特許第5649435号(P5649435)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社フジクラの特許一覧

<>
  • 特許5649435-色素増感太陽電池 図000003
  • 特許5649435-色素増感太陽電池 図000004
  • 特許5649435-色素増感太陽電池 図000005
  • 特許5649435-色素増感太陽電池 図000006
  • 特許5649435-色素増感太陽電池 図000007
  • 特許5649435-色素増感太陽電池 図000008
  • 特許5649435-色素増感太陽電池 図000009
  • 特許5649435-色素増感太陽電池 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5649435
(24)【登録日】2014年11月21日
(45)【発行日】2015年1月7日
(54)【発明の名称】色素増感太陽電池
(51)【国際特許分類】
   H01G 9/20 20060101AFI20141211BHJP
【FI】
   H01G9/20 111D
   H01G9/20 303B
   H01G9/20 111B
   H01G9/20 107A
   H01G9/20 107B
【請求項の数】11
【全頁数】21
(21)【出願番号】特願2010-282365(P2010-282365)
(22)【出願日】2010年12月17日
(65)【公開番号】特開2012-133889(P2012-133889A)
(43)【公開日】2012年7月12日
【審査請求日】2013年6月11日
(73)【特許権者】
【識別番号】000005186
【氏名又は名称】株式会社フジクラ
(74)【代理人】
【識別番号】100129296
【弁理士】
【氏名又は名称】青木 博昭
(74)【代理人】
【識別番号】100143764
【弁理士】
【氏名又は名称】森村 靖男
(72)【発明者】
【氏名】山本 和寛
【審査官】 ▲辻▼ 弘輔
(56)【参考文献】
【文献】 特開2009−238583(JP,A)
【文献】 特開2007−095567(JP,A)
【文献】 特開2005−158470(JP,A)
【文献】 特開2010−140910(JP,A)
【文献】 特開2010−067987(JP,A)
【文献】 特開2007−265776(JP,A)
【文献】 特開昭55−050584(JP,A)
【文献】 特開2010−033902(JP,A)
【文献】 特開2007−317454(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01G 9/20
H01M 14/00
H01L 31/04
H01L 51/44
(57)【特許請求の範囲】
【請求項1】
透明基板、前記透明基板上に設けられた透明導電膜、前記透明導電膜上に設けられた配線部、及び、前記透明導電膜上に設けられた多孔質半導体層を有する作用極と、
前記作用極に対向して配置される対極と、
前記作用極及び前記対極の間に配置される電解質とを備えた色素増感太陽電池であって、
前記配線部が集電極で構成され、又は、前記集電極と前記集電極を被覆して保護する集電極保護層とで構成され、
前記集電極が集電ユニットで構成され、
前記集電ユニットが、
線状の集電部と、
前記集電部の長手方向に対して斜めに配置された第1配線と、
前記集電部と前記第1配線との間に配置され、前記集電部に接続された複数本の第2配線とで構成され、
前記集電部の幅が前記第1配線の幅及び前記第2配線の幅のそれぞれよりも広くなっており、
前記集電部が前記配線部の外周部に位置しており、
前記複数本の第2配線が前記集電部から前記第1配線に向かって延びており且つ互いに平行となっている色素増感太陽電池。
【請求項2】
透明基板、前記透明基板上に設けられた透明導電膜、前記透明導電膜上に設けられた配線部、及び、前記透明導電膜上に設けられた多孔質半導体層を有する作用極と、
前記作用極に対向して配置される対極と、
前記作用極及び前記対極の間に配置される電解質とを備えた色素増感太陽電池であって、
前記配線部が集電極で構成され、又は、前記集電極と前記集電極を被覆して保護する集電極保護層とで構成され、
前記集電極が集電ユニットで構成され、
前記集電ユニットは、
線状の集電部と、
前記集電部の長手方向に対して斜めに配置された第1配線と、
前記集電部の長手方向に対して斜めに配置された第3配線と、
前記集電部と前記第1配線との間、および、前記集電部と前記第3配線との間に配置され、前記集電部に接続された複数本の第2配線とで構成され、
前記集電部の幅が前記第1配線の幅、前記第2配線の幅及び前記第3配線の幅のそれぞれよりも広くなっており、
前記集電部が前記配線部の外周部に位置しており、
前記第1配線の一端部と前記第3配線の一端部とが互いに接続され、前記第1配線が、前記第1配線の他端部から前記第1配線の一端部と前記第3配線の一端部とを接続して形成される接続点に向かうにつれて前記集電部との距離を増加させており、前記第3配線が、前記第3配線の他端部から前記接続点に向かうにつれて前記集電部との距離を増加させており、
前記複数本の第2配線が前記集電部から前記第1配線及び前記第3配線に向かって延びており且つ互いに平行となっている、色素増感太陽電池。
【請求項3】
