特許第5648919号(P5648919)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日新イオン機器株式会社の特許一覧

<>
  • 特許5648919-イオン注入装置 図000002
  • 特許5648919-イオン注入装置 図000003
  • 特許5648919-イオン注入装置 図000004
  • 特許5648919-イオン注入装置 図000005
  • 特許5648919-イオン注入装置 図000006
  • 特許5648919-イオン注入装置 図000007
  • 特許5648919-イオン注入装置 図000008
  • 特許5648919-イオン注入装置 図000009
  • 特許5648919-イオン注入装置 図000010
  • 特許5648919-イオン注入装置 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5648919
(24)【登録日】2014年11月21日
(45)【発行日】2015年1月7日
(54)【発明の名称】イオン注入装置
(51)【国際特許分類】
   H01J 37/317 20060101AFI20141211BHJP
   H01J 37/147 20060101ALI20141211BHJP
   H01J 37/09 20060101ALI20141211BHJP
   H01L 21/265 20060101ALI20141211BHJP
【FI】
   H01J37/317 C
   H01J37/147 D
   H01J37/09 A
   H01L21/265 603B
   H01L21/265 T
【請求項の数】5
【全頁数】13
(21)【出願番号】特願2011-178472(P2011-178472)
(22)【出願日】2011年8月17日
(65)【公開番号】特開2013-41767(P2013-41767A)
(43)【公開日】2013年2月28日
【審査請求日】2014年2月12日
(73)【特許権者】
【識別番号】302054866
【氏名又は名称】日新イオン機器株式会社
(72)【発明者】
【氏名】内藤 勝男
【審査官】 佐藤 仁美
(56)【参考文献】
【文献】 特開平06−089684(JP,A)
【文献】 特開2005−327713(JP,A)
【文献】 特開2008−243765(JP,A)
【文献】 特開2007−273368(JP,A)
【文献】 特開2008−047459(JP,A)
【文献】 特表2009−524197(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/30−37/36、
H01L 21/26−21/268、21/322−21/326、
21/42−21/428、21/477−21/479
(57)【特許請求の範囲】
【請求項1】
イオン源より断面が略長方形状の正の電荷を有するイオンビームを射出させ、処理室内に配置された基板にイオン注入処理を施すイオン注入装置であって、
前記イオンビームの進行方向に垂直な断面の長辺方向におけるビーム電流密度分布を計測する複数のファラデーカップから構成されているビーム電流計測器と、
前記ビーム電流計測器での計測結果に応じて、前記イオンビームの前記長辺方向における少なくとも一部を前記イオンビームの進行方向に垂直な断面の略短辺方向に向けて偏向させる偏向電極と、
前記偏向電極によって偏向された前記イオンビームを部分的に遮蔽する遮蔽部材を備えていて、
前記偏向電極は1枚の平板電極と前記イオンビームの前記短辺方向で前記イオンビームを挟んで前記平板電極に対向配置された電極群からなり、前記平板電極は電気的に接地されているとともに、前記電極群を構成する複数の電極は互いに電気的に独立していて、各電極には電位設定を行う為の複数の電源が個別に接続されていることを特徴とするイオン注入装置。
【請求項2】
前記イオンビームの前記長辺方向における寸法は前記基板の寸法よりも長く、前記基板へのイオン注入処理時には、前記処理室内で前記基板が前記イオンビームの前記短辺方向に沿って搬送されることを特徴とする請求項1記載のイオン注入装置。
