特開2021-66926(P2021-66926A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ソディックの特許一覧

<>
  • 特開2021066926-積層造形装置 図000003
  • 特開2021066926-積層造形装置 図000004
  • 特開2021066926-積層造形装置 図000005
  • 特開2021066926-積層造形装置 図000006
  • 特開2021066926-積層造形装置 図000007
  • 特開2021066926-積層造形装置 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2021-66926(P2021-66926A)
(43)【公開日】2021年4月30日
(54)【発明の名称】積層造形装置
(51)【国際特許分類】
   B22F 3/16 20060101AFI20210402BHJP
   B29C 64/153 20170101ALI20210402BHJP
   B29C 64/268 20170101ALI20210402BHJP
   B29C 64/371 20170101ALI20210402BHJP
   B33Y 30/00 20150101ALI20210402BHJP
   B33Y 40/00 20200101ALI20210402BHJP
   B22F 3/105 20060101ALI20210402BHJP
【FI】
   B22F3/16
   B29C64/153
   B29C64/268
   B29C64/371
   B33Y30/00
   B33Y40/00
   B22F3/105
【審査請求】有
【請求項の数】8
【出願形態】OL
【全頁数】15
(21)【出願番号】特願2019-192384(P2019-192384)
(22)【出願日】2019年10月23日
(71)【出願人】
【識別番号】000132725
【氏名又は名称】株式会社ソディック
(72)【発明者】
【氏名】岡崎 秀二
(72)【発明者】
【氏名】中村 直人
(72)【発明者】
【氏名】川田 秀一
【テーマコード(参考)】
4F213
4K018
【Fターム(参考)】
4F213AC04
4F213AM26
4F213WA25
4F213WA62
4F213WB01
4F213WL13
4K018AA28
4K018AA33
4K018BA15
4K018BA17
4K018CA44
4K018DA28
4K018DA30
4K018EA51
4K018EA60
4K018FA06
4K018FA08
(57)【要約】      (修正有)
【課題】より効率よく固化層を冷却する、金属の積層造形装置の提供。
【解決手段】所望の三次元造形物を所定高さで分割してなる複数の分割層毎に形成された材料層にレーザ光または電子ビームを照射して固化層を形成する照射装置と、固化層に対して加工を行う工具を把持する加工ヘッド61と、加工ヘッド61を少なくとも水平方向に移動させる加工ヘッド駆動装置と、を含む加工装置と、加工ヘッドに設けられ、固化層が積層してなる固化体の少なくとも一部を所定の冷却温度に冷却する冷却装置7と、を備え、冷却装置7は、冷却温度以下の不活性ガスである冷却ガスを排出する冷風口を有し、冷却ガスを固化体の少なくとも一部に吹き付ける冷却ガス吹付装置71と、冷却ガス吹付装置71に不活性ガスを供給する不活性ガス供給源と、を含む、積層造形装置。
【選択図】図5
【特許請求の範囲】
【請求項1】
所望の三次元造形物を所定高さで分割してなる複数の分割層毎に形成された材料層にレーザ光または電子ビームを照射して固化層を形成する照射装置と、
前記固化層に対して加工を行う工具を把持する加工ヘッドと、前記加工ヘッドを少なくとも水平方向に移動させる加工ヘッド駆動装置と、を含む加工装置と、
前記加工ヘッドに設けられ、前記固化層が積層してなる固化体の少なくとも一部を所定の冷却温度に冷却する冷却装置と、を備え、
前記冷却装置は、
前記冷却温度以下の不活性ガスである冷却ガスを排出する冷風口を有し、前記冷却ガスを前記固化体の前記少なくとも一部に吹き付ける冷却ガス吹付装置と、
前記冷却ガス吹付装置に前記不活性ガスを供給する不活性ガス供給源と、を含む、積層造形装置。
【請求項2】
前記冷却ガス吹付装置は、供給口、温風口および前記冷風口が設けられる、内部を流通する前記不活性ガスを前記冷却ガスと加熱された前記不活性ガスである加熱ガスとに分離する渦流管を有し、
前記供給口は、前記温風口と前記冷風口の間に設けられ、前記不活性ガス供給源と接続され、
前記温風口は、前記渦流管の一端部に設けられ、前記加熱ガスを排出し、
前記冷風口は、前記渦流管の他端部に設けられ、前記冷却ガスを排出する、請求項1に記載の積層造形装置。
【請求項3】
前記冷却装置は、前記冷却ガス吹付装置を鉛直方向に移動させる第1の昇降装置をさらに含む、請求項1または請求項2に記載の積層造形装置。
【請求項4】
前記冷却装置は、前記冷却ガスが流通する管路であり、前記冷風口と接続される第1の開口と、前記固化体の前記少なくとも一部と対面する第2の開口と、を有するダクトをさらに含む、請求項1から請求項3のいずれか1項に記載の積層造形装置。
【請求項5】
前記第2の開口は、水平方向に沿って延びる、請求項4に記載の積層造形装置。
【請求項6】
前記第2の開口は、前記冷風口よりも面積が大きい、請求項4または請求項5に記載の積層造形装置。