前記集電極が2つの前記集電ユニットで構成され、2つの前記集電ユニットにおける前記接続点同士が接続されている、請求項2に記載の色素増感太陽電池。
【請求項4】
前記集電極が4つの前記集電ユニットで構成され、4つの前記集電ユニットにおける前記接続点同士が接続されている、請求項2に記載の色素増感太陽電池。
【請求項5】
前記集電極が4回対称体である、請求項4に記載の色素増感太陽電池。
【請求項6】
4つの前記集電ユニットの前記集電部同士が互いに接続されて四角形状の環状体が形成されており、前記第1配線が前記環状体の対角線に平行となっており、前記第3配線が前記環状体の対角線に平行となっている、請求項4又は5に記載の色素増感太陽電池。
【請求項7】
前記集電ユニットが、前記第1配線を複数本有する、請求項1〜6のいずれか一項に記載の色素増感太陽電池。
【請求項8】
前記集電ユニットにおいて、前記第1配線の断面積が前記第2配線の断面積以下である、請求項1〜6のいずれか一項に記載の色素増感太陽電池。
【請求項9】
前記集電ユニットにおいて、前記複数本の第2配線は、前記第1配線の前記他端部から前記接続点に近づくにつれて長くなるように構成され、
前記複数本の第2配線は、長い前記第2配線ほど大きい断面積を有している、請求項〜6のいずれか一項に記載の色素増感太陽電池。
【請求項10】
前記集電ユニットにおいて、前記第1配線と前記第2配線とが接続されている、請求項1〜6のいずれか一項に記載の色素増感太陽電池。
【請求項11】
前記第2配線が、前記集電部の長手方向に直交するように前記集電部に接続されている、請求項1〜10のいずれか一項に記載の色素増感太陽電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、色素増感太陽電池に関する。
【背景技術】
【0002】
光電変換素子として、安価で、高い発電効率が得られることから色素増感太陽電池が注目されており、色素増感太陽電池に関して種々の開発が行われている。
【0003】
色素増感太陽電池は一般に、作用極と、対極と、作用極及び対極を連結する封止部と、作用極、対極及び封止部とによって囲まれる電解質とを備えている。作用極は一般に、透明基板と、透明基板の表面上に設けられる透明導電膜と、透明導電膜上に設けられる多孔質酸化物半導体膜とで構成される。
【0004】
このような色素増感太陽電池として、例えば下記特許文献1に示すものが知られている。下記特許文献1には、作用極と、対極と、作用極と対極との間に配された電解質を有する色素増感太陽電池が開示されている。ここで、作用極は、透明基板と、透明基板上に設けられた透明導電膜と、透明導電膜上に設けられた集電極と、透明導電膜上に設けられた多孔質半導体層とを有し、集電極の配線パターンとして、例えば格子状パターンが開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2010−140910号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、上述した特許文献1に記載の色素増感太陽電池は、発電効率の向上という点で未だ改良の余地を有していた。
【0007】
また、色素増感太陽電池においては、発電効率の低下につながることから、開口率の低下はできるだけ避けることが望ましい。
【0008】
本発明は、上記事情に鑑みてなされたものであり、開口率の低下を十分に抑制しながら発電効率を向上させることができる色素増感太陽電池を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者は、特許文献1の色素増感太陽電池における集電極の配線パターンについて検討した結果、特許文献1の色素増感太陽電池における集電極の配線パターンは、発電効率の向上の点で以下の通り、改良する余地があるのではないかと考えた。
【0010】
【0011】
即ち、まず上述した特許文献1では、集電極の配線パターンが格子状パターンとなっている。集電極の配線パターンは通常、互いに対向する一組の直線状の第1集電部と、互いに対向し且つ第1集電部とともに四角形状の環状体を形成する一組の直線状の第2集電部と、第1集電部の長手方向に直交するように接続され且つ第2集電部の長手方向に平行に配置された複数本の配線と、第2集電部の長手方向に直交し且つ第1集電部の長手方向に平行に配置された複数本の配線とで構成される。ここで、多孔質半導体層で発生した電子が第1集電部に集められる場合を考える。この場合、第1集電部の長手方向に直交する配線を第2配線、第1集電部の長手方向に平行に配置される配線を第1配線とすると、多孔質半導体層で発生した電子は、透明導電膜を経て第1配線に流れた後、それに直交する第2配線を経て、第1集電部に取り出される。このとき、電子が第1配線を流れている間は、電子は、第1集電部の長手方向に平行に移動し、その間、第1集電部には近づかない。にもかかわらず、電子が第1配線を流れている間は、その分だけ内部抵抗が増大して、発電効率に影響を与える程の電圧降下が引き起こされる。従って、この点については改良の余地があるものと本発明者は考えた。
【0012】
また第2配線においては第1集電部に近づくにつれて、流れる電子の量が徐々に増えていく。このため、第1集電部付近では電子が過度に集中し、第1集電部から遠く離れた位置で発生した電子が、最も近い第2配線を通ることが困難となってしまう。このため、第1集電部から遠く離れた位置で発生した電子は、その近くにある第2配線を流れず、透明導電膜を通って、電子が集中していない他の第2配線に流れたり、透明導電膜から直接第1集電部に流れたりするため、抵抗の高い透明導電膜を移動する距離が増えてしまう。その結果、第1集電部から遠い多孔質半導体層において内部抵抗が大きくなり、発電効率に影響を与えるほどの電圧降下が引き起こされる可能性がある。従って、この点についても改良の余地があると本発明者は考えた。
