【課題を解決するための手段】
【0023】
本目的は、とりわけ、最初に、改良型非電解法に関連する本発明によって達成され、改良型非電解法は、−a− 任意選択で、金属化される表面を増感させる、および/または活性化する段階、−b− 緩和フェーズと交互に行う一連の少なくとも2つの吹付けフェーズに従って金属化吹付けを実行する段階、すなわち、(i)吹付けフェーズの継続時間Dpを、同じ単位面積について10
−2秒と5秒との間、好ましくは10
−1秒と3秒との間に、緩和フェーズの継続時間Drを、同じ単位面積について10
−2秒と10秒との間、好ましくは2×10
−1秒と4秒との間に設定する段階(これらの吹付けフェーズおよび緩和フェーズの継続時間Dpおよび
Drは、互いに同一であるかまたは互いに異なる)および (ii)Ox/Red電子比が0.01と15との間、好ましくは0.5と8との間にあり、それにより、基材に対する化学的付着性がよい金属膜の形成を可能にするように吹付け流量(複数可)を調整する段階、−c− 金属堆積の意図されるレベルに達すると直ちに吹付けを中断する段階から本質的になるタイプの手段のうちの適した手段を使用して、カチオン(酸化)形態の少なくとも1種の金属および金属カチオンを金属に変換し得る少なくとも1種の還元剤を含有する少なくとも1種の水性および/または有機エアロゾルを吹付けることによって、基材の表面の少なくとも一部を金属化するためのものであり、改良は、特に、
・基材を少なくとも1種の湿潤化流体に接触させて、それにより、基材の表面の少なくとも一部上に流体膜を形成することを含む、基材を湿潤させる少なくとも1つの予備段階−a
p−を実施すること、および、
・湿潤させる段階−a
p−に続いて、湿潤段階の終了後に、直近の60秒、好ましくは直近の40秒、なおより優先的には直近の20秒に、段階−b−に従う吹付けを開始すること
が想定される点にある。
【0024】
吹付けおよび緩和の継続時間DpおよびDrはそれぞれ、各金属に固有の金属化定数kに基づいて、k=Dp+Drであるように規定され、定数kは好ましくは10
−1秒と13秒との間、なおより優先的には0.5秒と9秒との間になる。
【0025】
好ましくは、改良はまた、以下の特徴、すなわち、
・金属化吹付けの少なくとも一部は、吹付け手段を基材に対して移動させて、金属化される表面の少なくとも80%の、好ましくは少なくとも90%の、なおより優先的には少なくとも95%の周期的掃引を実行することによって、動的に実行されること、
・掃引ゾーン内にある所与の単位面積について、
○吹付けフェーズは、考えられている単位面積が、エアロゾルの(好ましくは連続の)吹付けにさらされる継続時間に相当する継続時間Dpを有し、
○この吹付けフェーズに続く緩和フェーズは、吹付け手段によって金属化される表面の残りの掃引の継続時間に相当するか、または、基材が吹付けにさらされない継続時間に相当する継続時間Drを有すること、
・吹付け手段の移動は、
○吹付け手段が、出発点(O)と到着点(A)との間の経路T
OAに沿って吹付け移動速度V
OAで移動するように、
○吹付け手段が、点(A)に達すると直ちに、経路T
AOに沿って吹付けることなく、移動速度V
AOで点(O)に戻るように
規定され、
V
AOは、吹付け手段によって掃引される、金属化される表面の各単位面積の緩和フェーズの継続時間Drが先に規定したようなものであるように、(A)と(O)との距離およびV
OAを考慮することによって計算され、
この計算は、好ましくは、吹付け手段および吹付け手段用の移動システムを制御する処理および制御ユニットUCC(好ましくは、マイクロコンピュータ)によって実行されること、
・任意選択で、金属化吹付けの少なくとも一部の間に、基材が回転すること
を有する。
【0026】
ある変形では、改良は、以下の特徴、すなわち、
・金属化吹付けの少なくとも一部は、吹付け手段を基材に対して移動させて、かつ/または、基材を吹付け手段に対して移動させて、金属化される表面の少なくとも80%の、好ましくは少なくとも90%の、なおより優先的には少なくとも95%の周期的掃引を実行することによって、動的に実行されること、
・掃引ゾーン内にある所与の単位面積について、
・吹付けフェーズは、考えられている単位面積が、エアロゾルの(好ましくは連続の)吹付けにさらされる継続時間に相当する継続時間Dpを有し、