【請求項7】
前記加工ヘッドに設けられ、前記固化体の温度を測定する温度センサを含む温度測定ユニットをさらに備える、請求項1から請求項6のいずれか1項に記載の積層造形装置。
【請求項8】
前記温度センサは、前記固化体と接触して温度を測定する接触式温度センサであり、
前記温度測定ユニットは、前記温度センサを鉛直方向に移動させる第2の昇降装置をさらに含む、請求項7に記載の積層造形装置。
【請求項9】
前記冷却温度は、前記固化層のマルテンサイト変態開始温度以下である、請求項1から請求項8のいずれか1項に記載の積層造形装置。
【請求項10】
前記冷却温度は、前記固化層のマルテンサイト変態終了温度以下である、請求項9に記載の積層造形装置。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、積層造形装置に関する。
【背景技術】
【0002】
金属の積層造形には複数の方式がある。例えば粉末床溶融結合では、チャンバ内において、上下方向に移動可能な造形テーブル上に材料粉体からなる材料層が形成される。そして、材料層の所定箇所にレーザ光または電子ビームが照射されて、照射位置の材料粉体が溶融または焼結され、固化層が形成される。このような材料層と固化層の形成が繰り返されて、固化層が積層される。また、造形中または造形後に、固化層に対して切削加工が行われてもよい。このようにして、所望の三次元造形物が生成される。ここで、固化層とは、溶融層と焼結層を含む。また、積層された固化層を固化体と呼ぶ。
【0003】
このような金属の積層造形において、造形後の三次元造形物や造形途中の固化層に対して温度調整が行われる場合がある。例えば、特許文献1は、1層または複数層の固化層を形成する毎に意図的にマルテンサイト変態を進行させる積層造形方法を開示している。金属の収縮による引張応力がマルテンサイト変態による圧縮応力で軽減され、造形物の残留応力による変形が抑制される。本造形方法では、意図的にマルテンサイト変態を進行させるために、1層または複数層の固化層が形成される毎に、該固化層に所定の温度調整が行われる。
【0004】
特許文献1は、造形テーブル内に配置された温度調整機構によって固化層の温度調整を行う方法を開示している。また、特許文献1は、チャンバ内に設けた送風機により冷却気体を吹き付け、固化層の冷却を行う方法を開示している。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第6295001号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
造形途中の固化層に対して温度調整を行う造形方法としてマルテンサイト変態にともなう応力を利用して固化体全体の変形を抑制する造形方法を例示するが、当該造形方法においては、所定数の固化層の形成中は固化体全体が所定の造形温度にされ、粉末層が予熱されるとともに、材料層が溶融固化あるいは焼結されて固化層が形成され、形成された固化層を含む固化体が所定の造形温度まで加熱される。そして、所定数の固化層の形成後、固化体全体が所定の冷却温度まで冷却される。冷却後、材料層の予熱と次に形成される固化層を加熱するため、再度固化体全体が所定の造形温度まで加熱される。マルテンサイト変態を発生させるために冷却が必要な固化層は、新たに形成された固化層、すなわち冷却時点での固化体の上部に位置する一部分のみであるにも関わらず、造形テーブル内に配置された温度調整機構によって固化層の温度調整が行われるとき、固化体全体が温度調整される必要があった。そのため、輪郭形状を含めて所望の造形物(固化体)の種類にもよるが、固化層の数が多くなるほど、あるいは固化体の厚さが大きい物ほど、温度調整に要する時間が長くなる。そのため、とりわけ、比較的大きい造形物を生成するときの造形時間の短縮が望まれている。
【0007】
ここで、例えば、チャンバ内に設けた送風機を使用することによって、比較的温度が高くなっている固化体の上面から固化層を冷却するようにして冷却時間を短縮し、ひいては加熱時間も短縮するようにすることが考えられるが、冷却気体が吹き付けられる位置は一定であるため、固化体の位置や形状によっては効率よく固化層の冷却を行えない場合があった。
【0008】
本発明はこのような事情に鑑みてなされたものであり、より効率よく固化層を冷却することを目的とする。
【課題を解決するための手段】
【0009】
本発明によれば、所望の三次元造形物を所定高さで分割してなる複数の分割層毎に形成された材料層にレーザ光または電子ビームを照射して固化層を形成する照射装置と、前記固化層に対して加工を行う工具を把持する加工ヘッドと、加工ヘッドを少なくとも水平方向に移動させる加工ヘッド駆動装置と、を含む加工装置と、加工ヘッドに設けられ、固化層が積層してなる固化体の少なくとも一部を所定の冷却温度に冷却する冷却装置と、を備え、冷却装置は、冷却温度以下の不活性ガスである冷却ガスを排出する冷風口を有し、冷却ガスを固化体の少なくとも一部に吹き付ける冷却ガス吹付装置と、冷却ガス吹付装置に不活性ガスを供給する不活性ガス供給源と、を含む、積層造形装置が提供される。
【発明の効果】
【0010】
本発明に係る積層造形装置は、冷却ガスを固化体の少なくとも一部に吹き付ける冷却ガス吹付装置が、少なくとも水平方向に移動可能に構成された加工ヘッドに設けられる。これにより、所望の位置に冷却ガス吹付装置を移動させて冷却ガスを固化体の少なくとも一部に吹き付けることができ、固化体の位置や形状に応じてより効率よく冷却を行うことができる。
