【解決手段】システムは、2つの異なる生成された周波数を有する生成された信号を、体内電極を含む回路に通すように構成された信号発生器を含む。システムは、生成された信号が回路を通る間に、回路上の生成された周波数から導出される導出された周波数を識別し、導出された周波数を識別することに応答して電極内の欠陥を示す出力を生成するように構成されたプロセッサを更に含む。他の実施形態も、記載されている。
前記キットが、通信インターフェースを更に備え、前記プロセッサが、前記通信インターフェースを介して前記キットから受信した出力信号を処理することによって、前記導出された周波数を識別するように構成されている、請求項8に記載のシステム。
前記電極が、前記プローブに属する複数の電極のうちの1つであり、前記キットが、前記電極を前記信号発生器に選択的に接続するように構成されたマルチプレクサを更に備える、請求項8に記載のシステム。
前記信号発生器がキットに属し、前記生成された信号を前記回路に通すことが、前記キットが前記プローブに接続されている間に、前記生成された信号を前記回路に通すことを含む、請求項17に記載の方法。
前記導出された周波数を識別することが、前記キットから受信された出力信号を処理することによって、前記導出された周波数を識別することを含む、請求項18に記載の方法。
前記電極が、前記プローブに属する複数の電極のうちの1つであり、前記キットが、前記電極を前記信号発生器に選択的に接続するように構成されたマルチプレクサを更に含む、請求項18に記載の方法。
【発明の概要】
【課題を解決するための手段】
【0004】
本発明のいくつかの実施形態によれば、2つの異なる生成された周波数を有する生成された信号を、双方向半導体デバイスを含む回路に通すように構成された信号発生器を含むシステムが提供される。システムは、生成された信号が回路を通る間に、回路上で生成された周波数から導出される導出された周波数を識別するように構成されたプロセッサを更に含む。プロセッサは、導出された周波数を識別することに応答して、双方向半導体デバイスの特性が非対称であることを示す出力を生成するように更に構成されている。
【0005】
いくつかの実施形態では、プロセッサは、回路に属する電気生理学的チャネルを介して導出された周波数を識別するように構成されている。
【0006】
いくつかの実施形態では、導出された周波数は、電気生理学的チャネルにわたって搬送される電気生理学的信号の帯域幅内にある。
【0007】
いくつかの実施形態では、生成された周波数の各々は、帯域幅の外側にある。
【0008】
いくつかの実施形態では、特性は、インピーダンスを含む。
【0009】
いくつかの実施形態では、導出された周波数は、生成された周波数間の差である。
【0010】
いくつかの実施形態では、プロセッサは、導出された周波数を検出することに応答して、回路に接続された電源を無効化するように更に構成されている。
【0011】
いくつかの実施形態では、電源は、心除細動器、心ペーサー、及びアブレーション発生器からなる電源群から選択される。
【0012】
いくつかの実施形態では、双方向半導体デバイスは、電圧抑制装置に属する。
【0013】
いくつかの実施形態では、双方向半導体デバイスは、半導体スイッチに属する。
【0014】
本発明のいくつかの実施形態によれば、2つの異なる生成された周波数を有する生成された信号を、双方向半導体デバイスを含む回路に通すことを含む方法が更に提供される。本方法は、2つの生成された信号を回路に通す間に、回路上で生成された周波数から導出される導出された周波数を識別することを更に含む。本方法は、導出された周波数を識別することに応答して、双方向半導体デバイスの特性が非対称であることを示す出力を生成することを更に含む。
【0015】
本発明のいくつかの実施形態によれば、2つの異なる生成された周波数を有する生成された信号を、体内電極を含む回路に通すように構成された信号発生器を含むシステムが更に提供される。システムは、生成された信号が回路を通る間に、回路上で生成された周波数から導出される導出された周波数を識別するように構成されたプロセッサを更に含む。プロセッサは、導出された周波数を識別することに応答して、電極内の欠陥を示す出力を生成するように更に構成されている。
【0016】
いくつかの実施形態では、導出された周波数は、生成された周波数間の差である。
【0017】
いくつかの実施形態では、生成された周波数の各々は、100Hz未満である。
【0018】
いくつかの実施形態では、生成された信号の振幅は、50μA未満である。