・この吹付けフェーズに続く緩和フェーズは、吹付け手段によって金属化される表面の残りの掃引の継続時間に相当する継続時間Drを有すること、
・吹付け手段に対する基材の移動は、好ましくは回転であること
を有する。
【0027】
本発明による改良は、堆積される金属層の規則性および硬度の点で、しかし同様に、とりわけ、前記堆積される金属層の特性の制御および再現性に関して、大きな表面積に対して金属堆積の品質を改善しながら、本発明が関連する金属化方法に工業用ディメンジョン(パイロット段階および量産)を与える。これらの技術進歩は、特許FR−B−2 763 962による金属化方法の利点、すなわち、特に利点i)からviii)に有害になることなく達成される。後者は、上記以外で設定された場合にでも改善し得る。
【0028】
本発明による改良型金属化方法はまた、その固有抵抗が低い(伝導性が良好な)金属層を得ることを可能にする。理論によって制約されようと思わなければ、このことは、化学溶液の供給物の消費(Ox/Red)に関して本発明によって良好な管理が提供されるため、層の酸化が少なくなることを説明する可能性がある。
【0029】
第2に、本発明は、本発明による改良型非電解金属化方法の実施のためのデバイスに関しており、デバイスは、
・金属化される基材を保持する手段であって、任意選択で、基材の回転のための手段を装備する、保持する手段と、
・基材を予備湿潤させる手段と、
・カチオン(酸化)形態の金属および還元剤を吹付ける手段と、
・任意選択の洗浄手段と、
・吹付け手段またはさらに湿潤させる手段および/もしくは洗浄手段を移動させるシステムと、
・吹付け手段および前記吹付け手段用の移動システムを制御する少なくとも1つの処理および制御ユニットUCC(好ましくは、マイクロコンピュータ)と
を備えることを特徴とする。
【0030】
[本発明の詳細な説明]
本発明による改良型方法は、多数の導電性または非導電性物質に適用可能であるという利点を有し、その物質の中で、銅、非陽極酸化アルミニウム、軟鋼、鉄、ニッケル、マグネシウム、チタンなどの金属、および、真鍮、青銅、ステンレス鋼などの金属合金、または、ABS、PVC、ポリカーボレート、ポリプロピレン、メチルポリメタクリレート、エポキシ樹脂、ガラス、セラミック、半結晶ポリマー、ウッド、ポリエステルなどのプラスチックが述べられ得る。
【0031】
同様に、堆積され得る金属または合金の範囲は非常に広い。金属に関して言えば、金属は、有利には、周期律表の第VIII族ならびに周期律表の第Ib族、第IIb族、IIIa族、IVa族(遷移金属)および第VIb族から選択され得る。例として、銅、ニッケル、亜鉛、コバルト、すず、ボロン、タングステンおよびその合金が述べられ得る。Ni、Co、Zn、Fe、CuおよびBに基づく、異なる2成分および3成分合金は、金属塩の混合物を使用して生産され得る。合金の例として、Ni−B、Ni−B−Zn、Ni−Cu−B、Ni−Co−B、Ni−Fe−B、Ni−Cu−Co−B、Ni−Sn−Bなどが述べられ得る。
【0032】
本改良型方法はまた、実施の簡単さおよび低コストの利点を有する。本改良型方法は、大幅な資本支出なしで、非常に大きな材料片を金属化することを可能にする。本方法の実施に必要なインフラストラクチャは、軽量であり、したがって、費用がかからず、また、酸化剤および還元剤の溶液が使用されても再利用可能である。
【0033】
本改良型方法は、塗装に関しては、2次元で幾何形状を画定するマスクを通して試薬を吹付けることによって、または、以前にマスクされたアイテム上に直接吹付けることによって局在化堆積物を得ることを可能にする。他の表面をマスクする操作を回避するために、アイテムの単一表面だけを覆うことも可能である。使用される溶液の安定性は、工業的文脈で重要な資産である。堆積物の厚さは容易に制御され得る。合金または複合コーティング、すなわち、少なくとも2つの異なる金属の交互層が重なり合う多層を生産することが可能である。
【0034】
基材に対する金属膜の付着レベルは完全に満足できる。さらに、この点に関して、本方法によって得られる金属膜は、基材の表面上で化学的に吸着されることが留意されるべきである。これは、付着性に関する決定要素であり、また、さらに、最新の技術水準による堆積に関する完全に独特の特徴である。非触媒性基材について以前にそうであったが、増感および/または活性化の予備段階は、絶対に必要であるわけではないことが留意されるべきである。実際には、非触媒性基材の場合、本発明によれば、段階−a−を実施し、かつ/または、活性化をin situで実行することが想定され、それは、1つまたは複数の吹付けエアロゾル内に少なくとも1つの結合剤を組込むこと、表面修飾因子として働くこと、および、プラスチックなどの非触媒性基材に対する金属膜の付着を改善させること、および/または、表面上での反応に触媒作用を及ぼすことを可能にすることを含む。この単純化する変形は、以降でより詳細に説明される。
