【実施例】
【0077】
実施例1
老化におけるサルコペニック肥満の代謝的基礎:グルタチオンの役割
[0083]高齢者は、過体重となる、又は、肥満を発症するリスクが最も高い。この集団における筋量低下の罹患率と共に、高齢者は、「サルコペニック肥満」の表現型を発症し、筋力の低下及び生活の質の低下を伴うが、発症機序は十分に理解されておらず、有効な療法がない。ヒト及びげっ歯類における橋渡しの研究の結果、最も豊富な内因性抗酸化物質であるグルタチオン(GSH)の老化における欠乏が、ミトコンドリアの機能不全に関連することが見出され、いくつかの実施形態では、これによって、高齢者におけるサルコペニック肥満発症の機構の説明がもたらされる。高齢者におけるGSH欠乏は、その前駆体アミノ酸であるシステイン及びグリシンの利用可能量が限定されていることによる、合成の減少が原因となって起こる。これらのアミノ酸の短期間の補給は、これら自体の欠乏を是正し、かつGSHの細胞内合成及び濃度を回復させるには十分である。絶食した健康な若年のヒトの対照に比べ、絶食したGSH欠乏の高齢者は、炭水化物の酸化の増加(筋低下に寄与し得る)と共に、ミトコンドリアの脂肪酸の酸化の重篤な障害(脂肪貯蔵を促進し得る)を有した。絶食状態におけるミトコンドリアの優先的なエネルギー源は脂肪酸であり、グルコースではないことから、絶食時のエネルギー源優先度におけるこの異常な逆転は、ミトコンドリアのエネルギー使用の障害を示唆している。興味深いことに、前駆体のシステイン及びグリシンの2週間にわたる補給による、これらの高齢者におけるGSH合成の回復の結果、絶食時のミトコンドリアの脂肪酸及び炭水化物の酸化は、若年の対照で見られた水準まで完全に回復した。これらのデータに基づき、ミトコンドリアの脂肪酸の酸化の障害により、エネルギー需要を満たすために、エネルギー源の酸化がグルコースに移行しているものと考えられる。絶食状態では、グルコースは、筋タンパク質が大きく寄与する糖新生によって供給されるため、この結果、筋タンパク質が(よって筋量も)低下し、並びに、システイン及びグリシン(既知の糖新生アミノ酸)が欠乏し、GSH欠乏を更に拡大する。筋量の低下は、次いで筋力の低下を来し得る。システイン及びグリシンの補給は、GSH欠乏を是正し、この悪循環を断ち切り、ミトコンドリアの脂肪酸の酸化を是正し(よって総体脂肪を低下させる)、炭水化物の酸化を低下させ(よって筋タンパク質の低下を回避し、除脂肪量を増加させる)、筋力を増加させ得る。この考察は、生物学的老化を有するHIV患者における試験により支持される。この試験において、システイン及びグリシンの補給(高齢者の試験と同一の用量及び期間を用いた)によるGSH欠乏の改善は、2週間の期間内で、絶食時のミトコンドリアのエネルギー源の酸化の回復、総体脂肪量の3.5ポンドの低下、除脂肪量の1.9ポンドの増加、並びに利き腕及び非利き腕の筋力の顕著な増加を伴った。
【0078】
実施例2
サルコペニア、サルコペニック肥満、悪液質及び筋消耗の予防及び治療
[0084]サルコペニアは、老化に関連した骨格筋量、質、及び筋力の退行性の低下である。サルコペニアはまた、不使用及び無重力又は無重力に付随する場合がある。悪液質は、癌、HIVAIDS、COPD、神経変性疾患(多発性硬化症等)、うっ血性心疾患、結核及び腎疾患といった、様々な慢性疾患を伴う、体重減少、筋萎縮症、衰弱及び疲労を特徴とする、複雑な代謝消耗症候群である。サルコペニアは、体脂肪量の増加、すなわち、サルコペニック肥満に関連する場合があり、悪液質は体脂肪量の低下に関連する、又は、関連しない場合がある。
【0079】
[0085]これらの状態は、システイン及びグリシンを提供することにより、細胞内GSHを上昇させ、哺乳動物における筋肉の健康を改善するための、予防及び治療の主要な標的となる。その前駆体であるシステイン及びグリシンを投与することによるGSHの改善は、高齢のHIV感染患者において、ミトコンドリアのエネルギー源の酸化の生理学的パターンの改善、総体脂肪、腹囲及びインスリン抵抗性の低下、並びに除脂肪体重及び筋力の増加に関連し、本方法が、サルコペニア、サルコペニック肥満、及び悪液質を予防し得る、かつ、回復に向かわせ得ることを示唆している。
【0080】
実施例3
薬物及び他の毒性に対する予防及び治療
[0086]例えば、アセトアミノフェン及び抗レトロウイルス薬といった、様々な薬物が、ミトコンドリア毒性及び/又は肝毒性を引き起こす。ミトコンドリア毒性を引き起こす特定の薬物としては、少なくとも、抗痙攣薬、向精神薬(抗うつ薬、抗精神病薬、バルビツレート、及び抗不安薬)、抗コレステロール薬、鎮痛薬/抗炎症薬、抗生物質、抗不整脈薬、ステロイド、抗ウイルス薬、抗レトロウイルス薬、抗癌剤、抗糖尿病薬、β遮断薬、及び免疫化が挙げられる。具体的な薬物としては、バルプロエート、アミトリプチリン、アモキサピン、フルオキセチン、シタロプラム、クロルプロマジン、フルフェナジン、ハロペリドール、リスペリドン、フェノバルビタール、セコバルビタール、ブタルビタール、アモバルビタール、ペントバルビタール、アルプラゾラム、ジアゼパム、スタチン、胆汁酸−コレスチラミン、シプロフィブラート、フェノフィブラート、アスピリン、アセトアミノフェン、インドメタシン、ナプロキセン、ジクロフェナク、テトラサイクリン、ミノサイクリン、クロラムフェニコール、テノホビル、ダルナビル、リバビリン、テラプレビル、アミノグリコシド、リネゾリド、アミオダロン、インターフェロン、ジドブジン、ドキソルビシン、シス−プラチナム、タモキシフェン、及びメトホルミンが挙げられる。
