【解決手段】本願の方法は、センサの温度データを受け取ることと、センサから少なくとも一つの材料への熱侵入の温度分布を求めることと、温度分布に補正を加えることと、補正された温度分布を繰り返し分析することと、センサと少なくとも一つの材料との間の領域である接触領域の熱特性を出力することとを備える。本願の方法は、更に、少なくとも一つの材料の熱特性を求めることと、接触領域の熱特性を用いて材料の補正された熱特性を求めることとを備えても良い。本願の方法は、更に、接触領域の影響を最小化するための、少なくとも一つの材料の特性を測定するための適切な測定期間を自動的に求めることを備えても良い。
【図面の簡単な説明】
【0023】
本願の開示の更なる特徴及び効果は、添付の図面を併せて参照した以下の詳細な説明から明らかとなるであろう。
【0024】
【0025】
【
図2】
図2は、薄膜を用いた熱接触モデルの実施形態を示す図である。
【0026】
【
図3】
図3は、層をなした系を用いた熱接触モデルの実施形態を示す図である。
【0027】
【
図4】
図4は、非対称熱接触モデルの実施形態を示す図である。
【0028】
【
図5】
図5は、押し出しポリスチレンを用いた熱接触モデルについての温度測定値を示すグラフである。
【0029】
【
図6】
図6は、粗い発泡ポリスチレンを用いた熱接触モデルについての温度測定値を示すグラフである。
【0030】
【
図7】
図7は、切断した発泡ポリスチレンを用いた熱接触モデルについての温度測定値を示すグラフである。
【0031】
【
図8】
図8は、ステンレス鋼304を用いた熱接触モデルについての0〜10秒における温度測定値を示すグラフである。
【0032】
【
図9】
図9は、研磨ステンレス鋼304を用いた熱接触モデルについての0〜0.5秒における温度測定値を示すグラフである。
【0033】
なお、添付の各図面を通じ、同様の部分に同様の参照番号を付す。
【0034】
[詳細な説明]
ここでは、接触領域の熱特性を求めるための方法及びモデルが開示される。当該方法は、センサの温度データを受け取ることと、センサから少なくとも一つの材料への熱侵入(heat penetration)の温度分布を求めることとを備える。その後、この温度分布に対して補正項を適用することにより補正された温度分布を求める。この補正された温度分布を繰り返し分析して少なくとも一つの接触領域の温度特性を出力する。この接触領域は、二つの材料間の領域としてもよい。接触領域は、センサと上記少なくとも一つの材料との間の領域を含む。
【0035】
二つの材料間の接触領域の熱特性を求める方法は、熱接触モデルを用いて適用することができる。また、当該方法は、各材料の面間の接触特性を求める方法と考えることもできる。熱接触モデルについては後でより詳細に説明する。
【0036】
上述のように、互いに接触した材料の熱特性について分析する際、材料間の物理的接触は考慮されない。しかし、これら二つ以上の接触した材料間の物理的接触は、材料の分析対象の熱特性に影響を及ぼし得る。特に一つ以上の材料の多孔性、不均質性及び/又は表面不完全性は、材料の分析対象の熱特性に影響を及ぼし得る。ここに記載の方法及びモデルは、様々な材料及び表面の実験測定に用いることができる。表面熱特性又は接触熱特性(例えば熱浸透率)及びバルク材料熱特性は、ともに熱特性の平面熱源測定から抽出することができる。
【0037】
接触した各材料又は各物体の熱特性を算出及び測定するために、ここに記載の方法及びモデルを用いて、材料間の熱接触及び表面熱浸透率を特徴付け、区別し、測定することができる。ここに記載の方法は、温度波(thermal wave)から導出される。熱の反射から、材料界面に亘る熱の運搬をモデル化するための有益な方法が得られることが理解される。温度波が二つの材料間の界面に遭遇すると、温度波は反射及び透過される。第1の材料から第2の材料へ移動する温度波(温度を振幅とする)についての反射及び透過の係数及び特性を用いて、任意の温度分布の時間発展を例えば鏡像法(method of images)によって求めることができる。これは、少なくとも部分的には、温度分布を温度波の集合に分解することが可能であり、また、二つの材料の界面における温度波についての反射及び透過の係数が周波数に依存しないためである。
【0038】