【0013】
さらに第2配線が断線した場合においても、多孔質半導体層で発生した電子は、透明導電膜を通って他の第2配線に移動したり、第2配線の断線によって形成された2つの切断端部のうちの一方の切断端部から透明導電膜を通って他方の切断端部に移動したりする可能性があるため、発電効率に影響を与えるほどの電圧降下が引き起こされる可能性がある。従って、この点についても改良の余地があると本発明者は考えた。
【0014】
ここで、上記問題の解決策として、単純に第2配線の幅を広くして電子を流しやすくすることも考えられるが、すべての電子をスムーズに流す程第2配線の幅を広げると、開口率が低下し、発電効率が低下する。
【0015】
そこで、本発明者は、集電極の配線パターンについてさらに鋭意検討を重ねた結果、以下の発明により上記課題を解決し得ることを見出した。
【0016】
すなわち本発明は、透明基板、前記透明基板上に設けられた透明導電膜、前記透明導電膜上に設けられた配線部、及び、前記透明導電膜上に設けられた多孔質半導体層を有する作用極と、前記作用極に対向して配置される対極と、前記作用極及び前記対極の間に配置される電解質とを備えた色素増感太陽電池であって、前記配線部が集電極で構成され、又は、前記集電極と前記集電極を被覆して保護する集電極保護層とで構成され、前記集電極が集電ユニットで構成され、前記集電ユニットが、線状の集電部と、前記集電部の長手方向に対して斜めに配置された第1配線と、前記集電部と前記第1配線との間に配置され、前記集電部に接続された複数本の第2配線とで構成され、前記集電部の幅が前記第1配線の幅及び前記第2配線の幅のそれぞれよりも広くなっており、前記集電部が前記配線部の外周部に位置しており、前記複数本の第2配線が前記集電部から前記第1配線に向かって延びており且つ互いに平行となっている色素増感太陽電池である。
【0017】
この色素増感太陽電池によれば、集電極の集電ユニットが第1配線を有し、第1配線は、集電部に対して第2配線を挟んだ位置に配置される。即ち、第1配線は、集電部に対して第2配線よりも離れた位置に配置される。このため、集電部から離れた場所で発生した電子は、その一番近くにある第2配線に電子が過度に集中している場合には、第1配線を通じて、電子が集中していない第2配線に流れることができる。また第1配線は、集電部の長手方向に対して斜めに配置される。このため、集電部から離れた場所で発生した電子は、多孔質酸化物半導体層から透明導電膜を経て第1配線に到達した後、集電部の長手方向に対して斜めの方向に流れることが可能となる。即ち、電子は、第1配線を集電部に近づきながら流れることが可能となる。このため、第1配線が集電部の長手方向に対して平行になっている場合に比べて、内部抵抗を低減させることが可能となる。このように第1配線によって、電子が移動するルートとして、第2配線以外の他のルートが提供される。このため、電子が透明導電膜を通ることによる抵抗の増加が減少し、電子がスムーズに移動でき、かつ、電子が集電部に近づきながら移動できるため、電圧降下を最小限に抑えることができる。また、ある第2配線が断線した場合でも、多孔質半導体層にて発生した電子は、第1配線を通じて他の第2配線に移動することが可能となり、電圧降下を最小限に抑えることができる。そして、上記のような電圧降下の抑制は、第1配線が設けられるだけで実現することが可能であるため、第2配線を太くする必要がなく、開口率の低下を十分に抑制することができる。従って、本発明の色素増感太陽電池によれば、開口率の低下を十分に抑制しながら発電効率を向上させることができる。
【0018】
また本発明は、透明基板、前記透明基板上に設けられた透明導電膜、前記透明導電膜上に設けられた配線部、及び、前記透明導電膜上に設けられた多孔質半導体層を有する作用極と、前記作用極に対向して配置される対極と、前記作用極及び前記対極の間に配置される電解質とを備えた色素増感太陽電池であって、前記配線部が集電極で構成され、又は、前記集電極と前記集電極を被覆して保護する集電極保護層とで構成され、前記集電極が集電ユニットで構成され、前記集電ユニットは、線状の集電部と、前記集電部の長手方向に対して斜めに配置され第1配線と、前記集電部の長手方向に対して斜めに配置された第3配線と、前記集電部と前記第1配線との間、および、前記集電部と前記第3配線との間に配置され、前記集電部に接続された複数本の第2配線とで構成され、前記集電部の幅が前記第1配線の幅、前記第2配線の幅及び前記第3配線の幅のそれぞれよりも広くなっており、前記集電部が前記配線部の外周部に位置しており、前記第1配線の一端部と前記第3配線の一端部とが互いに接続され、前記第1配線が、前記第1配線の他端部から前記第1配線の一端部と前記第3配線の一端部とを接続して形成される接続点に向かうにつれて前記集電部との距離を増加させており、前記第3配線が、前記第3配線の他端部から前記接続点に向かうにつれて前記集電部との距離を増加させており、前記複数本の第2配線が前記集電部から前記第1配線及び前記第3配線に向かって延びており且つ互いに平行となっていてもよい。
【0019】