【0081】
[0087]特定の実施形態において、NAC及び/又はグリシンを個体に投与し、ミトコンドリア毒性及び/又は肝毒性の有害作用を予防、治療、又は軽減する。特定の実施形態において、酸化ストレス及び/又はGSH欠乏に関連した他の毒性が、本開示の方法によって治療される。
【0082】
[0088]特定の実施形態において、肝毒性と関連した、アセトアミノフェン毒性を予防及び治療する方法がある。肝毒性は、薬物開発中、また、多くの確立した薬物の使用に対し、重大な問題である。例えば、アセトアミノフェンの過剰投与は、現在、米国における急性肝不全の最も多い原因となっている。肝ミトコンドリアは、反応性代謝物の形成が直接又は間接的に関与する、薬物毒性の重大な標的である。アセトアミノフェン(タイレノール(登録商標)、パラセタモール、N−アセチル−p−アミノフェノール;APAP)は、一般市販薬の鎮痛解熱薬である。アセトアミノフェンはまた、ヒドロコドン、プロポキシフェン、コデイン、及びオキシコドンと、多くの処方箋麻薬と併用されることも多い。治療用量において、アセトアミノフェンは、アスピリン及びイブプロフェンに類似の鎮痛解熱作用を有するが、治療レベル域は非常に狭い。アセトアミノフェンは、推奨範囲内の用量においてであっても、急性肝不全の主因であり、毎年、中毒管理センターへの何万もの通話及び入院、並びに何百もの死亡の原因となっている。アルコール摂取量及び絶食(疾患、食欲不振、又は栄養障害による)は両方とも、アセトアミノフェンによる肝損傷のリスクを大きく増加させる。
【0083】
[0089]高齢、アルコール摂取、及び絶食(例えば、疾患、食欲不振、又は栄養障害による)、並びにアセトアミノフェン自体の代謝産物ですら、グルタチオン、肝臓がアセトアミノフェンを解毒するのを助ける抗酸化物質のレベルを低下させることにより、肝損傷のリスクを大きく増加させる。標準的な用量においても、ヒトにおけるアセトアミノフェンの代謝により、少量の毒性物質、N−アセチル−ベンゾキノンイミン(又はNAPQI)が放出される。過量により、更により大量のこの毒素が生成される。アセトアミノフェンの安全用量と危険用量との間は紙一重であり、すなわち、最大推奨用量の4g/日をわずかに超えた用量であっても、肝障害を引き起こし得る。
【0084】
[0090]肝臓において最適な細胞内グルタチオン濃度を利用することは、アセトアミノフェン毒性に対する、当然の予防及び治療法である。N−アセチルシステインの投与は、肝臓のグルタチオン貯蔵を維持するその能力により、アセトアミノフェンの過剰投与によって誘発される肝毒性に対する、主要な治療法である。特定の実施形態において、アセトアミノフェンの前に、アセトアミノフェンと共に、かつ/又はアセトアミノフェンの後に、NAC/グリシンによって肝GSHレベルを上昇させることにより、アセトアミノフェンの毒作用を、規定水準にまで緩和する。
【0085】
実施例4
身体パフォーマンスの改善
[0091]本開示の方法及び/又は組成物は、身体パフォーマンスの改善のため、運動の効果を高めることによる筋量低下の予防のため、激しい運動からの回復のため、又は老化及び筋低下を加速させる非疾患状態によって引き起こされる除脂肪筋量の低下を、この低下がなければ身体が健康な若年の個体(宇宙飛行士(無重力状態)、マラソンランナー、消防士、一流アスリート等)において回復に向かわせるために、個体に提供される場合がある。更に、持久的な活動は、酸化ストレスを特に増加させ、これは、細胞内GSHの欠乏を既に有している可能性がある高齢のアスリートにおいて、特に懸念となる場合がある。したがって、特定の実施形態において、本開示の方法は、運動の酸化ストレスを予防及び/又は治療する。
【0086】
実施例5
寿命
[0092]老化マウスへのシステイン(n−アセチルシステインとして)及びグリシンの補給給餌は、抗酸化物質のグルタチオンレベルを上昇させるのに十分である。これらの老化マウスにおけるグルタチオンの回復の結果、ミトコンドリアのエネルギー源の酸化が顕著に回復した。これらの有益な変化は、寿命に影響を及ぼすのに有用であるため、マウスの給餌におけるシステイン(n−アセチルシステインとして)及びグリシンの補給が、マウスの寿命を延長するか否かについて試験した。試験は以下のように実施した:60週齢のマウスを2群(各群、マウス7匹(雌2匹及び雄5匹))で試験し、両群とも、性別、週齢及び体重を一致させた。1群は、通常の飼料を自由にとることができ、第2の群は、更にシステイン(n−アセチルシステインとして)及びグリシンを含有する飼料が給餌された。しかしながら、両方の飼料の含量は、飼料1g当たりのカロリー及びタンパク質窒素の量が同一であった。すなわち、両方の飼料は、等カロリーかつ等窒素であった。飼料の重量をモニターしたところ、摂餌量は両群で同様であった。動物には、それぞれの飼料及び水を自由にとらせ、寿命を主要評価項目として記録した。結果によると、システイン及びグリシンを補充した飼料を摂取したマウスは、平均で34週間長く生存し、これは35%の寿命の延長に相当する(