【図面の簡単な説明】
【0011】
図1】本発明の実施形態に係る積層造形装置の概略側面図である。
図2図1のD−D矢視断面図である。
図3】照射装置の概略構成図である。
図4】汚染防止装置の拡大図である。
図5】加工ヘッドおよび冷却装置の拡大図である。
図6】冷却ガス吹付装置およびダクトの断面図である。
【発明を実施するための形態】
【0012】
以下、図面を用いて本発明の実施形態について説明する。以下に説明される各種変形例は、それぞれ任意に組み合わせて実施することができる。
【0013】
本発明の実施形態に係る積層造形装置は、所望の三次元造形物を所定高さで分割してなる複数の分割層毎に、材料層83を形成する工程と、材料層83にレーザ光Lを照射して溶融または焼結させ固化層85を造形する工程とを繰り返し、所望の形状を有する三次元造形物を生成する。以下、積層され、互いに強く固着された固化層85を固化体87と呼ぶ。図1および図2に示すように、本発明の積層造形装置は、チャンバ10と、材料層形成装置3と、照射装置4と、加工装置6と、冷却装置7と、を備える。
【0014】
チャンバ10は、実質的に密閉されるように構成される。チャンバ10は、三次元造形物が形成される造形室11と、加工装置6の加工ヘッド駆動装置65の大部分が収容される駆動室12とに、蛇腹13によって仕切られる。造形室11と駆動室12との間には、不活性ガスが通過できるだけのわずかな隙間である連通部14が存在している。
【0015】
材料層形成装置3が、造形室11内に設けられる。材料層形成装置3は、所望の三次元造形物が形成される領域である造形領域Rを有するベース台31と、ベース台31上に配置され水平1軸方向に移動可能に構成されたリコータヘッド33と、を含む。リコータヘッド33の両側面にはそれぞれブレードが設けられる。リコータヘッド33は、不図示の材料供給装置から金属の材料粉体が供給され、内部に収容した材料粉体を底面から排出しながら水平1軸方向に往復移動する。このとき、ブレードは排出された材料粉体を平坦化して材料層83を形成する。造形領域Rには、造形テーブル駆動装置37により鉛直方向に移動可能な造形テーブル35が設けられる。積層造形装置の使用時には、造形テーブル35上にベースプレート81が配置され、ベースプレート81上に1層目の材料層83を形成される。
【0016】
造形テーブル35の内部には、造形テーブル35の温度を調整するための温度調整機構が設けられている。温度調整機構は、造形テーブル35の内部に設けられた加熱器および冷却器を有する。加熱器は、例えば、電熱器または熱媒体が流通される管路である。冷却器は、例えば、熱媒体が流通される管路である。なお、温度調整機構の冷却器はある程度の冷却が行える構造であればよく、後述する冷却装置7による冷却温度よりも高い温度に冷却が行えるものでよい。例えば、冷却器は造形テーブル35を常温に冷却可能である。
【0017】
照射装置4は、チャンバ10の上方に設けられる。照射装置4は、造形領域R上に形成される材料層83の所定の照射領域にレーザ光Lを照射して、照射位置の材料層83を溶融または焼結させ、固化層85を形成する。照射領域は、造形領域R内に存在し、所定の分割層における三次元造形物の輪郭形状で囲繞される領域とおおよそ一致する。図3に示すように、照射装置4は、光源41と、コリメータ43と、フォーカス制御ユニット45と、ガルバノスキャナと、を含む。
【0018】
光源41はレーザ光Lを生成する。ここで、レーザ光Lは、材料層83を焼結または溶融可能なものであればその種類は限定されず、例えば、ファイバレーザ、COレーザ、YAGレーザ、グリーンレーザまたは青色レーザである。コリメータ43は、光源41より出力されたレーザ光Lを平行光に変換する。フォーカス制御ユニット45は、集光レンズと、集光レンズを前後に移動させるモータとを有し、光源41より出力されたレーザ光Lを所望のスポット径に調整する。ガルバノスキャナは、一対のガルバノミラー47,49と、ガルバノミラー47,49をそれぞれ回転させるアクチュエータと、を有する。ガルバノミラー47,49は、不図示の制御装置から入力される回転角度制御信号の大きさに応じて回転角度が制御され、光源41より出力されたレーザ光Lを2次元走査する。
【0019】
ガルバノミラー47,49を通過したレーザ光Lは、造形室11の上面に設けられたウインドウ15を透過して造形領域Rに形成された材料層83に照射される。ウインドウ15は、レーザ光Lを透過可能な材料で形成される。例えば、レーザ光LがファイバレーザまたはYAGレーザの場合、ウインドウ15は石英ガラスで構成可能である。
【0020】
造形室11の上面には、ウインドウ15を覆うように汚染防止装置5が設けられる。図4に示すように、汚染防止装置5は、円筒状の筐体51と、筐体51内に配置された円筒状の拡散部材52を含む。筐体51と拡散部材52の間に不活性ガス供給空間53が設けられる。また、拡散部材52の内側の筐体51の底面には、開口部54が設けられる。拡散部材52には多数の細孔55が設けられており、不活性ガス供給空間53に供給された清浄な不活性ガスは細孔55を通じて清浄室56に充満される。そして、清浄室56に充満された清浄な不活性ガスは、開口部54を通じて汚染防止装置5の下方に向かって噴出される。このようにして、ウインドウ15に、ヒュームが付着することが防止される。
【0021】