【0035】
本発明によれば、金属化格納部の温度を制御することは好都合であるように見えた。例によれば、格納部のこの温度は、20℃と60℃との間であり得る。
【0036】
金属化格納部の温度の調節は、任意の適切な空調機器を使用して容易に達成される。
【0037】
任意選択の予備増感および/または活性化段階−a−は、基材、または、同様にex situで形成されるコロイド状PbSn溶液の表面上に核形成サイトを形成するために、塩化第1すず(SnCl
2)溶質またはSnSO
4/H
2/SO
4/クイノール/アルコールの溶液の塗布(たとえば、吹付け、浸漬)と、それに続く、Sn
2+と反応することが可能なパラジウムまたは銀溶液の塗布(たとえば、吹付け、浸漬)による、それ自体知られている方法で実行される。より詳細に、たとえば、非特許文献1(「Metal Finishing Guidebook and Directory Issue」1996 Metal Finishing publication、p.354、356および357)、非特許文献2(H. Narcus著「Metallizing of Plastics」Reinhold Publishing Corporation、1960、Chapter 2、p.21)、非特許文献3(F. Lowenheim著「Modern electroplating」John Wiley & Son publication、1974、Chapter 28、p.636)に対して参照が行われ得る。
【0038】
本発明による改良の特徴の1つは、基材上に流体膜を形成するために、基材を湿潤させる予備段階−a
p−に基づいており、そのとき、段階−b−による吹付けが、有利には、湿潤化によって生成される流体膜が基材の表面上に同様に存在するときに始動されることが承知されている。換言すれば、段階−b−による吹付けが、湿潤の終了後、直近の60秒で、好ましくは直近の40秒で、なおより優先的には直近の20秒で開始することが活用される。
【0039】
たとえば本発明の意味の中で、「湿潤の終了(end of the wetting)」という表現は、基材の表面の全てまたは一部を少なくとも1種の湿潤化流体(液体または蒸気)源に接触させることを明確に終了するときを意味する。
【0040】
湿潤化によって生成されるこの膜の存在は、好ましくは基材の移動と組合せて、同時に吹付けられる2つの活性成分(酸化剤および還元剤)の混合ならびに混合物の展開を促進することによって、金属層の均質堆積を確保することを可能にする。有利には、予備湿潤段階−a
p−、すなわち、基材の表面の全てまたは一部を少なくとも1種の湿潤化流体(液体または蒸気)源に接触させることは、湿潤化液体のエアロゾルを吹付けることによって、かつ/または、任意選択で加熱される湿潤化液体の槽内への浸漬によって、かつ/または、基材上に、前記基材の表面で凝縮する湿潤化液体の蒸気を吹付けることによって実行される。
【0041】
湿潤化液体の加熱は、金属化格納部の温度の制御のように、酸化/還元エアロゾルを吹付ける段階−b−の開始時に、堆積動態に触媒作用を及ぼす有用な方法である。例として、湿潤化液体の加熱温度は、たとえば、20℃と60℃との間であり得る。
【0042】
湿潤化液体の選択は、好ましくは、少なくとも1種のアニオン、カチオンまたは中性界面活性剤が任意選択で添加されている脱イオン水または非脱イオン水、少なくとも1種のアルコールを含むアルコール溶液(たとえば、イソプロパノールまたはエタノール)およびその混合物を含む群から行われる。
【0043】
それにより、湿潤化液体が蒸気に変換され、蒸気が基材上に吹付けられ、基材上で蒸気が凝縮する湿潤化変形では、工業的適性の明確な理由のために液体は本質的に水性であることが好ましい。
【0044】
理解されてきたように、湿潤化の継続時間は、本発明による改良にとって最も重要なパラメータではない。この湿潤化の継続時間は、考えられる基材の表面、選択される技法(吹付けまたは浸漬)、および、吹付けによる湿潤化の場合、湿潤化エアロゾル吹付け流量に依存する。