【請求項3】
前記ビーム電流計測器での計測結果が所望する値でない場合、前記電極群を構成する複数の電極の電位は、全ての電極で負電位とするか、あるいは、一部の電極で負電位とし、かつ、残りの電極で接地電位とすることを特徴とする請求項1または2記載のイオン注入装置。
【請求項4】
前記複数の電源には、接地電位を基準にして前記複数の電源の電位を一括して設定するバイアス電源が接続されていることを特徴とする請求項1または2記載のイオン注入装置。
【請求項5】
前記バイアス電源は、前記複数の電源の電位を一括して負電位にすることを特徴とする請求項4記載のイオン注入装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一方向に長いリボン状のイオンビームの長手方向における電流密度分布を調整する電界レンズを備えたイオン注入装置に関する。
【背景技術】
【0002】
基板寸法の大型化に対応すべく、イオン注入装置では一方向に長いリボン状のイオンビームが用いられている。このようなイオンビームは、イオンビームの進行方向に対して垂直な平面で切断したときに略長方形状の断面を有している。イオン注入処理の例としては、例えば、リボン状のイオンビームの長さ方向と略直交する短辺方向に沿って基板を搬送させて、基板全面にイオンビームを照射して、基板へのイオン注入処理が行われている。
【0003】
また、基板上に製造される半導体デバイスの微細化に伴って、リボン状のイオンビームの長さ方向におけるビーム電流密度分布を調整し、所望のビーム電流密度分布を達成させる為に種々な調整手段が考えられてきた。
【0004】
特許文献1には、ビーム電流密度分布の調整手段として、電界レンズを用いる例と磁界レンズを用いる例が開示されている。具体的な構成について、簡単に述べると、次のような構成となる。
【0005】
電界レンズの例については、特許文献1の図8に記載されているように、リボン状のイオンビームをその短辺方向から挟む電極対をイオンビームの長さ方向に沿って複数配置しておき、各電極対への印加電圧を個別に調整して、イオンビームの長辺方向に並べられた電極対間に電界を発生させて、ビーム電流密度分布の調整を行う構成が開示されている。
【0006】
一方、磁界レンズの例については、特許文献1の図11に開示されているように、リボン状のイオンビームを短辺方向から挟む磁極対をイオンビームの長さ方向に沿って複数配置しておき、各磁極対にコイルを巻回して、各磁極対に巻回された一対のコイルに流す電流量および電流の方向を個別に調整して、イオンビームの短辺方向に並べられた磁極対間に磁界を発生させて、ビーム電流密度分布の調整を行う構成が開示されている。
【0007】
基板寸法の大型化に伴ってイオンビームの寸法が大きくなると、そのような大きなイオンビームを作り出す為の装置寸法も大きくなる。ただし、装置寸法があまりにも大きなものなると、半導体工場内に大型の装置を配置する為の広い場所を確保しなければならないので、他の装置の配置場所との兼ね合いからあまり望ましくない。その為、出来るだけイオン注入装置の寸法を小さくしておきたいといった要望がある。そこで、ビーム電流密度分布の調整手段としては、磁界レンズに比べて比較的寸法の小さい電界レンズを用いることが望まれている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2005−327713(図8図11、段落0063〜0066、段落0075〜0081)
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、特許文献1に挙げられる電界レンズでは、イオンビームの長辺方向に沿って電界を発生させて、イオンビームの長辺方向を局所的に伸び縮みさせている。この伸び縮みの作用が、イオンビームの長辺方向における端部で発生した場合、基板に照射されるイオンビームの長辺方向の寸法を変化させてしまうことになる。
【0010】