図1は、熱接触モデル100を示す。この熱接触モデルは、材料間の不完全な接触が例えば過渡的平面熱源方法に対して及ぼす影響を特徴付けるために用いられ得る1次元モデルである。熱接触モデル100は、第1の材料102及び第2の材料104を含む。材料102,104は共に熱浸透率b
2及び拡散率α
2の同じバルクサンプル材料とすることができる。なお、材料102,104の各々は、後でより詳細に説明するように、互いに異なる熱浸透率及び拡散率を有する異なる材料としても良い。センサ106は、材料102,104間の接触領域108に配置される。センサ106は、二つの材料102,104間の接触領域108の中央に埋め込まれる、又は挟まれる平面センサとすることができる。センサ106は、所定の期間、定電力で加熱される熱源とすることができる。
【0039】
接触領域108は、幅2L、熱浸透率b
1の薄い領域とすることができる。接触領域108は、材料102,104を隔離する薄いバリアであって、接触した材料102,104の表面に相当するものと考えることができる。そして、この近似により、センサ106及び材料102,104間の接触領域108を単一の均質な層として扱うことが可能となる。
【0040】
モデル100では接触領域108を単一の均質な層として表しているが、より正確に、互いに異なる熱特性を有する一連の複数層として記述することも可能である。ただ、これらの層が十分に薄く、十分に長い加熱時間の後であれば単一層の近似が成り立つ。多層界面は、干渉のため周波数に依存した反射をもたらし得るが、これは加熱プロセスの低周波数成分に対して殆ど影響を及ぼさない。加熱プロセスの低周波数成分は、定電力の熱源において、短時間の後に伝熱を支配し得る。
【0041】
熱接触モデル100を用いた計算及び測定のために、センサ106又は加熱要素をx=0に位置付けて対称の状態を形成する。|x|>Lにおいて材料102,104をx方向に導入する。
【0042】
上述のように、また後でより詳細に説明するように、熱接触モデル100を用いて接触領域108及び材料102,104の様々な熱特性を測定及び算出することができる。その際、反射係数を用いた鏡像法を用いてモデル100の温度分布を算出する、又は求めることができる。実施形態によっては、接触領域108の幅2Lは不明である。Lを直接測定する方法がなければ、接触領域108の拡散率を容易に得ることはできない。その代わりに、センサ106の温度についての式を時定数によって規定することができる。時定数は、例えば、
【数1】
と選択することができる。このような時定数を用いて、センサ106の温度を式1のように表すことができる。
【数2】
ここで、Pは系に供給される電力、tは時間、b
1及びb
2はそれぞれ接触領域108及び材料102,104の熱浸透率、t
Lは時定数である。時定数は、熱接触モデル100又は既存の熱特性を求める方法を有効と考えることができる最も早い時点を特定するために用いることができる。
【0043】
本発明では、上述の時定数を用いて、従来の方法において考慮されるべきデータの測定期間(time window)を自動的に求めることができる。この測定期間は、接触オフセットが一定となる期間を表す。この測定期間におけるデータは、既存の特性を求める方法において熱特性を求めるための有効なデータと考えられる。この有効なデータは、材料間の接触が材料の熱特性に対して及ぼす影響が最小となる場合のデータと考えることができる。
【0044】
また、時定数t
Lを用いて、接触熱コンダクタンス係数Hと、センサ106の側面と材料104との間の接触領域108の単位面積あたりの熱容量ξとを導き出すことができる。接触熱コンダクタンス係数Hは、接触熱抵抗の逆数である。
【0045】
なお、上述の導出は1次元モデル100に基づくものであるが、この導出は、十分に短い試験時間に亘る、平面円盤熱源等のより高次元のモデルについての近似的な補正項を得るために用いることもできる。この補正項は、材料間の接触の影響と、センサ自身の影響とを表す。時間(t)が時定数(t
L)よりも大きくなる(即ちt>>t
L)まで伝熱がほぼ一次元であり続ける場合、センサの温度は以下のようになり得るため、高次元の影響が顕著になる前に接触補正は一定のオフセットに達する。
【数3】
【0046】
更にまた、t>>t
Lとなるまで接触モデル100における伝熱が支配的に一次元であり続ける場合、接触補正項
【数4】