この場合、第1配線の一端部と第3配線の一端部との接続点付近で発生した電子が第1配線および第3配線のいずれをも流れることが可能となる。即ち、集電部から遠い位置で発生した電子が集電部まで到達できるルートが2つに増え、電子は、第1配線および第3配線のうち、電圧降下がより小さくなる第1配線又は第3配線を流れることができる。このため、電圧降下をより十分に抑制することができ、その結果、発電効率をより向上させることができる。
【0020】
上記色素増感太陽電池においては、前記集電極が2つの前記集電ユニットで構成され、2つの前記集電ユニットにおける前記接続点同士が接続されていることが好ましい。
【0021】
この場合、集電部から遠い位置で発生した電子が2つの集電ユニットにおける第1配線および第3配線を経由して集電部まで到達することができる。即ち、集電部から遠い位置で発生した電子が集電部まで到達できるルートが2つに増え、電子は、2つの集電ユニットのうち、電圧降下がより小さくなる集電ユニットを流れることができる。このため、電圧降下をより十分に抑制することができ、その結果、発電効率をより向上させることができる。
【0022】
上記色素増感太陽電池においては、前記集電極が4つの前記集電ユニットで構成され、4つの前記集電ユニットにおける前記接続点同士が接続されていることが好ましい。

【0023】
この場合、集電部から遠い位置で発生した電子が4つの集電ユニットにおける第1配線および第3配線を経由して集電部まで到達することができる。即ち、集電部から遠い位置で発生した電子が集電部まで到達できるルートが4つに増え、電子は、4つの集電ユニットのうち、電圧降下がより小さくなる集電ユニットを流れることができる。このため、電圧降下をより十分に抑制することができ、その結果、発電効率をより向上させることができる。
【0024】
前記集電極が4つの前記集電ユニットで構成され、4つの前記集電ユニットにおける前記接続点同士が接続されている場合には、前記集電極が4回対称体であることが好ましい。
【0025】
この場合、集電極が4回対称体でない場合に比べて、より均一に電流を分散することが可能になり、その結果、電圧降下を低減することができる。
【0026】
上記色素増感太陽電池においては、4つの前記集電ユニットの前記集電部同士が互いに接続されて四角形状の環状体が形成されており、前記第1配線が前記環状体の対角線に平行となっており、前記第3配線が前記環状体の対角線に平行となっていることが好ましい。
【0027】
この場合、第1配線が四角形状の環状体の対角線に平行でない場合に比べて、開口率をより大きくすることができる。
【0028】
上記色素増感太陽電池においては、前記集電ユニットが、前記第1配線を複数本有することが好ましい。
【0029】
この場合、前記集電ユニットが第1配線を1本のみ有する場合に比べて、集電部から離れた位置で発生した電子の流れるルートが増えるため、電圧降下をより十分に抑制することができ、その結果、発電効率をより十分に向上させることができる。
【0030】
上記色素増感太陽電池においては、前記集電ユニットにおいて、第1配線の断面積が第2配線の断面積以下であることが好ましい。
【0031】
この場合、第1配線の幅を狭くすることによって第1配線の断面積を第2配線の断面積以下にする場合には、開口率をより大きくすることが可能となる。あるいは、第1配線の透明導電膜からの厚さを小さくすることによって第1配線の断面積を第2配線の断面積以下にする場合には、作用極と対極との間の距離をより短くすることが可能となる。
【0032】
上記色素増感太陽電池においては、前記集電ユニットにおいて、前記複数本の第2配線は、前記第1配線の前記他端部から前記接続点に近づくにつれて長くなるように構成され、前記複数本の第2配線は、い前記第2配線ほど大きい断面積を有していることが好ましい。
【0033】
第2配線が長いほど抵抗が大きくなり電子が流れにくくなるため、断面積を大きくすることによって抵抗を低減させることができる。その結果、集電部から遠い位置で発生した電子が、その近くにある長い第2配線を流れる際にも、その電圧降下をより十分に抑制することができ、発電効率をより向上させることができる。
【0034】
上記色素増感太陽電池においては、前記集電ユニットにおいて、前記第1配線と前記第2配線とが接続されていることが好ましい。
【0035】
この場合、第1配線を流れる電子が、第1配線から第2配線に直接流れることができる。このため、第1配線を流れる電子が、透明導電膜を経て第2配線に流れる場合に比べて、内部抵抗をより小さくすることができる。
【0037】
上記色素増感太陽電池においては、前記第2配線が、前記集電部の長手方向に直交するように前記集電部に接続されていることが好ましい。
【0038】
この場合、第2配線が集電部の長手方向に直交するように集電部に接続されていない場合に比べて、第2配線から集電部までの電子の移動距離を最も短くすることができ、電圧降下を最も小さくすることができる。
【0039】
なお、本発明において、「集電部の長手方向」とは、集電部が曲線状である場合には、その集電部と第2配線との接続点における接線の方向を言うものとする。
【発明の効果】
【0040】
本発明によれば、開口率の低下を十分に抑制しながら発電効率を向上させることができる色素増感太陽電池が提供される。
【図面の簡単な説明】
【0041】
図1】本発明に係る色素増感太陽電池の一実施形態を概略的に示す断面図である。
図2図1の集電極を示す平面図である。
