続される。また、上下方向におけるネック管7の中途部には、EGRガス導入管9が接続される。
【0049】
EGRガス導入管9は、サージタンク8の上方から外方にかけて配置され、ネック管7に対し、後方かつ外方に配置される。EGRガス導入管9は、略上下方向に沿って延びる管状に形成される。EGRガス導入管9は、矢印F6に示すように、気筒内での燃焼に伴い発生した排気ガスの少なくとも一部を還流し、これをEGRガスとしてネック管7に導入する。
【0050】
サージタンク8は、吸気ポート11の入口部11aに取り付けられる。このサージタンク8は、該サージタンク8の一部である分岐管83を挟んで入口部11aと向かい合い、この分岐管83を介して入口部11aに接続される。すなわち、本実施形態に係るサージタンク8は、第1吸気管4及びネック管7のような別体の管状部材を介することなく、サージタンク8と一体的な分岐管83を介して入口部11aに直結される。サージタンク8は、矢印F5に示すように、ネック管7を通過した吸気を一時的に貯留するとともに、その吸気を各気筒に分配する。
【0051】
サージタンク8の内周面は、気筒列方向に沿って延びる貯留空間Sを区画する。この気筒列方向は、前述のように、機関出力軸Acに沿って延びる方向(機関出力軸方向)と一致する。一方、機関出力軸Acは、車両前後方向に対して下降傾斜するようになっている。そのため、気筒列方向に沿って延びる貯留空間Sもまた、車両前後方向に対して下降傾斜することになる。
【0052】
詳しくは、サージタンク8の内周面のうちの天井面81aは、
図1の2点鎖線Asに示すように、機関出力軸Acと平行に延びる(天井面81aについては、
図4〜
図5等も参照されたい)。さらに詳しくは、サージタンク8の内周面のうちの天井面81aは、車両後方に向かって下降傾斜するようになっている。
【0053】
本実施形態に係るサージタンク8は、その天井面81aを下降傾斜させたことに伴い見出された課題を解決するために、種々の工夫を凝らした構成とされている。以下、サージタンク8の構成について詳細に説明する。
【0054】
<サージタンクの詳細構造>
図5は、サージタンク8の上半部の構造を例示する図である。
図6は、サージタンク8の下半部の構造を例示する図である。
図7は、サージタンク8を伝う水の流れを説明するための図である。
【0055】
図2〜
図4に戻ると、本実施形態に係るサージタンク8は、サージタンク8の上半部をなす第1タンク部81と、サージタンク8の下半部をなす第2タンク部82と、によって構成される。
【0056】
サージタンク8の貯留空間Sは、第1タンク部81及び第2タンク部82の内周面によって区画される。この貯留空間Sは、車高方向において、吸気ポート11の入口部11aよりも高い位置に配置される。
【0057】
サージタンク8はまた、吸気ポート11の入口部11aにそれぞれ接続される複数の分岐管83を有する。複数の分岐管83は、気筒列方向に沿って並ぶように配置される。換言すれば、それら複数の分岐管83は、サージタンク8の天井面81aと同様に、機関出力軸Acに沿って下降傾斜するように配列される。
【0058】
図4に示すように、各分岐管83は、貯留空間Sから入口部11aに向かって下降傾斜しつつ延びる。具体的に、各分岐管83は、吸排気方向において外方から内方に向かうに従って、車高方向における下方に向かって略ストレートに延びる。
【0059】
図5〜
図6に示すように、第1タンク部81及び第2タンク部82は、双方とも、吸排気方向に比して、車両前後方向及び気筒列方向の寸法が長く構成される。第1タンク部81及び第2タンク部82において、吸排気方向の内方に位置しかつ気筒列方向に沿って延びる長辺部には、複数の分岐管83が一体的に設けられる。
【0060】
サージタンク8の内周面のうち、前述のように下降傾斜させてなる天井面81aは、第1タンク部81の内周面によって構成される。
図4の2点鎖線Hcに示すように、この天井面81aは、吸気ポート11の入口部11aにおける内周面の上面に比して、車高方向においてより高い位置に配置される。
【0061】
一方、サージタンク8の内周面のうちの底面82aは、第2タンク部82の内周面によって構成される。
図4に示すように、この底面82aは、天井面81aに対して間隔を空けて向かい合う。
【0062】
また、
図6に示すように、機関出力軸方向(気筒列方向)における底面82aの中央部には、サージタンク8内に空気を導入する導入口82bが設けられる。この導入口82bは、底面82aのうち、吸排気方向の外方に位置する部位に設けられる。導入口82bには、ネック管7の下流端部が接続される。ネック管7を通過した吸気は、導入口82bを介して貯留空間Sに流入する。また、機関出力軸Acに垂直な断面(
図4に示す断面)で見たとき、サージタンク8の底面82aは、導入口82bに向かって下降傾斜するようになっている。