を平面熱源の3次元モデルに直接適用することができ、接触補正項は式3のように表される。
【数5】
ここで、Pは系に供給される電力、tは時間、b
1及びb
2はそれぞれ接触領域108及び材料102,104の熱浸透率、t
Lは時定数である。
【0047】
T
mdl(t)の温度上昇を伴う過渡的平面熱源モデル(3次元モデル)に補正項(Tc(t))を適用することができる。このモデルの補正後の形は、式4を用いて得ることができる。
【数6】
【0048】
円盤状の熱源及び等方性サンプルについては、T
mdl(t)を式5のように表すことができる。
【数7】
ここで、λ
2はサンプル材料の熱伝導率、I
0は第1種変形ベッセル関数である。
【0049】
上述の熱接触モデル100を用いて、接触領域108又は材料102,104の表面の熱特性を求めることができる。これは、上述の式4を繰り返し分析することによって行っても良い。繰り返し分析は、非線形フィッティング分析であってもよい。この繰り返し分析は、接触領域108の熱特性を分離(isolate)するために用いてもよい。この繰り返し分析を正確且つ効率的に行うためにコンピュータを用いる。コンピュータは、データを自動的、効率的且つ正確に繰り返し分析する。なお、各式の1次元モデルにも非線形フィッティング分析が行われる。
【0050】
接触領域108の熱特性を求めることにより、材料102,104の熱特性をより正確に求めることができる。これを行うのは、上述のように、従来の方法においては過渡的平面熱源のモデル化の際に各材料の接触領域又は表面の影響が考慮されないからである。本願の方法では、モデル100についての補正項を用いて材料間の接触の影響を考慮している。求められる接触領域の熱特性としては、これらに限定されないが、接触熱コンダクタンス、接触領域の接触熱抵抗の逆数、及び単位面積当たりの熱容量が挙げられる。
【0051】
図2は、薄膜210を用いた熱接触モデル200の実施形態を示す。熱接触モデル200は、熱接触モデル100と類似のものである。熱接触モデル200は、第1の材料202及び第2の材料204を含む。材料202,204は、熱浸透率b
2及び拡散率α
2の同じバルクサンプル材料とすることができる。なお、材料202,204の各々は、異なる熱浸透率及び拡散率を有する異なる材料としても良い。センサ206が材料202,204間に配置される。接触モデル200は、更に、材料202とセンサ206との間、及び材料204とセンサ206との間に配置された薄膜210を含む。二つの薄膜210間には接触領域208が存在し、材料202,204と薄膜210との間には接触領域212が存在する。薄膜210は、センサ206に対して良好な接触を有すると言える。しかしながら、実施形態によっては、薄膜210とセンサ206との接触が良好な接触と考えられない場合もあり得る。接触領域208及び接触領域212は、互いに異なる特性を有していても、同じ特性を有していても良い。
【0052】
センサ206は、薄膜210間及び二つの材料202,204間の中央に埋め込まれる、又は挟まれる平面センサとすることができる。センサ206は、所定の期間、定電力で加熱される熱源とすることができる。熱接触モデル100と同様、接触領域208,212は、薄い領域として、材料202,204及び薄膜210とは異なる熱浸透率を有するものとすることができる。
【0053】
薄膜210がセンサ206に対して良好な接触を有すると言える場合、薄膜210の熱特性は、上述のモデル100と同様の方法で得ることができる。薄膜210の熱特性は接触モデル100の方法に従って得ることができるが、反射係数(R)を適当な有効Rに替えて、これを少なくとも式5に挿入する。薄膜210の熱特性を算出するためには、センサ206から接触領域212までの距離としての薄膜210の幅と、センサ206から接触領域208までの距離としての薄膜210の幅との差(この差が薄膜210のおよその幅となる)を把握しておくことが求められる。なお薄膜210の幅を直接測定する方法がない場合、上述のように、時定数を選択して本願の方法及びモデルにおいて使用しても良い。
【0054】