図3図1の集電極を構成する4つの集電ユニットのうちの1つの集電ユニットを示す平面図である。
図4図1の集電極の第1変形例を示す平面図である。
図5図1の集電極の第2変形例を示す平面図である。
図6図1の集電極の第3変形例を示す平面図である。
図7図3の集電ユニットの変形例を示す平面図である。
図8】比較例1に係る集電極を示す平面図である。
【発明を実施するための形態】
【0042】
以下、本発明の実施形態について図面を参照しながら詳細に説明する。
【0043】
<第1実施形態>
図1は本発明に係る色素増感太陽電池の第1実施形態を概略的に示す断面図である。
【0044】
図1に示すように、色素増感太陽電池100は、作用極1と、作用極1に対向配置された対極2と、作用極1及び対極2を連結する環状の封止部3と、作用極1と対極2と封止部3とによって包囲されるセル空間内に充填される電解質4とを備えている。
【0045】
(対極)
対極2は、対極基板9と、対極基板9に対して作用極1側に設けられた触媒膜18とを備えている。
【0046】
(作用極)
作用極1は、透明基板5と、透明基板5上に設けられる透明導電膜6と、透明導電膜6上に設けられる配線部Wと、透明導電極6上に設けられる複数の多孔質半導体層8とを備えている。配線部Wには複数の開口17が形成されており、複数の多孔質半導体層8の各々は、配線部Wに形成された複数の開口17の各々の内側に設けられている。多孔質半導体層8には光増感色素が担持されている。配線部Wは、集電極7Aと、集電極7Aを被覆して保護する集電極保護層16とで構成されている。そして、配線部Wの外周部と対極2との間には封止部3が設けられている。即ち、配線部Wの外周部は封止部3と重なるように配置されている。このため、配線部Wの外周部を環状の封止部3の内側に配置する場合に比べて、多孔質半導体層8の受光面積をより増加させることができ、発電効率をより向上させることができる。また、配線部Wの外周部が、発電に寄与しない封止部3と重なっているため、開口率を低下させることなく、集電部11の幅を封止部3の幅まで拡大して抵抗を小さくすることができる。
【0047】
図2は、図1の集電極を示す平面図である。図2に示すように、集電極7Aは、4つの集電ユニット10A〜10Dで構成されており、4つの集電ユニット10A〜10D導電性の環状部15を介して互いに接続されている。ここで、集電ユニット10Aについて説明する。なお、集電ユニット10A〜10Dは同一の構成を有しているため、集電ユニット10B〜10Dの説明は省略する。
【0048】
図3は、集電ユニット10Aを示す平面図である。図3に示すように、集電ユニット10Aは、直線状の集電部11と、集電部11の長手方向に対して斜めに設けられる第1配線12Aと、集電部11の長手方向に対して斜めに設けられる第3配線12Bと、集電部11と第1配線12Aとの間および集電部11と第3配線12Bとの間に配置された複数本の第2配線13とで構成されている。第2配線13は、互いに平行に配置されている。
【0049】
第1配線12Aの端部と、第配線12Bの端部とは接続されている。第1配線12A及び第配線12Bは、第1配線12Aの他端部から、第1配線12Aの一端部と、第3配線12Bの一端部との接続点14に向かうにつれて集電部11との距離を増加させている。また第3配線12Bは、第3配線12Bの他端部から接続点14に向かうにつれて集電部11との距離を増加させている。
【0050】
複数本の第2配線13は、集電部11に、その長手方向に対して直交するように接続され、第1配線12A及び第3配線12B(以下、必要に応じ、これらをまとめて「ライン12」と呼ぶ)にも接続されている。
【0051】
また複数本の第2配線13は、第1配線12A及び第3配線12Bの他端部から接続点14に近づくにつれて長くなっている。
【0052】
さらに複数本の第2配線13の断面積は互いに同一となっており、第1配線12A及び第3配線12Bのそれぞれの断面積とも同一となっている。
【0053】
そして、図2に示すように、集電ユニット10A〜10Dにおける第1配線12A及び第3配線12Bの接続点14同士が、導電性の環状部15を介して接続されている。環状部15は具体的には菱形をなしており、菱形の各頂点に、集電ユニット10A〜10Dの各々における第1配線12A及び第3配線12Bの接続点14が接続されている。
【0054】
また集電ユニット10A〜10Dの集電部11は、互いに接続されて四角形状の環状体を形成している。ここで、集電ユニット10A〜10Dの集電部11の全てに電流取り出し配線が接続されてもよいし、集電ユニット10A〜10Dの集電部11の一部にのみ電流取り出し配線が接続されてもよい。また集電ユニット10A〜10Dにおけるライン12同士は、仮に1つの集電ユニットのライン12が断線した場合にも、他の集電ユニットのライン12を選択して電流を取り出すことができるようにするため、互いに離間している。ここで、集電ユニット10A〜10Dにおける第1配線12A,第3配線12Bは、発生した電流を、第1配線12A,第3配線12Bを経由して第2配線13へ分配しながら集電部11に到達させる際に、第1配線12A,第3配線12Bが対角線20又は21に平行である方が輸送距離を短くできるため、環状体の対角線20又は対角線21に対して平行となっている。また第1配線12A,第3配線12Bが四角形状の環状体の対角線20又は21に平行でない場合に比べて、開口率をより大きくすることができるという利点もある。