図6)。
【0087】
実施例6
高齢者におけるHIV
[0093]HIVに感染した50歳超の患者は、老人病の非HIV患者と同等の、筋量の低下、筋力の低下及び機能制限を伴った、加速度的な機能低下を有することが報告されているが、これらの不良の発症機序は十分に理解されておらず、有効な療法がない。このことを認識し、疾病管理センター(Centers for Disease Control)は、HIV患者における「高齢」についてのカットオフが、50歳で開始することを示唆している。
【0088】
[0094]本開示の特定の実施形態において、高齢のHIV感染患者における機能低下は、ミトコンドリアの機能障害に関連している。ミトコンドリアは、有害な活性酸素種及び酸化ストレスに対する防御を、抗酸化物質に依存している。グルタチオン(GSH)は、最も豊富な内因性の細胞内抗酸化物質であり、ミトコンドリアの抗酸化防御の重要な成分であるが、HIV患者では欠乏していることが知られている。高齢のHIV患者におけるGSH欠乏に寄与している機序に関しては、2つのその前駆体アミノ酸であるシステイン及びグリシンの欠乏が原因となって起こるGSH合成の激しい低下のために、このGSHの欠乏が起こる。2週間のシステイン及びグリシンの経口栄養素補給により、これらのアミノ酸の欠乏は是正され、GSH合成は増加し、細胞内GSH濃度は改善し、ROSレベル及び酸化的損傷は低下した。生理学的状態下では、絶食状態において選択されるエネルギー源は脂肪酸(FA)であり、グルコースではない。GSH欠乏の高齢のHIV患者は、絶食時のFA酸化が著しく損なわれ、絶食時のグルコースの酸化が亢進し、ミトコンドリアの不良を示唆した。GSH濃度の改善の結果、増加した絶食時のミトコンドリアのFAの酸化が著しく増加し、グルコースの酸化は低下した。これらの変化は、除脂肪体重及び筋力の顕著な増加を伴った。興味深いことに、これらの患者の筋力は、GSHレベルが上昇した際に顕著に増加した。すなわち、GSH欠乏状態における患者の筋力が、80歳の非HIVのヒトの筋力と同等であったのに対し、GSHの上昇に伴い、患者の筋力は、70歳のヒトの筋力まで増加した。実際上、これらの高齢のHIV患者は、2週間の期間内で、GSHの改善に伴い、10歳「若く」なった。
【0089】
[0095]GSH欠乏が、高齢のHIV患者における筋量の低下、筋力の低下、機能制限及び生活の質の低下に寄与しているか否かを調査し、また、GSH欠乏を是正するためのシステイン及びグリシンの補給により、これらの欠乏が回復に向かうか否かについて試験することができる。例えば、50〜60歳の10人の高齢のHIV患者及び10人の非HIV対照(年齢、性別及びBMIについて一致させた)において、非盲検試験を実施することができる。公表されたデータに基づくと、8人の被験者が症例数として必要であり、症例数の20%の自然減を考慮し、10人の被験者について試験することができる。全ての被験者をベースラインにおいて検査する場合があり、HIVの被験者のみ、システイン及びグリシンを12週間摂取した後、再度検査する場合がある。非HIVの対照に比べ、高齢のHIV患者におけるGSH欠乏が、絶食時のミトコンドリアのエネルギー源の酸化の障害及び筋タンパク質の低下と相関性があるか否か、また、システイン及びグリシンの補給により、これらの不良が回復に向かい得るか否かについて試験することができる。
【0090】
[0096]高齢のHIV患者に対する特定の実施形態において、GSH欠乏が原因となり、絶食時のミトコンドリアのエネルギー源の酸化が不完全となり、グルコースの酸化が上昇し、筋タンパク質が低下し、また、GSHの回復によって、これらの不良を回復に向かわせることができる。理論に束縛されるわけではないが、GSH欠乏は、絶食時のミトコンドリアのNEFAの酸化に障害を来し、エネルギー需要を満たすためにグルコースの酸化への移行を強いる。絶食状態におけるグルコースは、糖新生により、主として筋タンパク質から供給されるため、これが筋低下、並びにシステイン及びグリシン欠乏を引き起こす(
図1)。システイン及びグリシンを補給してGSH欠乏を是正することにより、絶食時のミトコンドリアのFA酸化を回復し、かつグルコースの酸化を低下させるため、糖新生に向かう筋タンパク質の低下を減少させることにより、筋量を増加させる。このような考察に関し、筋GSH、システイン及びグリシンレベルの測定(HPLC)、絶食時NEFA及びグルコースの酸化の測定(熱量測定)、筋タンパク質低下の測定(安定同位体測定)、筋量測定(DEXA、総体内カリウム及び窒素スキャン)を実施することができる。
【0091】