なお、照射装置は、例えば電子ビームを照射して材料層83を焼結または溶融させて固化層85を形成するものであってもよい。例えば、照射装置は、電子を放出するカソード電極と、電子を収束して加速するアノード電極と、磁場を形成して電子ビームの方向を一方向に収束するソレノイドと、被照射体である材料層83と電気的に接続されカソード電極との間に電圧を印加するコレクタ電極と、を含むよう構成されてもよい。
【0022】
加工装置6は、加工ヘッド61と、加工ヘッド61を駆動するための加工ヘッド駆動装置65と、を含む。加工ヘッド駆動装置65は、造形室11内に配置される加工ヘッド61をY軸方向に移動させるY軸駆動装置652と、ベッド上に配置されY軸駆動装置652をX軸方向に移動させるX軸駆動装置651と、加工ヘッド61をZ軸方向に移動させるZ軸駆動装置653と、を有する。より具体的な構成を例示すると、X軸駆動装置651は、ベッドに固定されX軸方向に延びるX軸ガイドレールと、X軸ガイドレールに沿って摺動するX軸スライダと、X軸スライダに固定されるX軸移動体と、を有する。Y軸駆動装置652は、X軸移動体に固定されY軸方向に延びるY軸ガイドレールと、Y軸ガイドレールに沿って摺動するY軸スライダと、Y軸スライダに固定されるY軸移動体と、を有する。Z軸駆動装置653は、Y軸移動体に固定されZ軸方向に延びるZ軸ガイドレールと、Z軸ガイドレールに沿って摺動し加工ヘッド61が固定されるZ軸スライダと、を有する。なお、所定の水平1軸方向をX軸方向、X軸方向に垂直である水平1軸方向をY軸方向、所定の鉛直1軸方向をZ軸方向とする。
【0023】
加工ヘッド61は、スピンドル63を備える。スピンドル63は、不図示のエンドミル等の工具を把持して回転させることができるように構成されており、固化層85の表面や不要部分に対して切削加工を行うことができる。切削工具は複数種類の切削工具であることが好ましく、使用する切削工具は不図示の自動工具交換装置によって、造形中にも交換可能である。以上の構成によって、加工ヘッド61は、造形室11内の任意の位置において、固化層85に対して切削加工を施すことができるようになっている。
【0024】
なお、上記実施形態に代えて、加工装置は、バイト等の工具を把持するとともに切削工具を鉛直方向の回転軸に沿って回動させる旋回機構が設けられた加工ヘッドと、加工ヘッドを水平駆動するための加工ヘッド駆動装置を含んでいてもよい。加工ヘッド駆動装置は、例えば、一対の第1水平移動機構と、一対の第1水平移動機構に設けられているガントリと、ガントリに取り付けられており加工ヘッドが固定された第2水平移動機構と、を有する。このとき、加工ヘッド駆動装置は、加工ヘッドをZ軸方向に移動させる駆動装置を有していなくてもよい。すなわち、加工ヘッド駆動装置は少なくとも水平方向に加工ヘッドを移動可能に構成されればよい。
【0025】
チャンバ10は、造形中は不活性ガス供給装置16から所定濃度の不活性ガスが供給されるとともに、固化層85の形成時に発生するヒュームを含む不活性ガスを排出している。また、チャンバ10から排出された不活性ガスは、ヒュームコレクタ17によりヒュームが除去された上でチャンバ10に返送されることが好ましい。チャンバ10には、不活性ガス供給装置16から供給される不活性ガスおよびヒュームコレクタ17から返送される不活性ガスの供給口と、チャンバ10からヒュームコレクタ17へとヒュームを含んだ不活性ガスを排出する排出口がそれぞれ1つ以上設けられる。本実施形態においては、図1および図2に示すように、供給口として第1供給口211、第2供給口212、第3供給口213、第4供給口214および第5供給口215が設けられる。また、排出口として第1排出口221、第2排出口222および第3排出口223が設けられる。また、不活性ガス供給装置16は、第1の不活性ガス供給装置161と、第2の不活性ガス供給装置162とを含む。各部はホースやパイプ等の管路で接続される。
【0026】
第1供給口211は、リコータヘッド33の一方の側面に設けられる。第2供給口212は、第1供給口211が設けられた側と反対側のベース台31の端面上に敷設された配管に設けられる。第1供給口211および第2供給口212はそれぞれ第1の不活性ガス供給装置161に接続され、リコータヘッド33の移動位置に応じて、択一的に第1供給口211または第2供給口212を通じて所定の圧力と流量の不活性ガスがチャンバ10に供給される。すなわち、照射領域に対して第1供給口211が対面する位置にあるときは第1供給口211を通じて不活性ガスが供給され、照射領域に対して第1供給口211が対面しない位置にあるときは第2供給口212を通じて不活性ガスが供給される。第3供給口213は、第2供給口212が設けられた側のチャンバ10の側壁に設けられ、造形室11の中央より下側の高さに位置する。第3供給口213はヒュームコレクタ17と接続され、ヒュームが除去された清浄な不活性ガスが第3供給口213を通じてチャンバ10に返送される。第4供給口214は、駆動室12の上部に設けられる。第2の不活性ガス供給装置162から駆動室12に供給された不活性ガスは連通部14を通じて造形室11内に供給される。第5供給口215は、汚染防止装置5の上部に設けられ、第1の不活性ガス供給装置161から汚染防止装置5の不活性ガス供給空間53に不活性ガスが供給される。
【0027】