【0045】
この予備段階−a
p−について、湿潤化液体のエアロゾルまたは蒸気の吹付けを実行する手段は、酸化/還元エアロゾルを吹付けるのに使用される手段と同一であるか、または、異なり得る。好ましくは、これらの吹付け手段は異なる。たとえば、独立した空気圧単一ノズル吹付け銃を使用することが可能である。
【0046】
有利には、UCCはまた、特に、湿潤化液体のエアロゾルまたは蒸気の吹付けおよび対応する吹付け手段の移動を起動させることによって、予備湿潤段階−a
p−の実行を指令し、制御することができる。
【0047】
この湿潤態様以外に、本発明による改良は、一部には、吹付けおよび緩和フェーズ中における動的な動作方法からなる。この動的モードは、一方では、吹付け手段に関連し、他方では、任意選択にではあるがそれでも有利には、基材自体に関連する。こうして、後者のオプションの変形により、基材は、金属化吹付け(段階−b−)中に少なくとも部分的に回転し得る。基材は、段階−b−中に、1rpmと30rpmとの間、好ましくは5rpmと20rpmとの間である速度で好ましくは断続的に回転する。基材の回転軸は任意の軸であり得る。たとえば、吹付け手段が真っ直ぐな経路を有する場合、基材の回転軸は、吹付け手段の移動軸に実質的に垂直であり得る。基材の回転は、制限された角度セクションにわたって想定され得る。そのため、基材がほぼ平面形状を有するとき、その回転は、好ましくは1°と120°との間、たとえば45°に相当する角度にわたって実行され得る。この基材の回転は、吹付け/緩和フェーズ中、断続的であり得る。実際、基材の回転軸は、前記基材の重心を通過してもよく、または、通過しなくてもよい。
【0048】
基材の回転速度は、1回転/秒と20回転/秒との間で変わる、たとえば、10±2回転/秒程度であり得る。
【0049】
本発明の改良によれば、金属化吹付けは動的モードで実行される。
【0050】
そのため、吹付け手段は、好ましくは連続して酸化/還元エアロゾルを吹付けながら、金属化される基材表面を掃引する。
【0051】
好ましくは、掃引は、金属化される表面の全体を覆う。
【0052】
この掃引は周期的である、すなわち、吹付け手段は、出発点Oと到着点Aとの間の経路T
OAを吹付け有りの移動速度V
OAで進むと、経路T
AOに沿って吹付けなしの移動速度V
AOで出発点(O)に戻る。
【0053】
本発明による改良型方法を実施する好ましい方法によれば、段階−b−はサイクリックであり、各サイクルは、吹付け手段がOからAへ、また、逆へ移動することに対応する吹付けフェーズおよび緩和フェーズを含み、さらに、実施されるNサイクルの総数は、最終的に求められる金属の堆積レベルおよび各サイクルで得られる金属の堆積レベルの関数として選択され、Nサイクルの総数は、2と5000との間、好ましくは50と500との間、なおより優先的には80と200との間になる。
【0054】
金属の最終堆積レベルおよびサイクル当たりの堆積レベルは、吹付け流量および吹付け有りの移動速度V
OAに特に依存するパラメータである。
【0055】
有利な特徴によれば、段階−b−の吹付け流量は、各吹付けフェーズの終了時に、金属化される表面のcm
3について、金属(酸化)カチオン(複数可)の量および還元剤(複数可)の量が、
− 酸化剤の場合、0.1と60との間、好ましくは0.5と20との間、
− 還元剤の場合、0.1と60との間、好ましくは0.5と20との間
(mg/cm
2単位)であるように調整される。
【0056】
酸化剤が、酸化数IIを有するニッケルである特定の場合、後者は、1〜7mg/cm
2で存在し、一方、還元剤は、各吹付けフェーズの終了時に、基材の表面上に1〜14mg/cm
2で存在する。
【0057】
吹付け有りの移動速度V
OAに関して言えば、これは、金属のタイプの関数として選択される。実際に、ある金属は、長い吹付け、したがって、吹付け有りの遅い移動速度V
OAを必要とする。
【0058】
例によれば、経路T
OAが真っ直ぐでかつ直接的である場合、吹付け有りのこの移動速度V
OAは、たとえば、0.01m/sと10m/sとの間、好ましくは0.5m/sと2m/sとの間、またはなおより正確には、たとえば1m/s程度である。
【0059】
当然、本発明は、経路T