イオンビームの長辺方向における寸法が長くなると、イオンビームの輸送経路を構成する真空容器の壁面や輸送経路内に配置された部材にイオンビームが衝突する可能性がある。この場合、輸送されるイオンビームのビーム電流量が減少してしまう。ビーム電流量の減少を避ける為、輸送経路を構成する真空容器や輸送経路内に配置された部材の寸法を幾分大きなものにしておくことが考えられるが、そうなると、装置寸法の大型化を招いてしまう。一方、イオンビームの長辺方向での寸法が短くなった場合には、基板の全面、特に基板の端部において、イオンビームが照射されない領域が発生したり、イオンビームが照射されたとしても所望するビーム電流量に満たない領域が発生したりすることが懸念される。また、イオンビームの長辺方向における寸法の伸縮が大きいと、その分、上記した問題が顕著となる。
【0011】
そこで本発明では、略長方形状の断面を有するイオンビームの長辺方向におけるビーム電流密度分布を電界レンズにより調整する場合に、イオンビームの長辺方向における伸縮作用を低減することのできるイオン注入装置を提供することを期所の目的とする。
【課題を解決するための手段】
【0012】
本発明に係る一のイオン注入装置は、イオン源より断面が略長方形状の正の電荷を有するイオンビームを射出させ、処理室内に配置された基板にイオン注入処理を施すイオン注入装置であって、前記イオンビームの進行方向に垂直な断面の長辺方向におけるビーム電流密度分布を計測する複数のファラデーカップから構成されているビーム電流計測器と、前記ビーム電流計測器での計測結果に応じて、前記イオンビームの前記長辺方向における少なくとも一部を前記イオンビームの進行方向に垂直な断面の略短辺方向に向けて偏向させる偏向電極と、前記偏向電極によって偏向された前記イオンビームを部分的に遮蔽する遮蔽部材を備えていて、前記偏向電極は1枚の平板電極と前記イオンビームの前記短辺方向で前記イオンビームを挟んで前記平板電極に対向配置された電極群からなり、前記平板電極は電気的に接地されているとともに、前記電極群を構成する複数の電極は互いに電気的に独立していて、各電極には電位設定を行う為の複数の電源が個別に接続されている。
【0013】
ビーム電流密度分布の調整時にイオンビームの短辺方向に電界を発生させて、イオンビームを局所的に略短辺方向に向けて偏向させるようにしているので、従来の電界レンズで発生していたイオンビームの長辺方向における伸縮作用を格段に低減させることができる。
【0014】
また、前記イオンビームの前記長辺方向における寸法は前記基板の寸法よりも長く、前記基板へのイオン注入処理時には、前記処理室内で前記基板が前記イオンビームの前記短辺方向に沿って搬送されることが望ましい。
【0015】
このような構成であれば、基板全面に所望する注入量分布でイオン注入処理を行うことができる。
【0016】
また、前記ビーム電流計測器での計測結果が所望する値でない場合、前記電極群を構成する複数の電極の電位は、全ての電極で負電位とするか、あるいは、一部の電極で負電位とし、かつ、残りの電極で接地電位とすることが望ましい。
【0017】
このような構成であれば、電極群を構成する各電極の電位が負電位あるいは接地電位となるので、正の電荷を有するイオンビーム中に含まれる電子やイオンビームの輸送経路内に浮遊する電子が各電極に引き込まれずに、負電位となる電極によってイオンビーム側に反射される。イオンビーム側に反射された電子は、イオンビームの空間電荷効果による発散を抑制するように作用する。この為、空間電荷効果によって、イオンビームが発散して、イオンビームの輸送経路を構成する真空容器壁面に衝突してしまう恐れを軽減することができる。
【0018】
さらに、前記複数の電源には、接地電位を基準にして前記複数の電源の電位を一括して設定するバイアス電源が接続されていることが望ましい。
【0019】
このような構成であれば、ビーム経路中で発生した中性粒子を除外することが可能となる。さらに、電極群に接続された各電源の電位を一括してバイアス電源で調整するように構成しているので、電極群を構成する各電極に接続された電源を個別に調整して中性子除去を行う場合に比べて、電源の消費電力を小さくすることができる。さらに、電源容量の大きな電源を複数設ける必要がないので、その分、費用を安くすることができる。
【0020】
一方で、前記バイアス電源は、前記複数の電源の電位を一括して負電位にするように構成されていることが望ましい。
【0021】