[0097]非HIVの対照に比べ、高齢のHIV患者におけるGSH欠乏が筋量の低下、筋力及び筋機能に相関性があるか否か、また、GSHの回復により、筋力及び筋機能が、対応する非HIVの対照と同等に回復するか否かについて試験することができる。特定の実施形態において、高齢のHIV患者におけるGSH欠乏が、筋力及び筋機能の低下の根源であり、GSHの回復により、筋力及び筋機能を、対応する非HIV群における水準まで改善することができる。このような考察において、筋力の測定(例えば、筋力測定による前腕の握力による)及び筋機能の測定(例えば、6分間の歩行による)を実施することができる。
【0092】
[0098]高齢のHIV患者は、ミトコンドリアの酸化が十分に機能せず、かつ筋タンパク質が低下しているが、発症機序は不明である。2015年までに、HIV患者の50%超が高齢者(50歳超)となることが予想されるため、これらの不良による合併症により、ヒトの負担及び医療費が増加する。本開示は、高齢のHIV患者において筋低下の予防及び回復、筋力の増加、筋機能及び生活の質の改善をもたらし、ますます増加する高齢のHIV患者の集団における医療費を軽減する。特定の実施形態において、GSH欠乏は、高齢のHIV患者における筋低下に対し、新規かつ極めて重要なリスクファクターであり、システイン及びグリシンの補給に基づいた療法を提供することにより、GSH欠乏を是正し、かつ筋低下を回復に向かわせることができる。特定の実施形態において、筋量及び筋力、運動能力を増加させ、生活の質を改善することができる。本開示の実施形態は、高齢のHIV患者におけるGSH欠乏をシステイン及びグリシンによって是正するための、新規で、簡便で、安全で、効果的かつ高価でない栄養摂取計画を提供する。
【0093】
[0099]特定の実施形態において、高齢のHIV患者において、GSH欠乏が、絶食時のミトコンドリアのエネルギー源酸化の障害、筋量、筋力、筋機能の低下の根源であり、加速度的な機能低下に寄与している。革新的な安定同位体トレーサーに基づく手順、熱量測定、DXA、総体内カリウム及び窒素スキャン、筋力測定、及び機能検査を用い、結果の測定を、全身レベル(NEFA及びグルコースの酸化、並びに筋低下)及び組織レベル(筋GSH及び筋タンパク質の低下)で実施することができ、システイン及びグリシンの補給により、効果が生じることが示される。本開示の実施形態は、システイン及びグリシンを用い、高齢のHIV患者におけるミトコンドリアのエネルギー源酸化における不良、筋タンパク質、筋量及び筋力の低下、並びに生活の質を是正するための、新規で、簡便で、安全で、効果的かつ高価でない栄養摂取計画を提供する。
【0094】
[0100]HIV及びGSH欠乏:RBC−GSHレベルを、若年(年齢30〜40歳、n=10)及び高齢(年齢50〜60歳、n=20)のHIV患者において測定し、低GSHが全ての患者に見出されたが、年齢は、更に低いGSH濃度と有意に関連していた(P<0.0001)。更なる分析によると、55歳のHIV患者は、70歳の非HIVのヒトと同等のGSHレベルを有していた。
【0095】
[0101]高齢のHIV患者におけるGSHの動態(
図2、
図3):GSHの動態を、8人の高齢のGSH欠乏のHIV患者(約55歳)において、GSH前駆体としてのシステイン及びグリシンの補給前後に検査した。GSHが豊富な非HIVの対照(n=8)の履歴と比較した結果によると、高齢のHIV患者においてシステイン及びグリシンの重篤な細胞内欠乏が示され、これは補給により改善した。示したとおり、補給前のHIV被験者のGSH−FSRレベルは58%低く、GSHレベルは57%低かった(対照との比較)。補給後、GSH−FSR(FSRは部分合成速度(fractional synthetic rate)である)及びGSHレベルは、それぞれ120%及び53%上昇した。
【0096】
[0102]高齢のHIV被験者における絶食時のエネルギー源酸化(
図4):16時間の絶食後、GSH欠乏の高齢のHIV被験者は、非HIV対照に比べ、NEFAの酸化が有意に低く、炭水化物(CARB)の酸化が有意に高かった。GSH合成の回復により、NEFAの酸化は46%増加し、炭水化物の酸化は49%低下した。(*=p<0.05、Φ=p<0.01)。
【0097】
[0103]GSHの改善により、除脂肪体重及び筋力が増加した:GSHの改善により、除脂肪体重の0.9kgの有意な増加(p=0.003)、及び両前腕の筋力の増加(p<0.01)がもたらされた。
【0098】
[0104]このように、高齢のHIV患者は、合成の低下(GSHの前駆体であるシステイン及びグリシンの利用可能量の低下が原因となって起こる)によるGSH欠乏を有し、ミトコンドリアのエネルギー源酸化の障害、筋量及び筋力の低下に関連する。2週間のシステイン及びグリシンの補給により、GSHレベルが上昇する。特定の実施形態において、より長い12週間の期間の補給により、高齢のHIV患者において、GSH濃度は完全に回復し、筋低下及び機能低下は回復に向かう。
【0099】
実施例7
C反応性タンパク質
[0105]C反応性タンパク質(CRP)は、血漿中に見出される急性期タンパク質であり、肝臓によって合成される。CRPレベルは炎症に反応して上昇するため、炎症の増加に関連した状態のバイオマーカーとみなされている。CRPはまた、心臓血管疾患のバイオマーカーとしても特定されており、3μg/mL超のレベルは望ましくなく、1μg/mL未満のレベルが最適であるとみなされる。CRPの上昇はまた、糖尿病、HIV及び老化とも関連づけられている。CRPレベルを低下させる処置は、限られている。スタチンとして知られる薬剤の部類中の、強力なコレステロール低下薬物は、CRPレベルを低下させることができる。