【0055】
さらに集電極7Aは4回対称体となっている。即ち、集電極7Aは、環状部15を中心に90°回転させると、その回転後の集電極7Aが回転前の集電極7Aと一致するようになっている。
【0056】
上記構成を有する色素増感太陽電池100によれば、集電極7Aの集電ユニット10A〜10Dが、第1配線12A,第3配線12Bを有し、第1配線12A,第3配線12Bは集電部11に対して第2配線13を挟んだ位置に配置される。即ち、第1配線12A,第3配線12Bは、集電部11に対して第2配線13よりも離れた位置に配置される。このため、集電部11から離れた場所で発生した電子は、その一番近くにある第2配線13に電子が過度に集中している場合には、第1配線12A又は第3配線12Bを通じて、電子が集中していない第2配線13に流れることができる。また第1配線12A,第3配線12Bは、集電部11の長手方向に対して斜めに配置される。このため、集電部11から離れた場所で発生した電子は、多孔質半導体層8から透明導電膜6を経て第1配線12A,第3配線12Bに到達した後、集電部11の長手方向に対して斜めの方向に流れることが可能となる。即ち、電子は、第1配線12A,第3配線12Bを、集電部11に近づきながら流れることが可能となる。このため、第1配線12A,第3配線12Bが集電部11の長手方向に対して平行になっている場合に比べて、内部抵抗を低減させることが可能となる。このように第1配線12A,第3配線12Bによって、電子が移動するルートとして、第2配線13以外の他のルートが提供される。このため、電子が透明導電膜6を通ることによる抵抗の増加が減少し、電子がスムーズに移動でき、かつ、電子が集電部11に近づきながら移動できるため、電圧降下を最小限に抑えることができる。また、ある第2配線13が断線した場合でも、多孔質半導体層8にて発生した電子は、第1配線12A,第3配線12Bを通じて他の第2配線13に移動することができ、電圧降下を最小限に抑えることができる。そして、上記のような電圧降下の抑制は、第1配線12A,第3配線12Bが設けられるだけで実現することが可能であるため、第2配線13の幅を太くする必要がなく、開口率の低下を十分に抑制することができる。従って、色素増感太陽電池100によれば、開口率の低下を十分に抑制しながら発電効率を向上させることができる。
【0057】
また色素増感太陽電池100では、第2配線13が集電部11の長手方向に直交しないで集電部11に接続される場合に比べて、第2配線13から集電部11までの電子の移動距離を最も短くすることができ、電圧降下を最も小さくすることができる。
【0058】
さらに、色素増感太陽電池100においては、集電ユニット10A〜10Dにおいて、第1配線12A,第3配線12Bの断面積が第2配線13の断面積と同一である。このため、第1配線12A,第3配線12Bの幅を狭くすることによって第1配線12A,第3配線12Bの断面積を第2配線13の断面積と同一にする場合には、開口率をより大きくすることが可能となる。あるいは、第1配線12A,第3配線12Bの透明導電膜6からの厚さを小さくすることによって第1配線12A,第3配線12Bの断面積を第2配線13の断面積と同一にする場合には、作用極1と対極2との間の距離をより短くすることが可能となる。
【0059】
さらに色素増感太陽電池100では、第1配線12A,第3配線12Bと第2配線13とが接続されているため、第1配線12A,第3配線12Bを流れる電子が、第1配線12A,第3配線12Bから第2配線13に直接流れることができる。このため、第1配線12A,第3配線12Bを流れる電子が、透明導電膜6を経て第2配線13に流れる場合に比べて、内部抵抗をより小さくすることができ、電圧降下をより十分に抑制することができ、その結果、発電効率をより十分に向上させることができる。
【0060】
また色素増感太陽電池100では、集電極7Aが4つの集電ユニット10A〜10Dで構成され、4つの集電ユニット10A〜10Dにおける接続点14同士が接続されている。このため、集電部11から遠い位置で発生した電子が4つのライン12を経由して集電部11まで到達することができる。即ち、集電部11から遠い位置で発生した電子が集電部11まで到達できるルートが4つに増え、電子は、電圧降下がより小さくなる集電ユニットに移動することができる。このため、電圧降下をより十分に抑制することができ、その結果、発電効率をより十分に向上させることができる。
【0061】
また集電極7Aは4回対称体となっているため、集電極7Aが4回対称体でない場合に比べて、4辺すべての集電部11に均等に電流を分散させることが可能になり、その結果、電圧降下をより低減することができる。
【0062】
次に、上述した色素増感太陽電池100の製造方法について説明する。
【0063】
[準備工程]
(作用極)
まず作用極1を準備する。
【0064】
ここで、作用極1は以下のようにして得ることができる。
【0065】
はじめに透明基板5の上に透明導電膜6を形成して積層体を形成する。透明導電膜6の形成方法としては、スパッタ法、蒸着法、スプレー熱分解法(SPD:Spray Pyrolysis Deposition)及びCVD法などが用いられる。これらのうちスプレー熱分解法が装置コストの点から好ましい。
【0066】