前述したバイアス電源を用いた例で述べた効果に加えて、電極群を構成する各電極への電子の引き込みが行われないので、空間電荷効果によるイオンビームの広がりを抑制することができる。
【発明の効果】
【0022】
略長方形状の断面を有するイオンビームの長辺方向におけるビーム電流密度分布を電界レンズにより調整する場合に、従来の電界レンズで発生していたイオンビームの長辺方向における伸縮作用を格段に低減させることができる。
【図面の簡単な説明】
【0023】
図1】本発明に係る一のイオン注入装置を表す平面図である。(A)はXZ平面での様子を表し、(B)はYZ平面での様子を表す。
図2図1に記載の偏向電極の一例を表す。
図3図1のビーム電流計測器での計測結果を表す。
図4図3に示す計測結果に基づいて、偏向電極によってイオンビームが局所的に偏向される様子を表す。
図5図4の偏向電極によって局所的に偏向されたイオンビームが偏向電極の下流側に配置される遮蔽部材で遮蔽される様子を表す。
図6図2に示された偏向電極の別の例を表し、図3に示す計測結果に基づいて、偏向電極によってイオンビームが局所的に偏向される様子を表す。
図7図6の偏向電極によって局所的に偏向されたイオンビームが偏向電極の下流側に配置される遮蔽部材で遮蔽される様子を表す。
図8】本発明に係る別のイオン注入装置を表す平面図である。(A)はXZ平面での様子を表し、(B)はYZ平面での様子を表す。
図9】本発明に係る他のイオン注入装置を表す平面図である。(A)はXZ平面での様子を表し、(B)はYZ平面での様子を表す。
図10図9に記載の偏向電極の構成例を表す。(A)は電極群を構成する各電極の電位が負電位となるように電源が接続された例を表し、(B)は電極群を構成する各電極の電位が正電位となるように電源が接続された例を表す。
【発明を実施するための形態】
【0024】
本発明に係るイオン注入装置の一例が図1に記載されている。本実施形態では、Z方向をリボン状のイオンビームの進行方向とし、Y方向をリボン状のイオンビームの長辺方向とし、X方向をリボン状のイオンビームの短辺方向としている。また、本発明で取り扱うイオンビームは、正の電荷を有するイオンビームである。
【0025】
図1(A)はXZ平面でのイオン注入装置の様子を表し、図1(A)に記載のX、Y、Z軸は、イオン源1より射出された直後のイオンビーム2を基準にして描かれている。イオンビーム2は輸送経路の場所によって進行方向であるZ軸の方向が変化する。その為、X、Y、Z軸の方向(X方向、Y方向、Z方向)は、適宜、イオンビーム2の輸送経路の場所に応じて変更される。これは、図1(A)に限らず、その他の図においても同様である。
【0026】
イオン源1より射出されたリボン状のイオンビーム2は質量分析マグネット3を通過する。イオン源1に供給されるイオン化ガスの種類に応じて、イオンビーム2には様々なイオン種が含まれている。その為、後述する基板8(例えば、シリコンウェハ等の半導体基板)に所望するイオン種のみを含むイオンビーム2が照射されるように、この質量分析マグネット3とその下流側(Z方向側)に配置された分析スリット4によって、イオンビーム2の質量分析が行われる。
【0027】
分析スリット4を通過したイオンビーム2は、偏向電極5に入射する。偏向電極5は、図1(B)に示されているように、イオンビーム2をその短辺方向(X方向)から挟んで一方側に配置された平板電極11と他方側に配置された電極群12とで構成されている。この例では、イオンビーム2の長辺方向において、イオンビーム2を略短辺方向に向けて局所的に偏向させて、偏向電極5の下流側に位置する遮蔽部材6にイオンビーム2の少なくとも一部を衝突させることで、イオンビーム2の長さ方向におけるビーム電流密度分布の調整が行われている。
【0028】
遮蔽部材6は、一例として図1(A)に示されているようなイオンビーム2の通過経路にスリットを形成する2枚の平板でも良いが、偏向電極5でのイオンビーム2の偏向方向が一方向であれば、2枚の平板で構成しておく必要はなく、1枚の平板であっても良い。一方で、2枚の平板で構成しておくと、次の点でメリットがある。
【0029】