【0100】
[0106]グルタチオン欠乏を有する高齢のHIV患者は、高レベルのCRPを有し、システイン(n−アセチルシステインとして)及びグリシンの経口栄養素補給を用い、グルタチオンレベルを上昇させた際に、CRPは有意に低下した(p<0.05)(
図5)。
【0101】
実施例8
薬物摂取後のミトコンドリアの不良の改善
[0107]特定の薬物は、これらの作用機序がミトコンドリアの機能不全又は機能障害を来すため、毒性の原因となる。特定の実施形態において、グリシン又はその機能性誘導体と、N−アセチルシステイン又はその機能性誘導体と、を含む、組成物の有効量を個体に提供することにより、薬物誘発性のミトコンドリアの機能不全若しくは機能障害を中和又は緩和する方法がある。薬物によって引き起こされる毒性は、ミトコンドリアの機能不全又は機能障害を引き起こす様々なものであり得るが、特定の実施形態において、薬物は、HIV薬、及び肝炎薬等の抗ウイルス薬である。特定の実施形態において、薬物毒性はまた、治療前又は治療後のいずれかで、GSHの枯渇によって引き起こされる、又は、悪化する場合もある。
【0102】
[0108]ミトコンドリア毒性の原因となる薬物としては、少なくとも、抗痙攣薬、向精神薬(抗うつ薬、抗精神病薬、バルビツレート、抗不安薬)、抗コレステロール薬、鎮痛薬/抗炎症薬、抗生物質、抗不整脈薬、ステロイド、抗ウイルス薬、抗レトロウイルス薬、抗癌剤、抗糖尿病薬、β遮断薬、及び免疫化が挙げられる。
【0103】
[0109]特定の場合、薬物は、バルプロエート(デパコート)、アミトリプチリン(エラビル)、アモキサピン、フルオキセチン(プロザック)、シタロプラム(シプラミル)、クロルプロマジン(トラジン)、フルフェナジン(プロリキシン)、ハロペリドール(ハルドール)、リスペリドン(リスペルドール)、フェノバルビタール、セコバルビタール(セコナール)、ブタルビタール(フィオルナール)、アモバルビタール(アミタール)、ペントバルビタール(ネンブタール)、アルプラゾラム(ザナックス)、ジアゼパム(バリウム、ダイアスタット)、スタチン、胆汁酸−コレスチラミン、シプロフィブラート、ASA(アスピリン)、アセトアミノフェン(タイレノール)、インドメタシン(インドシン)、ナプロキセン(アリーブ)、ジクロフェナク、テトラサイクリン、ミノサイクリン、クロラムフェニコール、アミノグリコシド、リネゾリド(ザイボックス)、アミオダロン、インターフェロン、ジドブジン、ドキソルビシン(アドリアマイシン)、シス−プラチナム、タモキシフェン、メトホルミン、シストゥック(cystuc)、又はこれらの混合物である。
【0104】
[0110]ミトコンドリアの機能障害又はGSHの減少による薬物毒性を有することが知られている、又は、その疑いのある薬物を投与する必要がある個体におけるような状態において、個体にはまた、グリシン又はその機能性誘導体と、N−アセチルシステイン又はその機能性誘導体と、を含む組成物も提供することができる。特定の場合、グリシン又はその機能性誘導体と、N−アセチルシステイン又はその機能性誘導体とが、個体に投与されるのと同時に、かつ/又は前に、かつ/又は後に、ミトコンドリア毒性を有する薬物が、個体に投与される。
【0105】
実施例9
GSH濃度上昇の生理学的効果
[0111]1.HIV及びTNF−α:8人のHIV患者について、GSH濃度を上昇させるためのシステイン及びグリシンの補給前及び2週間後に、血漿中TNF−α濃度の測定を行った。データによると、TNF−αは、34.6±7.5から27.8±4.7に低下した(p=0.00049)。
【0106】
[0112]2.神経認知データ:3人のHIV患者について、GSH濃度を上昇させるためのシステイン及びグリシンの12週間の補給前後に、神経認知評価の測定を行った。データは、以下に示したとおり、神経認知機能の改善を示した。
[0113]トレイルメイキングテスト(総合指数)38±3から45±5
[0114]MAE III 30±5から45±4
[0115]MOCA(モントリオール認知評価)76±8から86±6
【0107】
[0116]3.心拡張機能障害の改善:
[0117]雄マウス(月齢30〜35)を2群で試験した。1群には固形飼料を給餌し(対照群−CON)、一方の群の飼料には、システイン及びグリシンを補充した(NacGly)。大動脈流出、経僧帽弁血流、大動脈の硬直の非観血的な測定、並びに左心室の心エコーの測定、並びに心房の解剖所見及び機能を、7週間の給餌の前後で比較した(各群n=4)。NacGlyのマウスは、変化のなかった対照と比べ、経僧帽弁血流パラメータの顕著な改善を示した。NacGlyマウスはまた、等容性弛緩時間(Con 23.1+2.5 対 NacGly 19.2+0.7m秒、p<0.05)、等容性収縮時間(Con 26.3+4.6 対 NacGly 13.9+0.3m秒、p<0.05)、ピーク早期充填速度(peak Early filling velocity)(Con 67+4 対 NacGly 78+5cm/秒、p<0.05)を有意に改善した。本試験の結論は、システイン(n−アセチルシステインとして)及びグリシンの栄養素補給は、高齢マウスにおける拡張機能を改善するというものである。