【0019】
いくつかの実施形態では、信号発生器は、電極が電解液中に浸漬されている間に、生成された信号を回路に通すように構成されている。
【0020】
いくつかの実施形態では、電解液は、生理食塩水を含む。
【0021】
いくつかの実施形態では、電極は、体内プローブに属する。
【0022】
いくつかの実施形態では、システムは、キットを更に含み、キットは、
信号発生器、及び、
キットをプローブに接続することによって、電極を信号発生器に接続するように構成された電気インターフェース、を含む。
【0023】
いくつかの実施形態では、キットは、通信インターフェースを更に含み、プロセッサは、通信インターフェースを介してキットから受信した出力信号を処理することによって、導出された周波数を識別するように構成されている。
【0024】
いくつかの実施形態では、電極は、プローブに属する複数の電極のうちの1つであり、キットは、電極を信号発生器に選択的に接続するように構成されたマルチプレクサを更に含む。
【0025】
本発明のいくつかの実施形態によれば、2つの異なる生成された周波数を有する生成された信号を、体内電極を含む回路に通すことを含む方法が更に提供される。本方法は、生成された信号を回路に通す間に、回路上で生成された周波数から導出される導出された周波数を識別することを更に含む。本方法は、導出された周波数を検出することに応答して、電極内の欠陥を示す出力を生成することを更に含む。
【発明を実施するための形態】
【0027】
用語集
特許請求の範囲を含む本出願の文脈において、用語「双方向半導体デバイス」は、交流(alternating current、AC)信号の正及び負の部分の両方を伝導するように構成された任意の半導体デバイスを指し得る。双方向半導体デバイスの特性(例えば、インピーダンス)が信号の両方の部分に関して同じである場合、特性(又はデバイス自体)は、「対称」であると言われ、そうでない場合、特性(又はデバイス自体)は、「非対称」であると言われる。
【0028】
概論
多くの場合、回路における双方向半導体デバイスは、デバイスを通る交流(AC)が任意の直流(direct current、DC)電圧を生成しないように、対称な特性を有することが望ましい。対象の身体内に配設された電気生理学的プローブなどの体内プローブに接続された回路に関しては、この対称性は、例えば、双方向半導体デバイスを通るアブレーション高周波(radiofrequency、RF)電流の流れから生成される任意のDC電圧が対象にとって危険である可能性が高いため、特に重要である。したがって、双方向半導体デバイスにおける任意の非対称性の迅速かつ効率的な検出が必要とされている。
【0029】
この必要性に対処するために、本発明の例示的な実施形態は、回路における双方向半導体デバイスの対称性を試験するためのシステムを提供する。システムは、回路に接続され、2つの異なる周波数を有する信号を生成するように構成された信号発生器を備える。双方向半導体デバイスが対称である場合、双方向半導体デバイスは、線形デバイスとして挙動し、したがって、任意の追加の周波数を生成しない。しかしながら、双方向半導体デバイスが非対称である場合(例えば、非対称インピーダンスを有することによって)、デバイスは非線形的に挙動し、したがって、生成された信号の周波数から導出される他の「導出された」周波数を回路上で搬送させる。したがって、生成された信号の周波数間の差など、これらの導出された周波数のうちの1つを識別することによって、非対称性を検出することができる。
【0030】
有利には、電気生理学的用途では、本明細書に記載される対称性試験が追加のハードウェアを必要としないように、既存の電気生理学的チャネルを介して検出され得る。これを容易にするために、生成された信号の周波数は、周波数間の差がチャネルにわたって搬送される電気生理学的信号の帯域幅内に収まるように選択されてもよい。それにもかかわらず、周波数自体は、生成された信号が電気生理学的信号の検出に干渉しないように、この帯域幅から外れるように選択されてもよい。
【0031】
本発明の例示的な実施形態は、電極が電解液中に浸漬されている間に電極品質を試験するための試験キットを更に提供する。前述の信号発生器を備えるキットは、生成された信号が電極を通って流れるように、電極に接続される。電極の表面内の欠陥の場合(例えば、表面が粗いか又は汚れている場合)、電極と電解液との間の界面の非線形性が増加し、その結果、導出された周波数が生成される振幅も増加する。したがって、導出された周波数のうちの1つを識別することによって、欠陥を検出することができる。