例えば、半導体基板上にPN接合を形成させる為に、イオン化ガスとしてP用のガス(例えば、PH)を用いる場合やN用のガス(例えば、BF)を用いる場合がある。このような場合、本発明のビーム電流密度分布の調整では、遮蔽部材6にイオンビーム2の少なくとも一部が衝突(遮蔽)されるので、遮蔽部材6にこれらのイオン化ガスの成分が付着してしまう恐れがある。その為、遮蔽部材6を1枚の平板で構成しておくと、P用のガスを用いてイオン注入を行う際に、N用のガスを用いてイオン注入したときの付着物が遮蔽部材6より剥がれ落ちて、P用のガスを主成分とするイオンビーム2中に混入してしまう恐れがある。このような混入を防止する為に、遮蔽部材6を2枚の平板で構成しておき、後述するように偏向電極5でのイオンビーム2の偏向方向をイオン化ガスの種類に応じて、変更できるように構成しておくことで、前述した混入の問題を防止することができる。
【0030】
遮蔽部材6により少なくとも一部が遮蔽されたイオンビーム2は処理室7に導入される。イオンビーム2の長辺方向における寸法は、図1(B)に図示されているように基板8の同方向における寸法よりも長い。処理室7では、図示されない駆動機構により基板8が矢印で示される方向に搬送されることで、基板8の全面にイオン注入処理が施される。
【0031】
処理室7に配置された基板8の下流側には、ビーム電流計測器9が設けられている。このビーム電流計測器9の寸法は、例えば、図1(B)に図示されているようにイオンビーム2の長辺方向(Y方向)の寸法よりも大きく、図1(A)に図示されているようにイオンビーム2の短辺方向(X方向)の寸法よりも大きい。
【0032】
基板8へのイオン注入処理前、基板8は処理室7内で基板8上にイオンビーム2が照射されない場所に配置されている。この為、イオン注入処理前に処理室7内に導入されたイオンビーム2はビーム電流計測器9に照射される。ビーム電流計測器9は、例えば、イオンビーム2の長辺方向に沿って配置された複数のファラデーカップから構成されていて、これを用いてイオンビーム2の長辺方向におけるビーム電流密度分布の計測が行われる。
【0033】
ビーム電流計測器9で計測されたビーム電流密度分布の計測結果は制御装置10に送信され、制御装置10でビーム電流密度分布の計測結果が所望するものでないと判断された場合、制御装置10は偏向電極5を構成する電極群12(この例では、5枚の電極)に接続された後述する電源V1〜V5に対して制御信号S1〜S5を送信する。
【0034】
制御信号S1〜S5によって、電極群12を構成する各電極の電位が設定されると、イオンビーム2の長辺方向において、イオンビーム2は略短辺方向に向けて局所的に偏向されて、偏向電極5の下流側に配置された遮蔽部材6に少なくとも一部が衝突する。その後、遮蔽部材6で少なくとも一部が遮蔽されたイオンビーム2のビーム電流密度分布がビーム電流計測器9で再び計測されて、その計測結果が制御装置10に送信される。この際、制御装置10は計測結果が所望する分布であると判断した場合、基板8を搬送してイオン注入処理を開始する。
【0035】
一方、制御装置10が未だ所望するビーム電流密度分布に調整されていないと判断した場合には、再び制御信号S1〜S5送信し、各電極の電位調整が行われる。この再調整、再計測の処理は、ビーム電流密度分布が所望する分布になるまで繰り返される。なお、調整を段階的に行わせる為に、上記例で述べた1回目に送信される制御信号S1〜S5と2回目に送信される制御信号S1〜S5の制御内容(例えば、電源電圧の調整幅)は異なっている。また、上述したように、本発明のビーム電流密度分布の調整は、基板8へのイオン注入処理前、あるいは、基板8をロット単位で処理する場合には、各ロットを処理する毎に行われる。
【0036】
図2には、偏向電極5の構成が描かれている。前述したように、偏向電極5はイオンビーム2をその短辺方向から挟んで一方側に配置された平板電極11と他方側に配置された電極群12とで構成されている。より詳細には、この図2に示されるように、平板電極11は電位的に接地されており、電極群12を構成する第1の電極13、第2の電極14、第3の電極15、第4の電極16、第5の電極17には、各電極の電位が個別に調整できるように直流可変電源V1〜V5が個別に接続されている。この例では、電極の枚数を5枚としているが、枚数はこれ以上であってもこれ以下でも良い。