また、接触モデル200を用いて、接触領域212の特性を測定することもできる。薄膜210が、上述の例の代わりに材料202,204と同様のサイズ且つ既知の特性を有するサンプル材料である場合、より短い試験時間で接触領域208の特性を算出できる。この短い試験時間によって、センサ206からの熱が接触領域212及び材料202,204と干渉するのを防ぐことができる。その後、より長い試験時間を用いて接触領域212の特性を算出することができる。このような方法であれば、センサとサンプル材料との接触の特性だけでなく、任意の二つのサンプル材料間の接触の特性にも適用可能である。
【0055】
上述のように、熱接触モデル200を用いて、材料202,204、薄膜210、接触領域208、及び接触領域212の様々な熱特性を測定及び算出することができる。熱接触モデル200を用いた計算及び測定のために、センサ206又は加熱要素をx=0に位置付けて、接触モデル100と類似の対称の状態を形成する。上記の各式において、薄膜210の熱浸透率は、上述の接触領域108の熱浸透率であるb
1で表すことができる。
【0056】
図3は、非対称熱接触モデル300の実施形態を示す。熱接触モデル300には第1の材料302及び第2の材料304が存在し、各々がセンサ306と接触する。材料302及び材料304は、互いに異なる熱浸透率を有する異なる材料とすることができる。センサ306は、第1の材料302と第2の材料304との間の接触領域308に埋め込まれる、又は挟まれる平面センサとすることができる。センサ306は、所定の期間、定電力で加熱される熱源とすることができる。接触領域308は、合計幅d(w1+w2=d)、熱浸透率b
1を有する薄い領域とすることができる。ここで、センサ306から材料302までの幅がw
1、センサ306から材料304までの幅がw
2である。
【0057】
接触領域308は、センサ306と、材料302,304の二つの物理的接触領域とから構成される。熱源又はセンサ306は、
図3に示すように、接触領域308の中央に配置される必要はない。なお、センサ306は第1の材料302と第2の材料304との間の中央に配置される必要はないが、当該モデルの適用の際にはセンサ306がx=0にあるものとする。上述のモデル100,200と同様、接触領域308は、材料302,304を隔離する薄いバリアであって、接触した材料302,304の表面に相当するものと考えることができる。そして、この近似によって、センサ306及び、材料302,304間の接触領域308を単一の均質な層として扱うことが可能になる。
【0058】
モデル300では接触領域308を単一の均質な層として表しているが、より正確に、互いに異なる熱特性を有する一連の複数層として記述することもできる。ただ、これら層が十分に薄く、十分に長い加熱時間の後であれば、単一層の近似が成り立つ。
【0059】
熱接触モデル300を用いて、上述のように、材料302,304及び接触領域308の様々な熱特性を測定及び算出することができる。熱接触モデル300を用いた計算及び測定のために、センサ306又は加熱要素をx=0に位置付ける。センサ306における温度は式6に従うことが理解されるであろう。
【数8】
【0060】
ここで、T(x)は以下の式7に従う。
【数9】
また、R
ijは、第1の材料から第2の材料へ移動する温度波(温度を振幅とする)についての反射係数である。
【0061】
上述のように、幅w
1及びw
2は、薄い領域である接触領域308を表すものであるため、既知でない場合がある。その場合、以下の式8,9,10に示すように、式6,7を整理して、w
1,w
2を消去することが可能である。
【数10】
ここで、t
wは熱侵入についての時定数である。実施形態によっては、材料302の特性は既知である。また、センサの温度は、非線形フィッティング技術を用いて上記の各式に当てはめることができる。なお、非線形フィッティング技術は、3次元モデル及び1次元モデルに対して行われる。
【0062】
図4は、層をなした系としての非対称熱接触モデル400を示す。非対称接触モデル400は、熱接触モデル300と類似のものであるが、接触領域308と材料304との間に追加の材料410が存在する。
【0063】
センサの温度は、熱接触モデル300について説明した方法と類似の方法で算出することができるが、反射係数R
23に替えて有効反射係数R
e23を用いる。ここで、
【数11】
となる。
【0064】
上述のように、非線形フィッティングを用いて、モデル300,400における接触領域の特性を得ることができることが理解されるであろう。実施形態によっては、材料304に隣接して追加の材料が存在しても良い。その場合、反射係数R