【0032】
本明細書は主として電気生理学的用途に関連するが、本発明の実施形態は、任意の双方向半導体デバイスの対称性を試験し、任意の電極品質を試験するために使用され得ることが強調される。
【0033】
システムの説明
最初に、本発明のいくつかの例示的な実施形態による、電気生理学的システム20の概略例解図である
図1を参照する。
【0034】
システム20は、体内プローブ26を備え、体内プローブ26は、体内プローブ26の遠位端に配設された1つ又は2つ以上の体内電極28を備える。プローブ26及び電極28を使用して、医師30は、対象22の心臓24からの電位図信号などの、対象22からの電気生理学的信号を取得することができる。代替的に又は追加的に、医師30は、プローブ26及び電極28を使用して、心臓24をペーシング若しくは除細動するか、又は心臓24の組織をアブレーションすることができる。
【0035】
プローブ26は、典型的にはコンソール32内に収容される回路34に近位に接続される。典型的には、システム20は、プロセッサ38及びモニタ36を更に備える。回路34からの出力に応答して、プロセッサ38は、
図2を参照して以下で更に説明するように、モニタ36上に関連する出力を表示してもよい。
【0036】
概して、プロセッサ38は、単一のプロセッサとして、又は協働的にネットワーク化若しくはクラスタ化されたプロセッサのセットとして具現化され得る。いくつかの例示的な実施形態では、本明細書に記載されるプロセッサ38の機能は、例えば、1つ又は2つ以上の特定用途向け集積回路(application-specific integrated circuit、ASIC)又はフィールドプログラマブルゲートアレイ(field-programmable gate array、FPGA)を使用して、ハードウェア内にのみ実装される。他の例示的な実施形態では、プロセッサ38の機能は、少なくとも部分的にソフトウェア内に実装される。例えば、いくつかの例示的な実施形態では、プロセッサ38は、少なくとも中央演算処理装置(central processing unit、CPU)及びランダムアクセスメモリ(random-access memory、RAM)を備えるプログラム済みデジタルコンピューティングデバイスとして具現化される。ソフトウェアプログラムを含むプログラムコード、及び/又はデータは、CPUによる実行及び処理のためにRAMに読み込まれる。プログラムコード及び/又はデータは、例えば、ネットワークを介して、電子形態でプロセッサにダウンロード可能である。代替的に又は追加的に、プログラムコード及び/又はデータは、磁気、光学、又は電子メモリなどの非一時的有形媒体上に提供及び/又は記憶されてもよい。このようなプログラムコード及び/又はデータは、プロセッサに提供されると、本明細書に記載されているタスクを行うように構成された機械又は専用コンピュータを生じる。
【0037】
ここで、本発明のいくつかの例示的な実施形態による、
図1に示された回路34の概略例解図である
図2を参照する。
【0038】
回路34は、電極28からの電気生理学的信号をデジタル化し、有線又は無線接続を介してデジタル化信号66をプロセッサ38(
図1)に出力するように構成された少なくとも1つのデジタイザー40を備える。デジタイザー40は、デジタル化の前に信号をフィルタリングするための任意の好適なフィルタを備えてもよい。
【0039】
典型的には、回路34は、電極に電力を供給するように構成された少なくとも1つの電源を更に備える。例えば、回路34は、心ペーサー42、心除細動器、及び/又はアブレーション発生器を備えてもよい。典型的には、回路は、電源によって供給される電圧を抑制する少なくとも1つの電圧抑制装置48を更に備える。
【0040】
プローブが複数の電極を備える例示的な実施形態では、回路は、典型的には、電極のための異なるそれぞれの電気生理学的チャネルを備える。各チャネルは、典型的には、抵抗器64を介して、互いに対して並列に、かつ電極に接続されている別個のデジタイザー40及び電圧抑制装置48を備える。回路34は、複数の半導体スイッチ46を備えるマルチプレクサ52と、マルチプレクサコントローラ44と、を更に備えてもよい。マルチプレクサコントローラ44は、チャネルを電源に選択的に接続するようにスイッチ46を制御するように構成されている。
【0041】
概して、回路は、任意の数の電極、したがって任意の数のチャネルを備え得る。例として、