【0037】
図3には、図1に描かれるビーム電流計測器9でのビーム電流密度分布の計測結果の一例が示されている。図示されるグラフの横軸はビーム電流密度計測器での位置(換言すると、イオンビーム2の長辺方向での位置。横軸の方向はY方向に一致する。)を表し、縦軸はビーム電流密度を表す。
【0038】
図3において、図示されるAの領域は、基板8上に照射されるイオンビーム2の領域に相当する。基板8の全域に渡って、イオン注入ムラをなくす為には、このAで示される領域のビーム電流密度分布をおおよそ均一なものにしておく必要がある。ただし、均一といってもビーム電流密度の値が一定値である必要はなく、ある程度、類似する値であれば良い。どの程度の類似性(均一性)を有していればいいかは、基板8上に製造されるデバイスの種類によって異なる。この例では、Aで示される領域内で、最もビーム電流密度の小さい場所を基準にして、おおよそBで示される領域内に基板8に照射されるイオンビーム2の長さ方向の各位置でのビーム電流密度の値が入っていれば均一であるものとしている。領域Aに着目すると、一部で領域B内に収まっていない(図示されるハッチング部分)ことがわかる。よって、ビーム電流密度分布を均一にするには、領域Bより外れたハッチングされている領域部分のビーム電流密度を小さくすることが必要とされる。
【0039】
図4には、図3に示される計測結果に基づいて、図2に記載の偏向電極5を用いてイオンビーム2の一部が局所的に偏向される様子が描かれている。図中、破線は偏向電極5に入射したイオンビーム2の外形であって、実線は偏向電極5によって局所的な偏向作用を受けたイオンビーム2の外形を表している。
【0040】
ここでは、図3に描かれたハッチング部分に対応するイオンビーム2の一部を後述する偏向電極5の下流側に配置された遮蔽部材6に衝突させて、その部分のビーム電流密度を小さくする為に、イオンビーム2を局所的に偏向させることが行われている。この例の場合、電源V2、電源V1、電源V3、電源V4の順に各電極に印加する負電圧の値(絶対値)が小さくなるように印加電圧が設定されている。また、電源V5の印加電圧は0Vに設定されている。この印加電圧により各電極の電位が設定されると、第1の電極13から第4の電極16と平板電極11との間の領域で、おおよそ平板電極11側から電極群12側に向けて電界が発生する。この電界によって、正の電荷を有するイオンビーム2が電極群12側に向けて局所的に偏向される。
【0041】
偏向の程度は、各電極に印加された電圧の値(各電極の電位)に依存する。ここでは、第2の電極14に印加される電圧の値が最も小さい(絶対値で言えば、最も大きい)ので、第2の電極14付近にイオンビーム2が大きく引き寄せられている。第5の電極17付近を通過するイオンビーム2は、図3に描かれた領域Aの紙面左側端部に対応しているので、この部分のビーム電流密度は減少させる必要はない。その為、この例では、第5の電極17に接続された電源V5の値を0Vにしている。なお、各電極に印加される電圧の値は、イオンビーム2の偏向量以外に、イオンビーム2のエネルギーによっても、適切な値が設定される。
【0042】
図4で局所的に偏向されたイオンビーム2の一部が遮蔽部材6に衝突する様子が、図5に描かれている。局所的に偏向されたイオンビーム2の図3に描かれるハッチング部分に対応する部分が遮蔽部材6に衝突する。このイオンビーム2と遮蔽部材6との衝突によって、イオンビーム2の一部が削られると、削られた部分のビーム電流密度が減少することになる。このようにして、ビーム電流密度分布の調整が行われる。
【0043】
図2では、電極群12を構成する各電極に対して負電圧を印加する電源V1〜V5を個別に接続して、各電極の電位設定を行う構成について説明したが、本発明の構成はこれに限られない。例えば、図6に示すように各電極に対して正電圧が印加されるように直流可変電源を接続しておいても良い。
【0044】
図6の例では、各電極13〜17に印加される電圧の絶対値を図4の例で説明したものと同じにして、極性のみを逆にしている。このようにしておくと、第1の電極から第4の電極と平板電極11との間で、おおよそ電極群12から平板電極11側に向けて電界が発生する。この電界の作用によって、イオンビーム2は図4の例で示したものと逆方向に向けて局所的に偏向されることになる。