【0108】
[0118]4.HIV患者における肝脂肪:肝脂肪含量を、MRIにより、システイン及びグリシンの12週間の補給の前後に、1人の被験者において検査した。結果は、以下のとおりであった:
[0119]MRIによる肝脂肪
[0120]右前葉(%)
[0121]右後葉(%)
[0122]ベースライン(補給前)
[0123]7.0+/−0.9%
[0124]8.5+/−1.2%
[0125]フォローアップ(補給後)
[0126]5.0+/−1.1%
[0127]6.0+/−1.2%
【0109】
[0128]5.糖尿病マウスにおける肝脂肪:2群のマウスについて、重症のコントロール不良の糖尿病への1年間の暴露後に試験した。糖尿病の誘発時から、1群(治療群)にはシステイン(n−アセチルシステインとして)及びグリシンの補給を摂取し、もう一方の(対照)群には、第1の群と等窒素かつ等カロリーの対照飼料を摂取した。組織学的評価によると、等窒素/等カロリー食を摂取した対照群において脂肪肝の発生率は95〜100%であったのに対し、システイン/グリシン食を摂取した治療群では、脂肪肝の発生率はわずか2〜5%であった。肝脂肪を定量したところ、治療群のマウスでの量は顕著により低かった。
【0110】
[0129]5.筋タンパク質の分解:筋タンパク質の分解について、3人の高齢のHIV患者において、トレーサーの3−メチルヒスチジンを用い、システイン(n−アセチルシステインとして)及びグリシンの12週間の補給の前後に検査した。結果は、筋原線維タンパク質の分解の顕著な低下を示した。これらのデータは、老化において、システイン及びグリシンによってグルタチオンを改善することにより、筋破壊を低下させ、サルコペニアに有効であり得ることを示唆している。
【0111】
[0130]筋原線維の筋タンパク質の分解速度:
[0131]補給前:203±59mg/kgLBM/時
[0132]補給後:137±15mg/kgLBM/時
【0112】
実施例10
n−アセチルシステイン及びグリシンの補給の実施例
[0133]マウスの試験において、n−アセチルシステイン及びグリシンの作用は、高齢マウスにおいてミトコンドリアの機能及び筋力を改善し、特定の実施形態において、これはグルタチオンを介して起こる。いくつかの実施形態において、n−アセチルシステイン及びグリシンの補給により、マウスの肝脂肪が低下する。
【0113】
[0134]特定の態様において、HIV患者におけるn−アセチルシステイン及びグリシンの補給により、HIV感染患者における軽度の神経認知障害が改善し、筋力及び運動能力が改善し、かつ/又はグルタチオンは、年齢適合対照と同等まで回復する。
【0114】
[0135]特定の実施形態において、老人病のヒトにおける進行中の試験において、n−アセチルシステイン及びグリシンの補給により、少なくとも4週間以内に、認知障害が改善する。
【0115】
実施例11
HIV身体的及び神経認知データ
[0136]HIV感染患者は、身体機能の低下を伴う促進老化を有することが報告されている。HIV患者はまた、認知機能の重大な障害を有することも報告されている。システイン及びグリシン補給の効果を評価するため、本発明者らは、12週間のシステイン(n−アセチルシステインとして)及びグリシンの補給の前後に、8人のHIV患者について検査した。また、比較対照群は、年齢、性別及びBMIを一致させた、8人のHIV陰性のヒトであった。結果の測定は、身体機能(歩行速度)及び神経認知機能(トレイルメイキングテスト及びMAE III)を含んでいた。
【0116】
[0137]結果によると、非HIV対照に比べ、HIV感染患者は、歩行速度が有意に低く(1.3±0.1対1.06±0.04m/秒、p<0.001)、また、トレイルメイキングテストA(34.6±3.6対62.6±6.1秒、p<0.01)及びトレイルメイキングテストB(53.8±7.2対117.5±5.0秒、p<0.01)、並びにMultilingual Aphasic Examination III(41.0±3.5対28.9±3.2語、p<0.01)による測定で、顕著な認知障害を示した。12週間の補給後、補給前の水準と比べると、HIV患者の歩行速度は、HIV陰性対照と同様かつ同等の水準まで回復し(1.06±0.04対1.30±0.04m/秒、p<0.01)、システイン及びグリシンの補給により、HIV患者における促進老化が回復に向かい得ることを示唆した。このことは、トレイルメイキングテストA(62.6±6.1対46.4±4.4秒、p<0.01)及びB(117.5±5.0対69.8±5.4秒、p<0.01)、並びにMAE III(28.9±3.2対34.6±2.0語、p<0.01)のスコアの改善に見られるように、認知機能の有意な上昇(補給前の水準対補給後の水準)によって指示される。