OAが真っ直ぐでかつ直接的である場合に限定されない。そのため、(一般的な非平面形状の)3次元材料片の場合、関心のある金属化される基材表面の全体を掃引するために、この経路T
OAはまた、3次元、たとえば、らせん状である。
【0060】
戻り経路T
AOに関して言えば、この経路T上での戻り速度V
AOは、金属化される表面の各単位面積について、また、各サイクルについて、継続時間Drの仕様に相当する緩和フェーズが10
−2sと10sとの間、好ましくは2×10
−2sと4sとの間になるようものであることが本発明による改良に従って実現される。
【0061】
吹付けおよび緩和の継続時間は、金属のタイプによって、10
−1sと13sとの間、好ましくは0.5sと9sとの間で変わる定数kによって規定される。したがって、計算および制御ユニットUCCは、速度V
AOでの到着点Aから出発点Oまで吹付け手段の戻り移動を確定し制御するようにプログラムされるべきである。このために、UCCは、到着点Aに達するとすぐ、吹付け手段を停止させるように吹付け手段に作用し、また同様に、前記吹付け手段の移動用のシステムに作用して、その出発点に停止状態で吹付け手段を戻す。
【0062】
経路T
AOが、それにより、真っ直ぐでかつ直接的である実施態様の特定の方法では、V
AOを計算する式は、
V
AO=AO/[k−(OA/V
OA)]
である。
【0063】
有利には、UCCは、吹付け手段の開始、ならびに、たとえば、0.1m/sと20m/sとの間、好ましくは1m/sと6m/sとの間であり得る速度V
OAでの経路T
OAに沿う吹付け手段の初期移動を指令するようにプログラムされる。
【0064】
より一般的には、速度V
OAは、たとえば、0.01m/sと20m/sとの間、好ましくは0.1m/sと6m/sとの間であり得る
【0065】
本発明の有用な配置構成によれば、好ましくは、n吹付け/緩和サイクルの各シーケンスΔS後に、少なくとも1つの洗浄フェーズが設けられる。
【0066】
有利には、各シーケンスΔSの吹付け/緩和サイクルの数字nは、たとえば、2と30との間、好ましくは、5と20との間である。
【0067】
有利には、洗浄段階、すなわち、基材表面の全てまたは一部を少なくとも1つの洗浄液体源に接触させることは、洗浄液体エアロゾルを吹付けることによって、かつ/または、洗浄液体の槽内への浸漬によって実行される。洗浄液体エアロゾルの吹付けを実行する手段は、酸化剤/還元剤エアロゾルの吹付けに使用される手段および/または予備湿潤段階−a
p−に利用される手段と同一であるか、または、異なり得る。
【0068】
好ましくは、これらの吹付け手段は、酸化剤/還元剤エアロゾルを吹付けるのに使用される手段と異なり、また、たとえば、独立した空気圧単一ノズル吹付け銃であり得る湿潤化用の手段と同じである。
【0069】
湿潤化エアロゾルの吹付け手段の場合にそうであるが、洗浄液体の吹付け手段は、好ましくは、前記手段の移動用のシステムに関連する。本発明の有用な方法によれば、UCCはまた、特に、洗浄液体エアロゾルの吹付けおよび吹付け手段の対応する移動を起動させることによって洗浄手段の実行を指令し制御することができる。
【0070】
本発明による方法において基材上に吹付けられるエアロゾルは、好ましくは、
・酸化金属カチオン(複数可)および還元剤(複数可)の溶液(有利には水性)からか、
・洗浄溶液からか、または、
・同様に適切である場合、増感および/または活性化溶液から
得られる。
【0071】
当然の結果として、本発明の好ましい配置構成によれば、吹付けエアロゾル(複数可)は、100μm未満、好ましくは60μm、なおより優先的には0.1μmと50μmとの間にあるサイズの液滴の吹付けを得るために、溶液(複数可)および/または分散液(複数可)の噴霧および/または霧化によって生産される。
【0072】
本発明の改良型方法の考えられる第1の実施態様によれば、金属カチオン(複数可)の少なくとも1つの溶液および還元剤(複数可)の少なくとも1つの溶液は、同じ吹付けフェーズにおいて1つまたは複数のエアロゾルで表面上に同時に吹付けられる。適切な場合、酸化溶液と還元溶液との混合は、吹付けエアロゾルの形成の直前に、または同様に、酸化溶液から生成されるエアロゾルと還元溶液から生成されるエアロゾルを、両者が金属化基材表面に接触する前に混合させることによって実行され得る。
【0073】