第2供給口212および第3供給口213が設けられた側と反対側のチャンバ10の側壁を覆うように仕切板23が設けられる。仕切板23と側壁とで区切られる空間のチャンバ10の上端部に第1排出口221が設けられ、仕切板23付近のチャンバ10の照射領域側の上端部に第2排出口222が設けられる。また、第2排出口222の下には、第2排出口222を囲むように仕切板23側に断面L字状に延びる上部案内板24が設けられる。仕切板23の下端には、下部が照射領域側に延びる下部案内板25が設けられ、仕切板23と下部案内板25との間には所定の間隙26が形成される。間隙26は、造形室11の中央より下側の高さに位置する。間隙26付近には仕切板23と側壁とで区切られる空間に不活性ガスを吸引する複数のファン27が設けられ、各ファン27の両端には上方向に延びる整流板28が設けられる。仕切板23付近に送られた不活性ガスは、間隙26または下部案内板25の下から、仕切板23と側壁とで区切られる空間を通り、第1排出口221へと送られる。また、間隙26から回収しきれなかった不活性ガスは仕切板23に沿って上昇し、上部案内板24に案内されて第2排出口222へと送られる。第3排出口223は、リコータヘッド33の第1供給口211が設けられていない側の側面に設けられる。第1排出口221、第2排出口222および第3排出口223を通じて、不活性ガスがチャンバ10から排出され、ヒュームコレクタ17へと送られる。
【0028】
不活性ガス供給装置16は、窒素等の不活性ガスをチャンバ10へ供給する。不活性ガス供給装置16は、所定濃度の不活性ガスを供給できるものであればよいが、本実施形態では、第1の不活性ガス供給装置161と、第2の不活性ガス供給装置162とを含む。第1の不活性ガス供給装置161は、第2の不活性ガス供給装置162よりもより高濃度の不活性ガスを供給できるものが望ましく、例えば、第1の不活性ガス供給装置161はPSA式窒素発生装置であり、第2の不活性ガス供給装置162は膜分離式窒素発生装置である。前述の通り、第1の不活性ガス供給装置161と第1供給口211、第2供給口212および第5供給口215とが接続され、第2の不活性ガス供給装置162と第4供給口214とが接続される。このように構成することで、不活性ガス濃度が直接的に造形に影響する造形室11により高濃度の不活性ガスを供給できるとともに、所要の不活性ガス供給量を維持することができる。なお、不活性ガスとは、材料粉体と実質的に反応しないガスであり、窒素ガス、アルゴンガス、ヘリウムガス等から材料の種類に応じて適当なものが選択される。また、不活性ガス供給装置16は1つであってもよいし、所定濃度の不活性ガスが貯留されたガスボンベであってもよい。なお、不活性ガス供給装置16から供給される不活性ガスは、十分乾燥していることが望ましい。
【0029】
ヒュームコレクタ17は、例えば乾式電気集塵機である。チャンバ10から排出されたヒュームを含む不活性ガスは、ヒュームコレクタ17に送られ、電気集塵によりヒュームが除去される。ヒュームが除去された清浄な不活性ガスが、チャンバ10の第3供給口213に送られる。このような構成により、不活性ガスの再利用が可能になっている。なお、ヒュームコレクタ17は他の装置であってもよく、フィルタを含む濾過式集塵機であってもよい。また、ヒュームコレクタ17内部の不活性ガスを効率的に循環させるため、ファンモータが設けられてもよい。
【0030】
冷却装置7は、所定の冷却温度以下の不活性ガスである冷却ガスを、固化体87の少なくとも一部に吹き付けることで、固化体87の少なくとも一部を冷却温度に冷却する。本実施形態の冷却装置7は、冷却ガス吹付装置71と、不活性ガス供給源と、ダクト73と、第1の昇降装置75と、温度測定ユニット77と、を含む。冷却装置7は、図5に示されるように、加工ヘッド61に設けられ、加工ヘッド駆動装置65により造形室11内の所望の位置に移動できるように構成されている。これにより、固化体87の位置や形状に応じて、冷却ガス吹付装置71を所望の位置に移動させて冷却ガスの吹き付けを行うことができる。
【0031】
本実施形態の冷却ガス吹付装置71は、供給された不活性ガスを冷却ガスと加熱された不活性ガスである加熱ガスとに分離する、いわゆるボルテックスチューブである。図6に示されるように、冷却ガス吹付装置71は、内部に不活性ガスが流通する渦流管711を有する。渦流管711には、供給口712、温風口713、冷風口714、整流板715、調整ねじ716が設けられる。供給口712は、温風口713と冷風口714との間に設けられており、不活性ガス供給源と接続され、渦流管711内に所定圧力の不活性ガスを供給する。温風口713および冷風口714は、それぞれ渦流管711の一端部と他端部に設けられる。温風口713側の渦流管711の内径は、冷風口714側の渦流管711の内径よりも大きく構成される。供給口712から供給された不活性ガスは、渦流管711の渦流発生子により渦流となり、渦流管711の内壁に沿って旋回しながら温風口713側へと向かう。以下、この渦流を外側渦流という。このとき、外側渦流の遠心力により、不活性ガスの温度は、渦流管711の内壁側では高温となり、中心部では低温となる。整流板715を通過して無回転となった不活性ガスの一部は、加熱ガスとして温風口713から排出される。残りの不活性ガスは、整流板715により外側渦流とは逆回転の渦流となり、渦流管711の中心部を通り冷風口714側へと向かう。以下、この渦流を内側渦流という。内側渦流は、膨張・減速しながら外側渦流に対して仕事を行うので、外側渦流の温度は上昇し、内側渦流の温度は低下する。そして、内側渦流は、冷却ガスとして冷風口714から排出される。調整ねじ716により温風口713から排出される加熱ガスの流量を調整することで、冷却ガスの温度を調整することができる。以上のような構成によれば、冷媒を使用せず、また比較的小型に冷却ガス吹付装置71を構成することができる。ただし、冷却ガスを排出する冷風口を有するものであれば、他の冷却ガス吹付装置が使用されてもよい。