図2は、プローブが、図では「電極1」及び「電極2」と称される2つの電極を備え、回路34が、図では「チャネル1」及び「チャネル2」と称される2つのチャネルを対応して備える例示的な実施形態を示す。
【0042】
回路34は、少なくとも1つの双方向半導体デバイスを備える。
【0043】
例えば、各スイッチ46は、双方向半導体デバイスを備えてもよい。特定の例として、各スイッチ46は、互いに、かつ一対の寄生ダイオード56に接続された一対のフォトトランジスタ54と共に、発光ダイオード(light-emitting diode、LED)58を備えてもよい。マルチプレクサコントローラ44からの制御信号に応答して、LED58は、フォトトランジスタ54に向かって光を放射し得、それによってフォトトランジスタが導通状態になる。次に、電流(例えば、ペーサー42からの)は、スイッチを通って流れることができる。
【0044】
代替的に又は追加的に、各電圧抑制装置48は、双方向半導体デバイスを備えてもよい。例えば、各電圧抑制装置48は、互いに、直列又は並列に、対向する配向で接続された一対のダイオード60又はサイリスタを備えてもよい。ダイオード60は、例えば、アバランシェダイオード又はツェナーダイオードを含み得る。
【0045】
有利には、回路34は、回路に属する双方向半導体デバイスのいずれかの対称性を試験するように構成されている。この試験を容易にするために、回路は、第1の周波数f1及び第2の周波数f2を有する信号を生成するように構成された少なくとも1つの信号発生器50を備える。典型的には、生成された信号の振幅は、対象に危険を与えないように、10μA未満など、比較的低い。双方向半導体デバイスのうちの1つのインピーダンス又は別の特性(例えば、カットオフ電圧)が非対称である場合、デバイスは非線形的に挙動し、したがって、f1及びf2の線形組み合わせである周波数などのf1及びf2から導出される他の周波数を生成する。デジタル化信号66において、拍動周波数|f1−f2|、f1+f2、2f1+f2、又は|2f1−f2|などのこれらの他の周波数のうちの1つを識別することによって、プロセッサは非対称を検出してもよい。
【0046】
いくつかの例示的な実施形態では、信号発生器50は、電圧源を備える。このような実施形態では、
図2に示すように、信号発生器は、第1の周波数f1を有する第1の信号を生成するように構成された第1の電圧源50a、及び第2の周波数f2を有する第2の信号を生成するように構成された第2の電圧源50bとしてモデル化されてもよく、電圧源の各々は、それぞれの抵抗器62と直列に接続される。他の例示的な実施形態では、信号発生器50は、電流源を備える。
【0047】
いくつかの例示的な実施形態では、回路34は、各チャネルに対して異なるそれぞれの信号発生器を備える。他の例示的な実施形態では、単一の信号発生器は、マルチプレクサを介してチャネルの全てに接続される。
【0048】
典型的には、f1及びf2は、生成された信号が電気生理学的信号の処理に干渉しないように、チャネルにわたって搬送される電気生理学的信号の帯域幅の外側にある(すなわち、それによって呈される周波数の範囲外にある)。例えば、電位図信号がチャネルにわたって搬送される用途では、生成された周波数の各々は、1000Hz超など、500Hz超であってもよい。それにもかかわらず、f1とf2との間の差のような少なくとも1つの導出された周波数は、典型的には上述の帯域幅内にあり、その結果、一般的に帯域幅内の最高の周波数に対応するデジタイザーのサンプリングレートは、導出された周波数を取り込むのに十分である。例えば、電位図用途では、導出された周波数は、400〜500Hzなど、500Hz未満であってもよい。したがって、有利には、導出された周波数は、信号66、すなわち、デジタイザー40から受信された正規のデジタル化電気生理学的信号で識別されてもよい。
【0049】
導出された周波数を識別することに応答して(例えば、導出された周波数及び所定の閾値を超える振幅を有する信号66の成分を識別することに応答して)、プロセッサは、例えば、モニタ36(
図1)上に好適な警告を表示することによって、双方向半導体デバイスのインピーダンスが非対称であることを示す出力を生成することができる。代替的に又は追加的に、導出された周波数を識別することに応答して、プロセッサは電源を無効化してもよい。
【0050】
電極品質の試験
ここで、本発明のいくつかの例示的な実施形態による、プローブ26の使用の前に、電極28の品質を試験するためのシステム67の概略例解図である、
図3を参照する。
【0051】
システム67は、