本発明による改良型方法の考えられる第2の実施態様によれば、段階−b−は、各吹付けフェーズ中にかつ1つまたは複数のエアロゾルによって、金属カチオン(複数可)の少なくとも1つの溶液または還元剤(複数可)の少なくとも1つの溶液を吹付けることを含み、そのとき、少なくとも1つの排他的な酸化金属カチオン吹付けフェーズと少なくとも1つの排他的な還元剤吹付けフェーズが設けられ、一方の酸化剤の吹付けフェーズと他方の還元剤の吹付けフェーズが好ましくは交互に行われることが承知されている。この第2の可能性は、還元溶液(複数可)および金属塩(複数可)の交互の吹付けに相当する。
【0074】
緩和フェーズの継続時間は互いに同一であるか、または、異なり得ることが留意されるべきである。同じことが、吹付けフェーズならびに全てのフェーズに当てはまる。
【0075】
実際には、この第2の可能性によれば、還元剤の吹付け/緩和サイクルが、酸化金属塩の吹付け/緩和サイクルと交互に行われるn”吹付け/緩和サイクルの1つまたは複数のシーケンスΔS”が設けられる。これらの吹付け/緩和サイクルの総数N”は、金属化される表面、および、金属化層について求められる厚さに依存する。この数N”は、たとえば、4と5000との間、好ましくは50と500との間、なおより優先的には80と200との間にあり得る。
【0076】
上述した考えられる2つの実施態様では、異なる金属または合金の多層を作るために、ある変形によって、いくつかの異なる酸化金属カチオンおよび1つまたは複数の還元剤を使用することが可能である。
【0077】
こうするために、連続するm吹付け/緩和サイクルの異なるサブシーケンスΔsが実行され、これらのサブシーケンスはそれぞれ、金属化層を形成することを意図される所与の金属または合金に相当する。考えられる第1の実施態様において、mは、2以上であり、好ましくは2と10との間であり、考えられる第2の実施態様において、mは、4以上であり、好ましくは4と20との間である。これらのサブシーケンスは、同一のまたは異なる継続時間であり、1つまたは複数の洗浄フェーズを含む、かつ/または、1つまたは複数の洗浄フェーズによって互いに分離される。実際には、異なる金属または合金に対応する2つのサブシーケンス間で、すなわち、m吹付け/緩和サイクルの各サブシーケンスΔs後に、少なくとも1つの洗浄を設けることが好ましく、mは、2と30との間、好ましくは5と20との間である。
【0078】
考えられる第2の実施態様の枠組み内で、異なる金属または合金の多層を形成するための、いくつかの酸化金属カチオンの組合せは、異なる塩が、好ましくは、還元剤と別々に、しかし同様に互いに別々でかつ連続して自然に吹付けられるようなものである。金属カチオンの異なる性質に加えて、互いに異なる対アニオンを使用することを想定することが可能であることが自明である。
【0079】
段階−c−の実施を可能にするために、堆積される金属コーティングの成長は、好ましくは、重量の変化を使用して、たとえば、金属化される表面と同じ方法で吹付けにさらされるプローブを装備する石英秤を使用して監視される。
【0080】
本発明の別の変形によれば、酸化剤(複数可)および還元剤(複数可)の混合物は準安定であり、混合物を吹付けた後、好ましくは、反応混合物の吹付けの前か吹付け中かまたは吹付け後に少なくとも1つのエアロゾルによって有利には供給されるプライマーに接触させることによって金属への変化がトリガーされるように、還元剤が活性化されることが確保される。この変形は、吹付け後に酸化剤および還元剤が基材の表面を覆うまで両者の反応を遅延させながら、酸化剤および還元剤を予備混合することを可能にする。反応のプライミングまたは活性化は、その後、任意の物理的(温度、UVなど)または化学的手段によって達成される。
【0081】
先に提示され、また、例において以降で示す方法論的考慮事項以外に、ここで、本発明による方法において利用される生成物に関するより正確な情報を提供することが重要である。
【0082】
水は、吹付けられるエアロゾルがそこから生成される溶液の生成にとって最も適した溶媒であるように見える(しかし、有機溶媒を使用する可能性を排除しない)。酸化金属塩の濃度は、1g/lと60g/lとの間、好ましくは7g/lと30g/lとの間である。
【0083】