透明基板5を構成する材料は、例えば透明な材料であればよく、このような透明な材料としては、例えばホウケイ酸ガラス、ソーダライムガラス、白板ガラス、石英ガラスなどのガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリエーテルスルフォン(PES)などが挙げられる。透明基板5の厚さは、色素増感太陽電池100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば50μm〜10000μmの範囲にすればよい。
【0067】
透明導電膜6を構成する材料としては、例えばスズ添加酸化インジウム(Indium−Tin−Oxide:ITO)、酸化スズ(SnO)、フッ素添加酸化スズ(Fluorine−doped−Tin−Oxide:FTO)などの導電性金属酸化物が挙げられる。透明導電膜6は、単層でも、異なる導電性金属酸化物で構成される複数の層の積層体で構成されてもよい。透明導電膜6が単層で構成される場合、透明導電膜6は、高い耐熱性及び耐薬品性を有することから、FTOで構成されることが好ましい。また透明導電膜6として、複数の層で構成される積層体を用いると、各層の特性を反映させることが可能となることから好ましい。中でも、ITOで構成される層と、FTOで構成される層との積層体を用いることが好ましい。この場合、高い導電性、耐熱性及び耐薬品性を持つ透明導電膜6が実現できる。透明導電膜6の厚さは例えば0.01μm〜2μmの範囲にすればよい。
【0068】
次に、透明導電膜6上に集電極7Aを形成する。集電極7Aは、集電ユニット10A〜10Dで構成され、集電ユニット10A〜10Dの各々は、直線状の集電部11と、集電部11と反対側に向かって凸となっているライン12と、集電部11とライン12との間に配置された複数本の第2配線13とで構成されるように形成される。集電極7Aは、例えば、金属粒子とポリエチレングルコールなどの増粘剤とを配合してペーストとし、そのペーストを、スクリーン印刷法などを用いて透明導電膜6上に塗膜し、加熱して焼成することによって得ることができる。
【0069】
集電極7Aを構成する材料は金属であればよいが、金属としては、例えば銀が用いられる。
【0070】
集電部11の幅は、特に制限されないが、通常、0.5mm〜5.0mmである。
【0071】
ライン12の幅は、特に制限されないが、開口率を高くする観点からは、0.1mm〜0.5mmであることが好ましい。
【0072】
第2配線13の幅は、特に制限されないが、開口率を高くする観点からは、0.1mm〜0.5mmであることが好ましい。
【0073】
次に、集電極7Aを集電極保護層16で被覆する。こうして配線部Wが得られる。集電極保護層16は、例えば、上述した低融点ガラスフリットなどの無機絶縁材料に、必要に応じて増粘剤、結合剤、分散剤、溶剤などを配合してなるペーストを、スクリーン印刷法などにより集電極7Aの全体を被覆するように塗布し、加熱し焼成することによって得ることができる。
【0074】
次に、透明導電膜6上に、配線部Wに形成された複数の開口17の各々の内側に、多孔質半導体層形成用ペーストを塗布する。多孔質酸化物半導体層形成用ペーストは、酸化物半導体粒子のほか、ポリエチレングリコールなどの樹脂及び、テレピネオールなどの溶媒を含む。
【0075】
上記酸化物半導体粒子としては、例えば酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化タングステン(WO3)、酸化ニオブ(Nb25)、チタン酸ストロンチウム(SrTiO3)、酸化スズ(SnO2)、酸化インジウム(In)、酸化ジルコニウム(ZrO)、酸化タリウム(Ta)、酸化ランタン(La)、酸化イットリウム(Y)、酸化ホルミウム(Ho)、酸化ビスマス(Bi)、酸化セリウム(CeO)、酸化アルミニウム(Al)又はこれらの2種以上で構成される酸化物半導体粒子が挙げられる。これら酸化物半導体粒子の平均粒径は1〜1000nmであることが、色素で覆われた酸化物半導体の表面積が大きくなり、即ち光電変換を行う場が広くなり、より多くの電子を生成することができることから好ましい。ここで、多孔質半導体層8が、粒度分布の異なる酸化物半導体粒子を積層させてなる積層体で構成されることが好ましい。この場合、積層体内で繰り返し光の反射を起こさせることが可能となり、入射光を積層体の外部へ逃がすことなく効率よく光を電子に変換することができる。多孔質半導体層8の厚さは、例えば0.5〜50μmとすればよい。なお、多孔質半導体層8は、異なる材料からなる複数の半導体層の積層体で構成することもできる。
【0076】
多孔質半導体層形成用ペーストの印刷方法としては、例えばスクリーン印刷法、ドクターブレード法、バーコート法などを用いることができる。
【0077】
次に、多孔質半導体層形成用ペーストを焼成して透明導電膜6上に多孔質半導体層8を形成する。焼成温度は酸化物半導体粒子により異なるが、通常は350℃〜600℃であり、焼成時間も、酸化物半導体粒子により異なるが、通常は1〜5時間である。こうして作用極1が得られる。
【0078】
[色素担持工程]
次に、作用極1の多孔質半導体層8に光増感色素を担持させる。このためには、作用極1を、光増感色素を含有する溶液の中に浸漬させ、その色素を多孔質半導体層8に吸着させた後に上記溶液の溶媒成分で余分な色素を洗い流し、乾燥させることで、光増感色素を多孔質半導体層8に吸着させればよい。但し、光増感色素を含有する溶液を多孔質半導体層8に塗布した後、乾燥させることによって光増感色素を酸化物半導体多孔膜に吸着させても、光増感色素を多孔質半導体層8に担持させることが可能である。