【0032】
不活性ガス供給源は、冷却ガス吹付装置71に不活性ガスを供給できる任意の装置である。具体的に、本実施形態においては、第1の不活性ガス供給装置161が不活性ガス供給源として用いられ、第1の不活性ガス供給装置161と、供給口712とが不図示の管路で接続される。当該管路には不図示の電磁弁が設けられ、不活性ガスの供給・停止が切り替えられるように構成される。ただし、不活性ガス供給源として、第2の不活性ガス供給装置162またはヒュームコレクタ17が用いられてもよい。また、別途空気から所望の不活性ガスを発生させる不活性ガス発生装置や、所望の不活性ガスが貯蔵されたガスボンベ等を不活性ガス供給源として設けてもよい。いずれの場合においても、冷却ガスが結露することを防止するため、不活性ガス供給源から供給される不活性ガスは、十分乾燥していることが望ましい。
【0033】
冷却ガス吹付装置71の冷風口714側にダクト73が設けられる。ダクト73は、冷却ガスが流通する管路であり、冷風口714と接続される第1の開口731と、固化体87の少なくとも一部と対面する第2の開口732と、を有する。冷風口714から排出された冷却ガスは、一旦ダクト73に貯留されてから第2の開口732から下方に排出される。そのため、直接冷風口714から固化体87に冷却ガスを吹き付けるよりも、ダクト73を介して固化体87に冷却ガスを吹き付ける方が、冷却ガスが散在しづらく冷却効率がよい。好ましくは、第2の開口732は水平方向に沿って延び、冷風口714よりも面積が大きく構成される。第2の開口732は、任意の形状であってよい。本実施形態においては、第2の開口732は、X軸方向に延びる一対の線と、Y軸方向に延びる一対の線を辺とする矩形形状を有する。このようなダクト73により、冷却ガスが吹き出される範囲を所望の形状および面積に調整することができ、より効率よく固化体87の冷却が行える。なお、冷却ガスの温度上昇を防止するためダクト73は断熱されていることが望ましい。本実施形態においては、ダクト73の外側面に不図示の断熱材が設けられる。
【0034】
第1の昇降装置75は、加工ヘッド61に設けられ、冷却ガス吹付装置71を鉛直方向に移動させる。換言すれば、冷却ガス吹付装置71は第1の昇降装置75を介して加工ヘッド61に取り付けられる。第1の昇降装置75は、例えばエアシリンダであるが、油圧シリンダや電動モータ等その他のアクチュエータが使用されてもよい。冷却装置7による冷却時以外は、冷却ガス吹付装置71を上方に移動させておくことで、加工装置6により固化層85の加工を行うとき等に、冷却ガス吹付装置71やダクト73が干渉することを防止できる。
【0035】
本実施形態の温度測定ユニット77は、固化体87の上面と接触して温度を測定する接触式の温度センサ771と、温度センサ771を鉛直方向に移動させる第2の昇降装置772を含む。温度センサ771は、例えば熱電対であるが、測温抵抗体等その他の温度センサが使用されてもよい。第2の昇降装置772は、例えばエアシリンダであるが、油圧シリンダや電動モータ等その他のアクチュエータが使用されてもよい。温度センサ771は、温度測定時以外は、第2の昇降装置772により上方に退避される。なお、温度測定ユニットは、固化体87の温度を測定する温度センサを含んでいればよく、例えば、赤外線温度センサ等の非接触式温度センサを含むよう構成されてもよい。固化体87の温度を測定することで、固化体87が所望の冷却温度に到達しているかを確認することができる。
【0036】
本実施形態の積層造形装置は、造形途中に固化層85に対して温度調整を行う三次元造形物の製造方法を実施するにあたり、特に有効である。そのような製造方法の一例として、本実施形態においては、固化層85に対して所定の温度条件で加熱および冷却を行いながら造形を行うことで、意図的にマルテンサイト変態を進行させて三次元造形物の応力制御を行う積層造形方法が実施される。より具体的には、1層または複数層の固化層85が新たに造形される毎に、新たに造形された固化層85に対し、所定の造形温度、所定の冷却温度、所定の造形温度の順番で温度調整が行われる。ここで、造形温度は、固化層85のマルテンサイト変態終了温度以上であり、冷却温度は、造形温度よりも低く、固化層85のマルテンサイト変態開始温度以下である。この温度条件を満たす範囲において、造形温度および冷却温度の具体的数値は、造形中に変更されてもよい。また、冷却の対象となる1層または複数層の固化層85は固化体87の上方に位置し、以下において当該固化層85を上面層と呼ぶ。上面層は、冷却時点における最上位の固化層85を含む。
【0037】
まず、造形テーブル35上にベースプレート81が載置され、造形テーブル35の高さが適切な位置に調整される。また、造形テーブル35内に設けられた温度調整機構により、造形テーブル35の温度が所定の造形温度に設定される。造形温度に温度調整された造形テーブル35は、材料層83を予熱するとともに、形成された固化層85を造形温度に加熱する。
【0038】
この状態でリコータヘッド33が造形領域R上を移動して造形領域Rに材料粉体を吐出する。材料粉体はリコータヘッド33に設けられたブレードによって均され、ベースプレート81上に1層目の材料層83が形成される。材料粉体は、マルテンサイト変態が生じる金属材料、例えば炭素鋼またはマルテンサイト系ステンレス鋼の粉体である。