34に替えて、同じ方法で算出される有効反射係数R
e34を用いることになる。更に、実施形態によっては、材料302に隣接して一つ以上の追加の材料が存在しても良く、且つ/又は材料304に隣接して一つ以上の追加の材料が存在しても良い。これにより、例えば適切に反射係数を入れ替えることによって、任意の層をなした系の熱特性を求めることができる。このような層をなしたモデル又は層をなした系によって、面内寸法が面間寸法よりも遥かに大きい系を記述することができる。
【0065】
上述の各接触モデルを用いて、3次元モデルにおける各接触領域及び各材料の熱特性値を求めることができる。一例として、少なくとも上述の接触モデル100を用いて、発泡ポリスチレンやステンレス鋼等の材料をモデル化した。次に、モデルの結果に対して、データセット全体に亘って非線形フィッティングを行って繰り返し分析し、各々の試験サンプルについての時定数(t
L)の近似値を特定した。この時定数を用いて、材料の正確な熱特性を求めるためのより長い試験時間についての測定期間を求めることができる。
【0066】
接触モデル100は、3次元モデルとして構成することができ、円盤状に形成された材料102,104に同じ材料を用い、センサ106を同様に円盤状に形成し過渡的平面熱源として働くものとした。センサを定電力で所定時間(10秒)加熱したが、その際、材料102,104として押し出しポリスチレンフォームのサンプル(
図5)、粗い表面(
図6)や切断表面(
図7)を持った発泡ポリスチレンフォームのサンプル、及び粗くやすりがけをした表面を持ったステンレス鋼304のサンプル(
図8)を用いた。また、材料102,104として研磨した表面を持ったステンレス鋼304のサンプル(
図9)を用いて、センサを定電力で所定時間(0.5秒)加熱した。
【0067】
図5は、押し出しポリスチレンを用いた熱接触モデルについての10秒間に亘る温度を示すグラフである。このグラフは、接触モデル502の温度結果、円盤状の熱源即ちセンサ504の温度、及び接触補正506を示す。なお、
図6〜9においては、上記の参照符号を用いて別の結果を示す。
図6〜8では、平面熱源608の温度もグラフに示す。平面熱源は無限平面と考えることができ、円盤状の熱源は有限の径を有すると考えことができることが理解されるであろう。円盤状の熱源504の方が熱源温度のより正確な近似となることができる。
【0068】
図5においては、F(t)及びTc(t)をそれぞれ円盤状の熱源504及び接触補正506としてプロットして材料サンプル間の接触の影響を示している。F(t)は、材料間の接触を考慮しない温度であり、上述の式5の(T
mdl(t))と等しい。図中に示す接触モデル502の温度結果は、上述の式4に示すモデル(T
3D(t))の補正後の形である。
【0069】
なお、少なくとも、押し出しポリスチレンフォームについての
図5に示す接触補正506は、材料の熱接触又は材料表面による顕著な影響を示す。この影響は、一定の温度オフセットへ向かって極めて緩慢に近づくため、単純な電力低下や温度オフセットでは説明できない。
【0070】
図9は、研磨されたステンレス鋼304を用いた熱接触モデルについての0〜0.5秒に亘る温度測定値を示すグラフである。F(t)(円盤状の熱源504)及びTc(t)(接触補正506)をプロットして材料間又は材料の研磨された表面間の接触の影響を示す。粗くやすりがけをしたステンレス鋼についての温度測定値を示すグラフを描いた
図8も同様である。
図8,9から理解されるように、材料の熱接触又は材料表面の影響を、特に接触補正506に関して認めることができる。
【0071】
接触領域の熱特性を求める方法を用いれば、材料及びモデルについての他の様々な特性を求めることができる。例えば、この方法を用いて、熱がセンサから接触領域を通じて第2の材料へ侵入するのにかかる時間を求めたり、バルク材料特性の測定において接触特性を補正したり、既存の熱測定システム用に材料間の接触の影響を最小化するための適切な測定期間を自動的に求めたり、薄膜の熱特性を算出したり又は求めたり、層をなした系の熱特性を算出したり又は求めたりすることができる。また、上述のモデル100〜400を用いて、センサの有限且つ非ゼロの熱特性を補正することもできる。なお、センサは通常、無視できる熱容量及び無限の熱伝導率のものと見なされている。本発明によれば、そのような近似の必要性をなくすことができる。