【0063】
ここで、
図4〜
図5に示すように、サージタンク8の内周面のうちの天井面81aには、エンジンEの吸排気方向に沿って延びかつサージタンク8の内周面のうちの底面82aに向かって突出する第1突出部84が形成される。
【0064】
詳しくは、第1突出部84は、機関出力軸方向(気筒列方向)において、複数の分岐管83の間のスペースに配置される。
図5に示す例では、第1突出部84は、気筒列方向の前側から数えて2番目の分岐管83と3番目の分岐管83の間のスペースと、4番目の分岐管83と5番目の分岐管83の間のスペースと、に1つずつ配置されている。
【0065】
また、本実施形態に係る第1突出部84は、吸排気方向において吸気ポート11の入口部11aに近接して配置された内側突出部84aと、この内側突出部84aに比して相対的に離間して配置された外側突出部84bと、を有する。
【0066】
本実施形態では、内側突出部84aは、第1タンク部81の外面を下方に向かって凹ませてなる。一方、外側突出部84bは、天井面81aに設けたリブ状の突起部によって構成される。
図5に示すように、内側突出部84aと外側突出部84bとは、吸排気方向において一体的に繋がっている。
【0067】
また、
図4の両矢印L1、L2及びL3に示すように、第1突出部84の突出量は、吸排気方向に沿って吸気ポート11の入口部11aに近接するに従って大きくなる。
【0068】
詳しくは、本実施形態では、第1突出部84における内側突出部84aの突出量L1〜L3は、吸排気方向の外方から内方に向かうに従って、徐々に大きくなる。さらに詳しくは、内側突出部84aの下縁部Luは、
図4に示すように、吸排気方向に対して傾斜しつつ、略直線状に延びる。この下縁部Luは、吸排気方向の外側では、天井面81aと略同じ高さに位置する一方、吸排気方向の内側では、分岐管83の上流端部83aの底面と略同じ高さに位置する。内側突出部84aの下縁部Luは、分岐管83と実質的に平行に延びる。
【0069】
また、
図5に示すように、機関出力軸方向(気筒列方向)における第1突出部84の寸法は、吸排気方向に沿って吸気ポート11の入口部11aに近接するに従って長くなる。
【0070】
詳しくは、本実施形態では、
図5に示すように車高方向に沿って見たときに、機関出力軸方向における内側突出部84aの寸法は、同方向における外側突出部84bの寸法に比して大きくなる。換言すれば、機関出力軸方向において、内側突出部84aは、外側突出部84bよりも幅厚に形成される。
【0071】
また、
図5に示すように、第1突出部84のうちの少なくとも一部は、複数の分岐管83のうち車両前方に位置する分岐管83に近接するようにオフセットして配置される。
【0072】
詳しくは、本実施形態では、第1突出部84のうちの内側突出部84aは、隣合う分岐管83の中間に配置される。一方、第1突出部84のうちの外側突出部84bは、
図5に示すように、隣合う分岐管83のうち、車両前方に位置する分岐管83に近接して配置される。
【0073】
一方、
図4及び
図6に示すように、サージタンク8の内周面のうちの底面82aには、エンジンEの吸排気方向に沿って延びかつサージタンク8の内周面のうちの天井面81aに向かって突出する第2突出部85が形成される。
【0074】
詳しくは、第2突出部85は、機関出力軸方向(気筒列方向)において、複数の分岐管83の間のスペースに配置される。
図6に示すように車高方向に沿って見たとき、第2突出部85は、導入口82bに向かって傾斜して延びる。
【0075】
図6に示す例では、第2突出部85は、気筒列方向の前側から数えて1番目の分岐管83と2番目の分岐管83の間のスペースと、2番目の分岐管83と3番目の分岐管83の間のスペースと、3番目の分岐管83と4番目の分岐管83の間のスペースと、4番目の分岐管83と5番目の分岐管83の間のスペースと、5番目の分岐管83と6番目の分岐管83の間のスペースと、に1つずつ配置されている。
【0076】
<天井面を伝う水の流れについて>
図7は、サージタンク8を伝う水の流れを説明するための図である。
【0077】
ところで、前述のように機関出力軸Acを下降傾斜させた場合、気筒列方向も下降傾斜することになる。この場合、サージタンク8の天井面81aもまた、
図1の2点鎖線Hcに示したように、機関出力軸Ac、ひいては気筒列方向に沿って下降傾斜させることになる。
【0078】
本願発明者らが、その天井面81aを下降傾斜させたサージタンク8について懸念点を洗い出したところ、冬季、寒冷地等、低温環境下に特有の課題が新たに見出された。具体的に、例えば駐車中に空気中の水分が氷結することで、サージタンク8内に氷柱が形成される可能性が想定される。この場合、エンジンEの始動後に氷柱は融解されるものの、その融解によって生じた水は、前述したように下降傾斜させた天井面81aを伝って流れてしまい、最下方に位置する吸気ポート11を通じて、特定の気筒に偏って吸い込まれる可能性がある。特定の気筒への水の吸入は、ウォーターハンマー等、好ましくない事象を招き得る。