還元剤の選択は、好ましくは、生成物、すなわち、水素化ホウ素ナトリウム、ボラン、ジメチルアミン、ヒドラジン、次亜リン酸ナトリウム、ホルモール、水素化アルミニウムリチウム、還元糖およびその混合物の群から行われる。還元剤の選択は、金属化膜について求められるpHおよび特性を考慮することを必要にさせる。この日常の試行錯誤は、当業者の範囲内にある。還元剤の濃度は、0.5g/lと60g/lとの間、好ましくは8g/lと20g/lとの間である。
【0084】
既に先に説明したように、水性溶液は、酸化剤/還元剤を吹付けるためのエアロゾルの生成にとって最も好都合な基礎を構成する。好ましい配置構成によれば、開始溶液の少なくとも1つは、以下のもの、すなわち、
− および/または、少なくとも1つの天然樹脂または合成樹脂または結合剤、
− および/または、少なくとも1つの有機または無機染料および/または顔料、
− 好ましくは以下の生成物、すなわち、チタン酸塩、アルミン酸塩、シラン、ジルコン酸塩、ジルコアルミン酸塩またはその混合物から選択される少なくとも1つのカップリング剤、
− および/または、好ましくは以下の生成物、すなわち、スルフィミド、スルファンアミド、スルホネート、プロパルギルアルコール、チオウレア、メルカプタベンゾチアゾールまたはその混合物から選択される少なくとも1つの光沢剤、
− および/または、少なくとも1つの界面活性剤、
− および/または、好ましくは以下の生成物、すなわち、
*ガラス、炭素、テフロン(登録商標)、シリコン、カーバイド、グラファイト、ダイヤモンド、アルミナなどの酸化物、セラミックのファイバまたは粒子、
*潤滑剤を含有するマイクロカプセル、
*または同様に、炭酸カルシウムまたは炭酸ナトリウム、硫酸バリウム、滑石、ケイ酸塩、
*実際に、金属膜の流体力学的特性および機械的特性を修飾することが可能な任意のフィラー、
*および、これらの生成物の混合物
から選択される少なくとも1つのフィラー
が添加されていることがもたらされ得る。
【0085】
カップリング剤は、水性媒体内で加水分解する能力があるため表面修飾因子として働いて、表面に対して「プライマー」として、また、任意選択で、反応のための触媒として役立つ、表面で化学吸着されるアモルファス膜および無機膜を生じさせる。
【0086】
これらの表面修飾因子の選択について好ましい生成物のクラスとして、チタン酸塩、アルミン酸塩、シラン、ジルコン酸塩、ジルコアルミン酸塩に対して参照が行われてもよい。チタン酸塩は特に適切である。チタン酸塩または類似物によるこの活性化の利点は、それが、酸化剤/還元剤の吹付けの前に活性化段階を設ける必要なしで、in situで起こることである。チタン酸塩膜の特性は、使用される量に依存する。性能は、修飾される表面が官能基(ケトン、アミン、エポキシなど)を含有するときに最大である。チタン酸塩の使用は、プラスチック基材に対して、特にニッケルの膜の付着性を改善すること、ならびに、表面上でin situで酸化還元反応に触媒作用を及ぼすことを可能にする。溶液内のチタン酸塩の濃度は、0.1重量%と12重量%との間、好ましくは1重量%と7重量%との間である。光沢剤の例として、
− 0.1g/l〜10g/l、好ましくは1g/lと5g/lとの間の範囲にある濃度で使用されるサッカリンなどのスルフィミド、
− 0.1g/l〜12g/l、好ましくは1g/lとxg/lとの間の範囲にある濃度で使用されるベンゾスルファンアミドなどのスルファンアミド、
− 4g/l未満の濃度で使用されるナトリウムナフタリントリスルホネートなどのスルホネート、
− 3g/l未満の濃度で使用されるプロパルギルアルコール、チオウレア、メルカプタベンゾチアゾール
が述べられ得る。
【0087】
使用され得る界面活性剤は、利用される界面活性剤の臨界ミセル濃度(critical micelle concentration)CMCの1〜5倍の範囲の濃度で使用可能である。界面活性剤の例として、ドデシル硫酸ナトリウムSDS(アニオン性:2×CMC)、ナトリウムラウリルスルホネート(アニオン性:4×CMC)およびポリオキシエチレンオニルフェニルエーテル(非イオン性:4×CMC)が述べられ得る。
【0088】
吹付けられる溶液に対する粒子および/またはファイバの添加は、複合堆積物を得ることを可能にする。有機または無機フィラーのこれらの粒子またはこれらのファイバは、そのマトリクスが金属である複合膜に、有用な摩擦特性、粗面化特性、硬さ特性および強靭特性を与える。
【0089】
有機フィラーは、たとえば、テフロン(登録商標)またはPTFEポリテトラフルオロエチレンビードであり得る。