【0045】
図7には、図6に示される偏向電極5で局所的に偏向されたイオンビーム2が遮蔽部材6に衝突する様子が描かれている。この図7に描かれているように、イオンビーム2のハッチングされている部分が遮蔽部材6に衝突する。このイオンビーム2と遮蔽部材6との衝突によって、イオンビーム2の削られる量が、前述した図5に示される量と同じである場合、ビーム電流密度分布の調整後にビーム電流計測器9で計測されるビーム電流密度分布の計測結果は同じものになる。よって、図4で説明したように各電極に対して負電圧を印加するように電源を接続してもいいし、図6で説明したように各電極に対して正電圧を印加するように電源を接続しておいても良い。
【0046】
また、極性の変更可能な電源を用いると、電極群12側と平板電極11側のいずれの方向にもイオンビーム2を局所的に偏向させることが可能となる。このような電源とイオンビーム2を短辺方向から挟んで配置された2枚の遮蔽版6とを組み合わせることによって、イオン化ガスの種類に応じて、イオンビーム2の短辺方向に配置されたいずれの遮蔽板6にイオンビーム2を衝突させてビーム電流密度分布の調整を行うのかを選択可能に構成しておくことができる。
【0047】
イオンビーム2のエネルギーが低くビーム電流が小さいとき、イオンビーム2の空間電荷効果による発散を考慮すると、図6で説明した構成に比べて図4で説明した構成の方が望ましい。
【0048】
図6で説明した構成では、イオンビーム2中の電子や輸送経路中に浮遊する電子が正電位となった電極に引き込まれてしまうからである。正の電荷を有するイオンビーム2を中和する存在である電子が減少すると、空間電荷効果の影響が強く現れて、イオンビーム2の発散の程度が大きくなる。その場合、基板8へのイオンビーム2の入射角度の制御が困難になることやイオンビーム2の輸送経路を構成する真空容器の壁面にイオンビーム2が衝突してイオンビーム2のビーム電流量が予想以上に減少してしまうことが懸念される。
【0049】
一方、図4で説明した構成では、イオンビーム2中の電子や輸送経路中に浮遊する電子が負電位となった電極で反射されて、再びイオンビーム2や輸送経路中に戻される。その為、電子の減少がない分、イオンビーム2の空間電荷効果による発散を抑制することができる。
【0050】
これまでに説明したイオン注入装置の例では、制御装置10を用いて電極群12を構成する各電極の電位設定を行うものであったが、本発明の構成はこれに限られない。例えば、イオン注入装置のオペレーターが電極群12を構成する各電極の電位設定を行うようにしても良い。図8(A)、(B)には、このようなイオン注入装置の構成例が描かれている。
【0051】
図8(A)、(B)のイオン注入装置では、ビーム電流計測器9での計測結果がモニター18に映し出される。このモニター18をイオン注入装置のオペレーターが目視して、適宜、電極群12を構成する各電極の電位設定が行われる。その他の構成については、これまでに説明した装置構成と同一である為、ここでは詳細な説明は省略する。
【0052】
基板8に照射されるイオンビーム2中には中性粒子が混入している場合がある。この中性粒子は、例えばイオンビーム2中のイオンが輸送経路内の残留ガスに衝突して中性化することで発生する。ビーム電流計測器9がファラデーカップで構成されている場合、
このような中性粒子を検出することは出来ない。その為、基板8に照射される正確なビーム電流量の把握が出来なくなることから、ビーム電流計測器9での計測結果に基づいて、基板8へのイオン注入量を制御することが困難であった。
【0053】
このような中性粒子を基板8に照射させないようにする為に、図9(A)、(B)に示すイオン注入装置の例が考えられる。電荷を有しない中性粒子は偏向電極5による偏向作用を受けない。この例では、このような中性粒子の性質を利用して、イオンビーム2中に含まれる中性粒子の除去を行っている。
【0054】