【0039】
次に、照射装置4が1層目の材料層83の照射領域にレーザ光Lを照射する。レーザ光Lによって照射領域内の材料粉体が焼結または溶融され、1層目の固化層85が形成される。
【0040】
複数の固化層85に対して冷却が行われる場合は、引き続き、材料層83の形成と固化層85の形成を行う。造形テーブル35が材料層83の厚さ分下げられ、リコータヘッド33が造形領域R上を移動し、1層目の固化層85上に2層目の材料層83が形成される。照射装置4が2層目の材料層83にレーザ光Lを照射し、2層目の固化層85が形成される。以上のように材料層83の形成と固化層85の形成が繰り返され、複数の固化層85が積層してなる固化体87が形成される。
【0041】
所定数の固化層85が形成された後、冷却装置7によって上面層の冷却が行われる。造形温度に温度調整されている上面層が、所定の冷却温度にまで冷却される。なお、冷却時は、好ましくは、造形テーブル35内の温度調整機構の加熱器が停止され、冷却器が造形テーブル35の温度を低下させる。このとき、造形テーブル35は固化体87に過剰に熱が伝達することを抑制できる程度に冷却されていればよく、所定の冷却温度まで冷却される必要はない。例えば、造形テーブル35は常温に温度調整される。
【0042】
まず、加工ヘッド駆動装置65のX軸駆動装置651およびY軸駆動装置652により、加工ヘッド61に設けられた冷却ガス吹付装置71およびダクト73を上面層の上方まで移動させる。そして、第1の昇降装置75が、冷却ガスの排出位置が上面層に近接するよう、冷却ガス吹付装置71およびダクト73の位置を下降させる。加工ヘッド駆動装置65がZ軸駆動装置653を有している場合はさらに、冷却ガス吹付装置71およびダクト73が上面層により近接する位置にまで加工ヘッド61を下降させてもよい。
【0043】
そして、冷却ガス吹付装置71からの冷却ガスの排出が開始される。具体的に、不活性ガス供給源、本実施形態においては第1の不活性ガス供給装置161から、冷却ガス吹付装置71への不活性ガスの供給が開始され、ダクト73の第2の開口732から冷却ガスが上面層に向かって吹き出される。上面層の大きさに応じて、X軸駆動装置651およびY軸駆動装置652の少なくとも一方により、冷却ガス吹付装置71およびダクト73が移動されながら冷却が行われてもよい。冷却に要する時間は、あらかじめ測定したデータに基づいて決定されてもよいし、材料の種類、固化体87全体または上面層の体積・形状、造形温度、冷却温度等から都度算出されてもよい。このような冷却により、上面層のオーステナイト相の少なくとも一部が、マルテンサイト相へと変態する。
【0044】
冷却後に温度測定ユニット77が固化体87上面の温度を測定し、所定の冷却温度に到達していないようであれば、再度冷却装置7による冷却を行うよう構成してもよい。また、温度測定ユニット77が固化体87上面の温度を測定しながら冷却装置7による冷却を行い、所定の冷却温度に到達するまで冷却を継続するよう構成してもよい。
【0045】
上面層の冷却を完了した後、不活性ガス供給源から冷却ガス吹付装置71への冷却ガスの供給が停止され、第1の昇降装置75が冷却ガス吹付装置71を上方に移動させる。また、造形テーブル35内に設けられた温度調整機構が、再度造形テーブル35の温度を所定の造形温度に設定する。このとき、温度測定ユニット77が固化体87上面の温度を測定し、固化体87が再度造形温度に到達するまで、次層の材料層83および固化層85の形成を開始しないよう構成してもよい。そして、加工ヘッド駆動装置65が、加工ヘッド61をリコータヘッド33やレーザ光Lに干渉しない位置まで退避させる。
【0046】
なお、所定数の固化層85が形成される毎に、固化層85の端面に対して、加工装置6によって加工を行う加工工程が実施されてもよい。好ましくは、冷却後の上面層に対して切削加工が実施される。このようにすれば、マルテンサイト変態を起こし寸法が安定した後の上面層に対して切削を行うことができるので、より高精度に切削が行われることができる。さらに好ましくは、冷却後であって常温に温度調整された上面層に対して切削加工が実施される。このようにすれば、温度による膨張または収縮の影響を抑えて上面層に対して切削を行うことができるので、より高精度に切削が行われることができる。
【0047】
以上に説明したように、材料層83および固化層85の形成と、固化層85の冷却と、固化層85の切削が繰り返され、所望の三次元造形物が形成される。本実施形態の冷却装置7によれば、造形テーブル35内に設けられた温度調整機構のみが冷却に用いられる場合と比較して、より迅速に上面層の温度が冷却されることができ、三次元造形物の造形時間が短縮されることが可能となる。また、前述の意図的にマルテンサイト変態を進行させて三次元造形物の応力制御を行う積層造形方法においては、固化体全体が冷却される必要はなく、固化体の上部、すなわち上面層のみ冷却されればよいため、本実施形態の冷却装置7が特に有効である。また、冷却装置7は加工ヘッド61に設けられているので、冷却装置7を水平方向に移動させるための別の駆動装置が設けられる必要がなく、冷却装置7を比較的簡易で小型な構造にできるとともに、固化体87の位置や形状に応じてより効率よく冷却を行うことができる。
【符号の説明】
【0048】
4 照射装置
6 加工装置