【0090】
無機フィラーは、たとえば、グラファイト粒子、ガラスビード、シリカ粒子あるいは同様に顔料または染料であり得る。
【0091】
粒子またはファイバは、たとえば、金属塩の溶液内に懸濁状態で置かれる。この溶液内で、堆積した金属膜の摩擦特性を修飾することが可能な任意の粒子を使用することが可能である。
【0092】
いずれの場合も、本発明による方法について得られる複合膜は、単純な金属膜の全ての特性を有し、また、均質である。
【0093】
本発明によれば、溶液は、特にエチレングリコールなどの粘度修飾剤などの、溶液に添加される多数の添加剤を有することができる。粘度の微調整は、実際には、基材上での流れ現象を回避することを可能にする。したがって、試薬は、長時間にわたって、同じ場所で基材に接触したままである。当然の結果として、堆積される質量、したがって、酸化還元反応の産出量が改善されることになる。一方、粘度の増加は、複合堆積物を生成する場合に、粒子またはファイバの分散性および懸濁性を改善する。
【0094】
本発明による改良型方法の利点は数多い。改良型方法は自動化される。溶液は、工業用規模で経済的要件に適合する制限された量で使用される。堆積物の付着性は、基材がどんなもの(金属、プラスチック、セラミック)であっても優れている。時間当たり数十ミクロンの動態によって数分でかなりの厚さを達成することが可能である。コーティングは、周囲温度で、瞬時に、後続の処理(たとえば、熱処理)を必要とすることなく得られ得る。しかし、堆積物の浅在性構造を修飾したいと思う場合、こうした処理が想定され得ることは自明である。
【0095】
堆積物は、装飾、仕上げおよび腐食(ニッケル、亜鉛、Cuなど)に対する保護のために生成され得る。これらの堆積物はまた、基材に特定の(電気的、磁気的、機械的)表面特性を与えることによって、基材を機能化させることを可能にし得る。それは、たとえば、電磁遮蔽に関して電子機器のプラスチックケーシング用の保護を提供してもよい。
【0096】
本発明による改良型方法は、原料の消費を低減するだけでなく、有利な再利用の可能性も提供する。
【0097】
そのため、本発明による改良型方法の有利な使用によって、
・金属化の終了時に生成され、金属酸化物を含有するスラッジが回収され、
・これらのスラッジがろ過され、
・残余物が少なくとも1種の
酸を使用して溶解され、
・
酸中の残余物溶液のpHを上昇させて、金属水酸化物または金属化で使用される1つまたは複数の金属に対応する異なる金属水酸化物を連続して沈降させ、
・金属水酸化物沈降物(複数可)が別々に凝結され、
・この(またはこれらの)金属水酸化物(複数可)が、任意選択で、金属化方法において再利用される。
【0098】
スラッジの回収は、ろ過のように、実施するのが容易な作業である。
【0099】
本発明による改良型方法の利益は、ろ過が、一方では、再利用可能な金属酸化物を含有する固体材料をスラッジから分離することを、他方で、非生態毒性液体ろ過液を生成することを可能にし、したがって、環境の点で管理するのが容易であることである。
【0100】
ろ過残余物を溶解するのに使用されることが可能な
酸は、たとえば、硝酸、硫酸、ホウ酸、酢酸およびその混合物を含む群から選択される。
【0101】
この溶解に使用される
酸(複数可)の溶液は、0.5モル/リットルと5モル/リットルとの間である、好ましくは1モル/リットル程度の
酸(複数可)の濃度を有する。
【0102】
酸の残余物溶液のpHを上げるために、たとえば、ソーダ、アンモニア、ライムおよびその混合物を含む群から選択される塩基が使用される。
【0103】
このために使用される塩基溶液の濃度は、たとえば、0.1mol/lと5mol/lとの間、好ましくは0.5mol/lと3mol/lとの間、なおより優先的には1mol/lと2mol/lとの間である。
【0104】
金属水酸化物沈降物(複数可)の収集は、たとえば、ろ過、デカンテーションまたは遠心分離によって容易に実行される。
【0105】
得られる異なる固体金属水酸化物沈降物(複数可)は、本発明による改良型金属化方法において、溶液に容易に戻され、再使用され得る。
【0106】
これらの態様のうちの別の態様によれば、本発明は、上述した改良型方法を実施するデバイスに関する。
【0107】
本発明によるデバイスの例証によれば、一実施形態の例が、添付図面を参照して、とりわけ以降で述べられる。