【0117】
[0138]結論:システイン及びグリシンの補給により、HIV患者におけるグルタチオン欠乏は回復に向かい、また、機能低下及び認知機能は回復に向かう。まとめると、これらのデータは、システイン及びグリシンの補給により、HIV感染患者における促進老化が回復に向かうという効果を支持する。
【0118】
参考文献
[0139]本明細書で言及した全ての特許及び刊行物は、本発明が関係する技術分野の当業者の水準を示している。本明細書における全ての特許及び刊行物は、個々の刊行物の全容が参照により組み込まれることが具体的かつ個別に示されているのと同じ程度に、参照により組み込まれる。
[非特許文献]
[0140]Al-Turk WA,Stohs SJ,el-RashidyFH,Othman S. Changes inglutathione and its metabolizing enzymes in humanerythrocytes and lymphocyteswith age. J Pharm Pharmacol 1987;39:13-6.
[0141]Bella DL,Hahn C,Stipanuk MH. Effectsof nonsulfur and sulfuramino acids on the regulation of hepatic enzymes ofcysteine metabolism. Am JPhysiol 1999;277:E144-53.
[0142]Boirie Y,Gachon P,Beaufrere B. Splanchnicand whole-bodyleucine kinetics in young and elderly men. Am J Clin Nutr1997;65:489-95.
[0143]Campisi A,Di Giacomo C,Russo A,et al.Antioxidant systems inrat lens as a function of age:effect of chronicadministration of vitamin E andascorbate. Aging(Milano)1999;11:39-43.
[0144]Campbell WW,Crim MC,Dallal GE,YoungVR,Evans WJ. Increasedprotein requirements in elderly people:new data andretrospective reassessments.Am J Clin Nutr 1994;60:501-9.
[0145]Castorina C,Campisi A,Di GiacomoC,Sorrenti V,Russo A,VanellaA. Lipid peroxidation and antioxidant enzymaticsystems in rat retina as afunction of age. Neurochem Res 1992;17:599-604.
[0146]Cresenzi CL,Lee JI,Stipanuk MH. Cysteineis the metabolicsignal responsible for dietary regulation of hepatic cysteinedioxygenase andglutamate cysteine ligase in intact rats. J Nutr2003;133:2697-702.
[0147]Erden-Inal M,Sunal E,Kanbak G. Age-relatedchanges in theglutathione redox system. Cell Biochem Funct 2002;20:61-6.
[0148]Farooqui MY,Day WW,Zamorano DM. Glutathioneand lipidperoxidation in the aging rat. Comp Biochem Physiol B 1987;88:177-80.
[0149]Fereday A,Gibson NR,Cox M,PacyPJ,Millward DJ. Proteinrequirements and ageing:metabolic demand and efficiencyof utilization. Br JNutr 1997;77:685-702.
[0150]Fidelus RK,Tsan MF. Glutathione andlymphocyte activation:afunction of ageing and auto-immune disease. Immunology1987;61:503-8.
[0151]Furukawa T,Meydani SN,Blumberg JB. Reversalof age-associateddecline in immune responsiveness by dietary glutathionesupplementation in mice.Mech Ageing Dev 1987;38:107-17.