図2に関して上述したように、信号発生器50を含み、信号発生器50は、第1の周波数f1を有する第1の信号を生成するように構成された第1の電圧源50a、及び第2の周波数f2を有する第2の信号を生成するように構成された第2の電圧源50bとしてモデル化されてもよく、電圧源の各々は、それぞれの抵抗器62と、有線又は無線接続を介してプロセッサ82と通信するように構成されているデジタイザー40とに直列に接続される。各電極を試験するために、信号発生器から生成された信号は、電極を含む回路を通る。生成された信号が回路を通る間、プロセッサ82は、
図2を参照して上述したようにデジタル化信号66を処理することによって、|f1−f2|などの導出された周波数の回路を監視する。導出された周波数を識別することに応答して(例えば、導出された周波数及び所定の閾値を超える振幅を有する信号66の成分を識別することに応答して)、プロセッサ82は、電極内の欠陥を示す出力を生成する。
【0052】
典型的には、信号発生器及びデジタイザーは、プローブ26に、例えば、その近位端に接続するように構成された試験キット76に属する。典型的には、試験キット76は、(任意のタイプのスイッチを備え得る)マルチプレクサ52及びマルチプレクサコントローラ44を更に備える。マルチプレクサ52内の各スイッチは、異なるそれぞれのワイヤを介してプローブの遠位端の異なるそれぞれの電極に接続するように構成されている。ワイヤは、プローブ26のハンドル74内の好適なインターフェースを介してプローブ26に接続され得るケーブル86内に収容されてもよい。プロセッサ82からの制御信号80に応答して、マルチプレクサコントローラ44は、マルチプレクサが試験のために電極を信号発生器に選択的に接続するようにマルチプレクサ52を制御する。
【0053】
概して、プロセッサ82は、単一のプロセッサとして、又は協働的にネットワーク化若しくはクラスタ化されたプロセッサのセットとして具現化され得る。いくつかの例示的な実施形態では、本明細書に記載されるプロセッサ82の機能は、例えば、1つ又は2つ以上の特定用途向け集積回路(ASIC)又はフィールドプログラマブルゲートアレイ(FPGA)を使用して、ハードウェア内にのみ実装される。他の例示的な実施形態では、プロセッサ82の機能は、プロセッサ38(
図1)に関して上述したように、少なくとも部分的にソフトウェアに実装される。プロセッサ82は、試験キット76に属してもよいか、又は
図3で暗に示されるように、外部コンピュータに属し得る。導出された周波数を識別することに応答して、プロセッサ82は、コンピュータモニタ上に好適な警告を表示し、聴覚アラートを出力し、かつ/又は試験キットに属する警告光を作動させることなどによって別の出力を生成してもよい。
【0054】
典型的には、電極28は、体内環境をシミュレートする生理食塩水などの電解液70に浸漬されながら試験される。各電極と溶液70との間の界面におけるインピーダンスの非線形性、したがって、信号66の任意の導出された周波数成分の振幅は、電極の表面の欠陥の程度、例えば、粗さ又は汚れの程度と共に増加する。したがって、上述のように、信号66内の導出された周波数を識別することに応答して、欠陥が検出され得る。
【0055】
典型的には、溶液70を収容する容器68の底部に典型的に配設されるリターン電極72は、ワイヤ84を介して試験キットに接続される。(ワイヤ84は、ケーブル内に収容されていてもよい。)したがって、生成された信号が通る試験回路は、溶液70、リターン電極72、及びワイヤ84を含む。
【0056】
概して、試験キットは、本明細書に記載されるキットの様々な構成要素を保持するように構成された、プラスチックなどの任意の好適な材料で作製されたケースを備えてもよい。試験キットは、電極28が信号発生器に接続されるように、キットをプローブに接続するための、ポート又はソケットなどの任意の好適な電気インターフェースを備えてもよい。同様に、試験キットは、キットをリターン電極72に接続するための任意の好適な電気インターフェースを備えてもよい。代替的に又は追加的に、試験キットは、プロセッサ82と通信するための任意の好適な有線又は無線通信インターフェース(例えば、ユニバーサルシリアルバス(universal serial bus、USB)ポート)を備えてもよく、それにより、プロセッサは、キットから信号66を受信することができ、かつ/又はキットは、通信インターフェースを介して、プロセッサから制御信号80を受信してもよい。
【0057】