図9(A)、(B)において、基本的な構成は図1(A)、(B)に示した例と同じである為、ここでは中性子除去の仕組みについてのみ説明する。前述したように中性粒子は偏向電極5による偏向作用の影響を受けない。その為、ここでは偏向電極5に入射したイオンビーム2全体をイオンビーム2の短辺方向に偏向させて、イオンビーム2の輸送経路全体をシフトさせている。このような構成にすると、偏向作用を受けない中性粒子は、偏向電極5に入射したイオンビーム2の輸送経路の延長線上(図9(A)に破線で描かれる矢印の方向)に進み、処理室7の壁面に衝突するので、基板8に照射されるのを防止することができる。これによって、基板8へのイオン注入量を正確に制御することが可能となる。
【0055】
図9(A)、(B)に描かれるイオン注入装置で用いられる偏向電極5の構成例が図10(A)、(B)に描かれている。図10(A)にはイオンビーム2を図示される破線の状態から実線の状態になるように紙面左方向に偏向させたときの様子が描かれている。この例において、電極群12を構成する各電極には負電位が印加されるように電源V1〜V5が各電極に対して個別に接続されている。一見すると、図4に示された構成と同じように見えるが、この図9(A)の例ではさらにバイアス電源VBが設けられている。この点が、図4の例と異なっている。
【0056】
このバイアス電源VBは、中性粒子除去の為にイオンビーム2の全体を偏向させるのに用いられる。そして、電源V1〜V5はイオンビーム2を局所的に偏向させる為に用いられる。電源V1〜V5による印加電圧の値をある基準値にしておき、これを基準にしてイオンビーム2に局所的な偏向作用が生じるように各電源の設定電圧を変更することも考えられるが、全電源で消費される電力量を考慮した場合、図9(A)に描かれる構成を用いたほうが断然有利である。また、中性粒子を除去する為にイオンビーム2全体を偏向させる量が大きなものであれば、それだけ電源容量が大きな電源を用意しておかなければならない。個々の電源V1〜V5の電源を大きな電源容量の電源にしてしまうと、コストが増大してしまう。このような観点からも図9(A)に描かれる構成を用いることが望ましい。
【0057】
一方で、各電極への電子の引き込み作用が発生することが懸念されるが、イオンビーム2のエネルギーが高く、ビーム電流が大きい場合には、空間電荷効果によるイオンビーム2への発散作用はほとんど生じない。その為、図9(B)に描かれる構成を用いても良い。図9(B)の構成は、図9(A)の構成から各電源の極性を逆にした点が異なっているが、その他の点については同一である。なお、この図9(B)の場合には、イオンビーム2の全体は平板電極11側(紙面右側)に向けて偏向される。また、図9(A)、図9(B)では、中性子除去を行う為に、イオンビーム2全体を偏向させた様子が描かれているが、ビーム電流密度分布の調整も同時に行った場合には、イオンビーム2の形状は、局所的な偏向作用が施されるので、図示されているような長方形状にはならない。例えば、中性子除去とビーム電流密度分布の調整を同時に行う場合、イオンビーム2の外形は、図10(A)と図4に実線で示されるイオンビーム2の外形を足し合わせたものになる。
【0058】
これまでに述べた実施形態では、イオンビーム2の長さ方向に沿って均一なビーム電流密度分布になるように調整するものであったが、調整目標とするビーム電流密度分布は必ずしも均一なものである必要はない。例えば、イオンビームの長さ方向において、両端部のビーム電流密度を略一定値としておき、中央部のビーム電流密度をこれとは異なる値となるようにして、イオンビーム2の長さ方向において不均一な分布となるようにビーム電流密度分布を調整するようにしておいいても良い。
【0059】
前述した以外に、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行ってもよいのはもちろんである。
【符号の説明】
【0060】
1・・・イオン源
2・・・イオンビーム
3・・・質量分析マグネット
4・・・分析スリット
5・・・偏向電極
6・・・遮蔽部材
7・・・処理室
8・・・基板
9・・・ビーム電流計測器
10・・・制御装置
11・・・平板電極
12・・・電極群
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10