【0072】
接触領域の熱特性を求める方法は、接触領域の熱特性を求める、バルク材料特性の測定において接触特性を補正する、既存の熱測定システム用に材料間の接触の影響を最小化するための適切な測定期間を自動的に求める、薄膜の熱特性を算出する若しくは求める、層をなした系の熱特性を算出する若しくは求める、及び/又はセンサの有限且つ非ゼロの熱特性を補正するためのプログラムとしてコンピュータ上で実現することができる。上述の熱特性を求める方法をコンピュータ上で実現する場合、当該コンピュータは、時間の経過に伴うセンサの温度に関するデータを受け取ることができる。当該コンピュータはまた、分析対象としてバルク材料の既知の特性に関するデータを受け取ることができる。次に、受け取ったデータを用いて、センサから一つ以上の材料への熱の温度分布を求めることができる。そして、温度分布を繰り返し分析して材料間の接触の熱特性を分離する。繰り返し分析によって熱特性を分離した後、コンピュータはこれら各特性を出力することができる。出力され得る接触領域の熱特性としては、これらに限定されないが、接触熱コンダクタンス、接触領域の接触熱抵抗の逆数、及び単位面積当たりの熱容量が挙げられる。
【0073】
別の実施形態では、コンピュータは、材料間の接触の熱特性を分離してからバルク材料特性の測定における接触特性について少なくとも1回の補正を行ったり、既存の熱測定システム用に材料間の接触の影響を最小化するための適切な測定期間を自動的に求めたり、薄膜の熱特性を求めたり、層をなした系の熱特性を求めたりすることができる。次に、コンピュータは、補正されたバルク材料特性、適切な測定期間、薄膜の熱特性、層をなした系の熱特性、及び/又はセンサの補正された有限且つ非ゼロの熱特性を出力することができる。
【0074】
上述の熱接触モデル100〜400を用いて、上述のように材料間の接触の熱特性を分離して分析することができる。
図5〜9に示すように、接触は過渡的平面熱源モデルに対して顕著な影響を及ぼす。しかし、熱接触モデル100〜400及び記載した方法を用いることで、バルク材料熱特性から接触熱量を切り離すことができ、これにより異なる時間及び異なる表面仕上に亘るバルク材料特性の測定の安定化が可能となる。
【0075】
ここに記載の接触領域の熱特性を求める方法は、センサの加熱時間の開始時からセンサの加熱時間の終了時までに測定及び算出されたデータを使用することができる。即ち、図示の各例においては、t=0秒からt=10秒、又はt=0秒からt=0.5秒のデータが使用可能である。既存の方法では、データは接触オフセットが一定である時のものに限られなければならない。即ち、既存のシステムの分析において正確なバルク材料熱特性を求めるには、加熱時間の開始時から測定及び算出されたデータは除去することが求められる。更に、既存のシステムでは、接触オフセットが一定になるのに十分な長い時間をかけて試験を行わなければならない。本願の方法では、全てのデータを使用することが可能であり、接触オフセットが一定になるのに十分な長い時間をかけてセンサを加熱する必要もない。例えば、上述の方法では、〜t
Lの遅延を必要としない。センサの加熱は、従来の方法よりも短時間で良い。更に、上述のモデル100〜400は、センサに依らず接触熱特性を分離して分析することが可能である。
【0076】
上述のモデル及び方法は、特に絶縁体において有用であり得ることが理解されるであろう。絶縁体においては、接触を考慮しない限り、短い試験時間は如何なる熱特性の測定にも不十分であることが示される。この方法に従わない絶縁体に対する熱浸透率(effusivity)の測定はエフューザンス(effusance)の測定となる。この測定は接触領域の特性の影響を受けるものであり、時間の経過に伴ってバルク材料の熱浸透率が支配的になり始めるため、測定値が変化するためである。
【0077】
当業者であれば、各図に示して説明した方法及び構成要素は、各図に示されていない構成要素も含み得ることを理解するであろう。説明を簡潔且つ明瞭にするために、各図における各要素は必ずしも一定の縮尺で描いたものではなく単なる模式図であり、要素構造について限定を加えるものではない。当業者には、ここに記載の発明の範囲を逸脱することなく数々の変形及び変更が可能であることが明らかであろう。