7 冷却装置
61 加工ヘッド
65 加工ヘッド駆動装置
71 冷却ガス吹付装置
83 材料層
85 固化層
714 冷風口
L レーザ光
図1
図2
図3
図4
図5
図6
【手続補正書】
【提出日】2020年10月12日
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】請求項1
【補正方法】変更
【補正の内容】
【請求項1】
所望の三次元造形物を所定高さで分割してなる複数の分割層毎に形成された材料層にレーザ光または電子ビームを照射して固化層を形成する照射装置と、
前記固化層に対して加工を行う工具を把持する加工ヘッドと、前記加工ヘッドを少なくとも水平方向に移動させる加工ヘッド駆動装置と、を含む加工装置と、
前記加工ヘッドに設けられ、前記固化層が積層してなる固化体の少なくとも一部を所定の冷却温度に冷却する冷却装置と、を備え、
前記冷却装置は、
前記冷却温度以下の不活性ガスである冷却ガスを排出する冷風口を有し、前記冷却ガスを前記固化体の前記少なくとも一部に吹き付ける冷却ガス吹付装置を含み
前記冷却ガス吹付装置に前記不活性ガスを供給する不活性ガス供給源をさらに備える、積層造形装置。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0009
【補正方法】変更
【補正の内容】
【0009】
本発明によれば、所望の三次元造形物を所定高さで分割してなる複数の分割層毎に形成された材料層にレーザ光または電子ビームを照射して固化層を形成する照射装置と、前記固化層に対して加工を行う工具を把持する加工ヘッドと、加工ヘッドを少なくとも水平方向に移動させる加工ヘッド駆動装置と、を含む加工装置と、加工ヘッドに設けられ、固化層が積層してなる固化体の少なくとも一部を所定の冷却温度に冷却する冷却装置と、を備え、冷却装置は、冷却温度以下の不活性ガスである冷却ガスを排出する冷風口を有し、冷却ガスを固化体の少なくとも一部に吹き付ける冷却ガス吹付装置を含み、冷却ガス吹付装置に不活性ガスを供給する不活性ガス供給源をさらに備える、積層造形装置が提供される。
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0030
【補正方法】変更
【補正の内容】
【0030】
冷却装置7は、所定の冷却温度以下の不活性ガスである冷却ガスを、固化体87の少なくとも一部に吹き付けることで、固化体87の少なくとも一部を冷却温度に冷却する。本実施形態の冷却装置7は、冷却ガス吹付装置71と、ダクト73と、第1の昇降装置75と、温度測定ユニット77と、を含む。冷却装置7は、図5に示されるように、加工ヘッド61に設けられ、加工ヘッド駆動装置65により造形室11内の所望の位置に移動できるように構成されている。これにより、固化体87の位置や形状に応じて、冷却ガス吹付装置71を所望の位置に移動させて冷却ガスの吹き付けを行うことができる。
【手続補正書】
【提出日】2021年2月10日
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
所望の三次元造形物を所定高さで分割してなる複数の分割層毎に形成された材料層にレーザ光または電子ビームを照射して固化層を形成する照射装置と、
前記固化層に対して加工を行う工具を把持する加工ヘッドと、前記加工ヘッドを少なくとも水平方向に移動させる加工ヘッド駆動装置と、を含む加工装置と、
前記加工ヘッドに設けられ、前記固化層が積層してなる固化体の少なくとも一部を所定の冷却温度に冷却する冷却装置と、を備え、
前記冷却装置は、
供給口、温風口、前記冷却温度以下の不活性ガスである冷却ガスを排出する冷風口が設けられる、内部を流通する前記不活性ガスを前記冷却ガスと加熱された前記不活性ガスである加熱ガスとに分離する渦流管を有し、前記冷却ガスを前記固化体の前記少なくとも一部に吹き付ける冷却ガス吹付装置を含み、
前記冷却ガス吹付装置に前記不活性ガスを供給する不活性ガス供給源をさらに備え、
前記供給口は、前記温風口と前記冷風口の間に設けられ、前記不活性ガス供給源と接続され、
前記温風口は、前記渦流管の一端部に設けられ、前記加熱ガスを排出し、
前記冷風口は、前記渦流管の他端部に設けられ、前記冷却ガスを排出する、積層造形装置。
【請求項2】
前記冷却装置は、前記冷却ガス吹付装置を鉛直方向に移動させる第1の昇降装置をさらに含む、請求項に記載の積層造形装置。
【請求項3】
前記冷却装置は、前記冷却ガスが流通する管路であり、前記冷風口と接続される第1の開口と、前記固化体の前記少なくとも一部と対面する第2の開口と、を有するダクトをさらに含む、請求項1または請求項2に記載の積層造形装置。
【請求項4】
前記第2の開口は、水平方向に沿って延びる、請求項に記載の積層造形装置。
【請求項5】
前記第2の開口は、前記冷風口よりも面積が大きい、請求項または請求項に記載の積層造形装置。
【請求項6】
前記加工ヘッドに設けられ、前記固化体の温度を測定する温度センサを含む温度測定ユニットをさらに備える、請求項1から請求項のいずれか1項に記載の積層造形装置。
【請求項7】
前記温度センサは、前記固化体と接触して温度を測定する接触式温度センサであり、
前記温度測定ユニットは、前記温度センサを鉛直方向に移動させる第2の昇降装置をさらに含む、請求項に記載の積層造形装置。
【請求項8】
前記冷却温度は、前記固化層のマルテンサイト変態開始温度以下である、請求項1から請求項のいずれか1項に記載の積層造形装置。