[0152]Grimble RF,Jackson AA,Persaud C,WrideMJ,Delers F,Engler R.Cysteine and glycine supplementation modulate themetabolic response to tumornecrosis factor alpha in rats fed a low proteindiet. J Nutr 1992;122:2066-73.
[0153]Hashimoto K,Takasaki W,YamotoT,Manabe S,Sato I,Tsuda S. Effectof glutathione(GSH)depletion on DNA damageand blood chemistry in aged and youngrats. J Toxicol Sci 2008;33:421-9.
[0154]Jackson AA,Gibson NR,Lu Y,Jahoor F. Synthesisof erythrocyteglutathione in healthy adults consuming the safe amount ofdietary protein. Am JClin Nutr 2004;80:101-7.
[0155]Jahoor F,Wykes LJ,Reeds PJ,HenryJF,del Rosario MP,Frazer ME.Protein-deficient pigs cannot maintain reducedglutathione homeostasis whensubjected to the stress of inflammation. J Nutr1995;125:1462-72.
[0156]Lang CA,Naryshkin S,SchneiderDL,Mills BJ,Lindeman RD. Lowblood glutathione levels in healthy aging adults. JLab Clin Med 1992;120:720-5.
[0157]Liu R,Choi J. Age-associated declinein gamma-glutamylcysteinesynthetase gene expression in rats. Free Radic BiolMed 2000;28:566-74.
[0158]Liu H,Wang H,Shenvi S,Hagen TM,LiuRM. Glutathione metabolismduring aging and in Alzheimer disease. Ann N Y AcadSci 2004;1019:346-9.
[0159]Loguercio C,Taranto D,VitaleLM,Beneduce F,Del Vecchio BlancoC. Effect of liver cirrhosis and age on theglutathione concentration in theplasma,erythrocytes,and gastric mucosa of man.Free Radic Biol Med1996;20:483-8.
[0160]Lyons J,Rauh-Pfeiffer A,Yu YM,et al. Bloodglutathionesynthesis rates in healthy adults receiving a sulfur aminoacid-free diet. ProcNatl Acad Sci U S A 2000;97:5071-6.
[0161]Matsubara LS,Machado PE. Age-relatedchanges of glutathionecontent,glutathione reductase and glutathione peroxidaseactivity of humanerythrocytes. Braz J Med Biol Res 1991;24:449-54.
[0162]Morais JA,Gougeon R,Pencharz PB,JonesPJ,Ross R,Marliss EB.Whole-body protein turnover in the healthy elderly. Am JClin Nutr1997;66:880-9.
[0163]Rahman,I.,Aruna Kode1,Saibal KBiswas. Assay for quantitativedetermination of glutathione and glutathionedisulfide levels using enzymaticrecycling method. Nature Protocols2006;1(6):3159-3165.
[0164]Rebrin I,Sohal RS. Pro-oxidant shiftin glutathione redox stateduring aging. Adv Drug Deliv Rv 2008;60:1545-52.
[0165]Reid M,Jahoor F. Methods formeasuring glutathioneconcentration and rate of synthesis. Curr Opin Clin NutrMetab Care2000;3:385-90.
[0166]Rikans LE,Hornbrook KR. Lipidperoxidation,antioxidantprotection and aging. Biochim Biophys Acta1997;1362:116-27.
[0167]Rizvi SI,Maurya PK. Markers ofoxidative stress in erythrocytesduring aging in humans. Ann N Y Acad Sci2007;1100:373-82.
[0168]Samiec PS,Drews-Botsch C,Flagg EW,etal. Glutathione in humanplasma:decline in association with aging,age-relatedmacular degeneration,anddiabetes. Free Radic Biol Med 1998;24:699-704.
[0169]Stohs SJ,Lawson T,Al-Turk WA. Changesin glutathione andglutathione metabolizing enzymes in erythrocytes andlymphocytes of mice as afunction of age. Gen Pharmacol 1984;15:267-70.
[0170]Sweeney MH,Truscott RJ. An impedimentto glutathione diffusionin older normal human lenses:a possible preconditionfor nuclear cataract. ExpEye Res 1998;67:587-95.
[0171]Toroser D,Sohal RS. Age-associatedperturbations in glutathionesynthesis in mouse liver. Biochem J2007;405:583-9.
[0172]Young VR. Amino acids and proteins inrelation to the nutritionof elderly people. Age Ageing 1990;19:S10-24.
【0119】
[0173]本発明及びその利点を詳述してきたが、様々な変更、置換及び改変が、請求項によって規定される本発明から逸脱することなく、本明細書において実施可能であることを理解されたい。更に、本明細書の範囲は、本明細書に記載したプロセス、装置、製造、物質の組成物、手段、方法及びステップの特定の実施形態に限定されることを意図するものではない。本開示から容易に理解できるとおり、本明細書に記載の対応する実施形態と実質的に同一の機能を遂行する、又は、実質的に同一の結果を達成する、既存若しくは今後開発される、プロセス、装置、製造、物質の組成物、手段、方法、又はステップを利用することが可能である。したがって、請求項は、その範囲内に、このようなプロセス、装置、製造、物質の組成物、手段、方法、又はステップを包含することを意図する。