典型的には、周波数f1及びf2は、電極の任意の非線形応答を増幅するように、100Hz未満など、比較的小さい。また典型的には、生成された信号の各々の振幅は、電極表面への任意の望ましくない影響を最小限に抑えるために、50μA未満など、比較的小さい。
【0058】
本発明が、本明細書上に具体的に示されて記載されたものに限定されない点が、当業者により理解されよう。むしろ、本発明の実施形態の範囲は、本明細書上に記載されている様々な特徴の組み合わせ及び部分的組み合わせの両方、並びに上記の説明を一読すれば当業者には想起されると思われる、先行技術には存在しない特徴の変更例及び改変例を含む。参照により本特許出願に援用される文献は、これらの援用文献において、いずれかの用語が本明細書において明示的又は暗示的になされた定義と矛盾して定義されている場合には、本明細書における定義のみを考慮するものとする点を除き、本出願の一部と見なすものとする。
【0059】
〔実施の態様〕
(1) 電極品質を試験するためのシステムであって、
2つの異なる生成された周波数を有する生成された信号を、体内電極を含む回路に通すように構成された信号発生器と、
プロセッサであって、
前記生成された信号が前記回路を通る間に、前記回路上で前記生成された周波数から導出される導出された周波数を識別し、
前記導出された周波数を識別することに応答して、前記電極内の欠陥を示す出力を生成するように構成された、プロセッサと、を備える、システム。
(2) 前記導出された周波数が、前記生成された周波数間の差である、実施態様1に記載のシステム。
(3) 前記生成された周波数の各々が、100Hz未満である、実施態様1に記載のシステム。
(4) 前記生成された信号の振幅が、50μA未満である、実施態様1に記載のシステム。
(5) 前記信号発生器が、前記電極が電解液中に浸漬されている間に、前記生成された信号を前記回路に通すように構成されている、実施態様1に記載のシステム。
【0060】
(6) 前記電解液が、生理食塩水を含む、実施態様5に記載のシステム。
(7) 前記電極が、体内プローブに属する、実施態様1に記載のシステム。
(8) キットを更に備え、前記キットが、
前記信号発生器と、
前記キットを前記プローブに接続することによって、前記電極を前記信号発生器に接続するように構成された電気インターフェースと、を備える、実施態様7に記載のシステム。
(9) 前記キットが、通信インターフェースを更に備え、前記プロセッサが、前記通信インターフェースを介して前記キットから受信した出力信号を処理することによって、前記導出された周波数を識別するように構成されている、実施態様8に記載のシステム。
(10) 前記電極が、前記プローブに属する複数の電極のうちの1つであり、前記キットが、前記電極を前記信号発生器に選択的に接続するように構成されたマルチプレクサを更に備える、実施態様8に記載のシステム。
【0061】
(11) 電極品質を試験するための方法であって、
2つの異なる生成された周波数を有する生成された信号を、体内電極を含む回路に通すことと、
前記生成された信号を前記回路に通す間に、前記回路上で前記生成された周波数から導出される導出された周波数を識別することと、
前記導出された周波数を検出することに応答して、前記電極内の欠陥を示す出力を生成することと、を含む、方法。
(12) 前記導出された周波数が、前記生成された周波数間の差である、実施態様11に記載の方法。
(13) 前記生成された周波数の各々が、100Hz未満である、実施態様11に記載の方法。
(14) 前記生成された信号の振幅が、50μA未満である、実施態様11に記載の方法。
(15) 前記生成された信号を前記回路に通すことが、前記電極が電解液中に浸漬されている間に、前記生成された信号を前記回路に通すことを含む、実施態様11に記載の方法。
【0062】
(16) 前記電解液が、生理食塩水を含む、実施態様15に記載の方法。
(17) 前記電極が、体内プローブに属する、実施態様15に記載の方法。
(18) 前記信号発生器がキットに属し、前記生成された信号を前記回路に通すことが、前記キットが前記プローブに接続されている間に、前記生成された信号を前記回路に通すことを含む、実施態様17に記載の方法。
(19) 前記導出された周波数を識別することが、前記キットから受信された出力信号を処理することによって、前記導出された周波数を識別することを含む、実施態様18に記載の方法。
(20) 前記電極が、前記プローブに属する複数の電極のうちの1つであり、前記キットが、前記電極を前記信号発生器に選択的に接続するように構成されたマルチプレクサを更に含む、実施態様18に記載の方法。