【0079】
それに対し、本実施形態によれば、
図4に示したように、サージタンク8の天井面81aに第1突出部84を設けるとともに、その第1突出部84を吸排気方向に沿って延ばすことで、機関出力軸方向(=気筒列方向)に沿って天井面81aを伝う水の流れを遮ることができる(
図7の矢印A1を参照)。水の流れを遮ることで、特定の気筒(具体的には、最下方に位置する気筒)への水の吸入を抑制することができる。こうして、氷柱の溶融によって生じた水を、各気筒に偏りなく吸い込ませることが可能になる。
【0080】
また、
図4に示したように、吸気ポート11の入口部11aにおける内周面の上面に比して、天井面81aより高い位置に配置することで、サージタンク8の天井面81aと吸気ポート11の上面との高低差を利用することができるようになる。これにより、第1突出部84によって遮られた水の流れを、その第1突出部84付近の気筒へとスムースに導くことができる。これにより、各気筒へのスムースな吸入と、特定の気筒への吸入の抑制と、を両立することが可能になる。
【0081】
ところで、水の流れをより確実に遮るためには、第1突出部84の突出量を可能な限り大きくすることが望まれる。一方、第1突出部84の突出量を過度に大きくしてしまっては、サージタンク8内での吸気の流通に支障を来し、サージタンク8本来の機能である吸気の分配性能が損なわれてしまう虞がある。
【0082】
そこで、
図4の両矢印L1〜L3に示したように、吸気ポート11の入口部11aからの距離に応じて第1突出部84の突出量を異ならせることで、第1突出部84による水の遮断性能と、吸気の分配性能と、を両立することが可能になる。
【0083】
また、水の流れをさらに確実に遮るためには、機関出力軸方向における第1突出部84の寸法を可能な限り長くすることが望まれる。一方、第1突出部84の寸法を過度に長くしてしまっては、サージタンク8の容積が小さくなり、サージタンク8本来の機能である吸気の分配性能が損なわれてしまう虞がある。
【0084】
そこで、
図5に示したように、吸気ポート11の入口部11aからの距離に応じて第1突出部84の寸法を異ならせる(具体的には、外側突出部84bと内側突出部84aとで機関出力軸方向の寸法を異ならせる)ことで、第1突出部84による水の遮断性能と、吸気の分配性能と、を両立することが可能になる。
【0085】
また、
図4に示したように、サージタンク8の底面82aに第2突出部85を設けるとともに、その第2突出部85を吸排気方向に沿って延ばすことで、第1突出部84によって遮られた水がサージタンク8の底面82aに落下した場合に、その底面82aを伝う水の流れを第2突出部85によって遮ることができる(
図7の矢印A2を参照)。これにより、特定の気筒への水の吸入を抑制することができる。
【0086】
また、
図6に示したように、導入口82bに向かって第2突出部85を延ばすことで、第2突出部85に沿って水を流し、その水を導入口82bまで導くことができる。そのことで、導入口82bから水を排出することができるようになる。
【0087】
詳しくは、
図7の矢印A1〜A2に例示するように、第1突出部84によって遮られた水は、第2突出部85に沿って流れ、導入口82bに至る。導入口82bに至った水は、ネック管7を逆流し、第2吸気管6のプール部6aに蓄えられる。
【0088】
また、
図5に示したように、複数の分岐管83の間のスペースに第1突出部84を配置することで、各分岐管83を通じた吸気の流通に干渉することなく、第1突出部84による水の遮断を実現することができるようになる。
【0089】
《他の実施形態》
前記実施形態では、車両前後方向のうちの車両後方に向かって、機関出力軸Acひいてはサージタンク8の天井面81aを下降傾斜させるように構成されていたが、本開示は、その構成には限定されない。例えば、自動車100のボンネットラインに沿わせるように、車両前後方向のうちの車両前方に向かって、機関出力軸Acひいてはサージタンク8の天井面81aを下降傾斜させてもよい。
【0090】
また、前記実施形態では、吸排気方向に沿って第1突出部84を延ばした構成の一例として、
図6に示すように、吸排気方向に対して第1突出部84を平行に延ばした構成が開示されていたが、本開示は、その構成には限定されない。
【0091】
吸排気方向に沿って第1突出部84を延ばした構成の別例として、例えば、吸排気方向に対して第1突出部84を若干傾斜させつつ延ばした構成としてもよい。この構成を用いる場合、第1突出部84の延び方向と吸排気方向とがなす角度は、好ましくは、該延び方向と車両前後方向とがなす角度に比して小さくなるように設定される。