【0079】
光増感色素としては、例えばN3、ブラックダイなどのルテニウム色素、ポルフィリン、フタロシアニンなどの錯体色素、エオシン、ローダミン、メロシアニンなどの有機色素が挙げられる。
【0080】
(対極)
一方、対極2は、以下のようにして得ることができる。
【0081】
即ち対極2としては、例えば対極基板9上に触媒膜18を形成した板状体を用いることができる。触媒膜18の形成方法としては、スパッタ法、蒸着法などが用いられる。これらのうちスパッタ法が膜の均一性の点から好ましい。
【0082】
対極基板9を構成する材料は、例えばチタン、ニッケル、白金、モリブデン、タングステン等の耐食性の金属材料や、透明基板5と同様の材料にITOやFTO等の導電性酸化物を形成したものなどが挙げられる。
【0083】
対極基板9の厚さは、色素増感太陽電池100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば10〜200μmの範囲にすればよい。
【0084】
触媒膜18は、白金又は炭素系材料などから構成される。
【0085】
なお、対極基板9として白金を使用する場合には、触媒膜18は省略することも可能である。
【0086】
[封止部の固定工程]
次に、作用極1の配線部Wの外周部上に封止部3を固定する。
【0087】
[電解質配置工程]
次に、作用極1上であって封止部3の内側に電解質4を配置する。電解質4は、作用極1上であって封止部3の内側に注入したり、印刷したりすることによって得ることができる。
【0088】
電解質4は通常、電解液で構成され、この電解液は例えばI/Iなどの酸化還元対と有機溶媒とを含んでいる。有機溶媒としては、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ−ブチロラクトンなどを用いることができる。酸化還元対としては、例えばI/Iのほか、臭素/臭化物イオンなどの対が挙げられる。色素増感太陽電池100は、酸化還元対としてI/Iのような揮発性溶質及び、高温下で揮発しやすいアセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリルのような有機溶媒を含む電解液を電解質として用いた場合に特に有効である。この場合、色素増感太陽電池100の周囲の環境温度の変化によりセル空間の内圧の変化が特に大きくなり、封止部3と対極2との界面、および封止部3と作用極1との界面から電解質が漏洩しやすくなるからである。なお、上記揮発性溶媒にはゲル化剤を加えてもよい。また電解質4は、イオン液体と揮発性成分との混合物からなるイオン液体電解質で構成されてもよい。この場合も、色素増感太陽電池100の周囲の環境温度の変化によりセル空間の内圧の変化が大きくなるためである。イオン液体としては、例えばピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知のヨウ素塩であって、室温付近で溶融状態にある常温溶融塩が用いられる。このような常温溶融塩としては、例えば1−エチル−3−メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミドが好適に用いられる。また揮発性成分としては、上記の有機溶媒や、1−メチル−3−メチルイミダゾリウムヨーダイド、LiI、I、4−t−ブチルピリジンなどが挙げられる。さらに電解質3としては、上記イオン液体電解質にSiO、TiO、カーボンナノチューブなどのナノ粒子を混練してゲル様となった擬固体電解質であるナノコンポジットイオンゲル電解質を用いてもよく、また、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などの有機系ゲル化剤を用いてゲル化したイオン液体電解質を用いてもよい。
【0089】
[熱圧着工程]
そして、対極2を、触媒膜18を作用極1に向けた状態で封止部3と重ね合わせ、対極2及び作用極1の周縁部を熱圧着する。こうして、色素増感太陽電池100の製造が完了する。
【0090】
<第2実施形態>
次に、本発明の色素増感太陽電池の第2実施気形態について説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の符号を付し、重複する説明を省略する。
【0091】
本実施形態の色素増感太陽電池は、各集電ユニットにおいて、複数本の第2配線13が、長い第2配線13ほどより大きい断面積を有する点で第1実施気形態の色素増感太陽電池100と相違する。
【0092】
この場合、第2配線13が長いほど抵抗が大きくなり電子が流れにくくなるため、断面積を大きくすることによって抵抗を低減させることができる。これにより、集電部11から遠い位置で発生した電子が、その近くにある長い第2配線13を流れる際にも、その電圧降下を十分に抑制することができ、発電効率をより向上させることができる。
【0093】
<第3実施形態>
次に、本発明の色素増感太陽電池の第3実施気形態について説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の符号を付し、重複する説明を省略する。
【0094】
本実施形態の色素増感太陽電池は、各集電ユニット10A〜10Dにおいて、ライン12の断面積が第2配線13の断面積以下である点で、第1実施形態の色素増感太陽電池100と相違する。
【0095】
この場合、第1配線12A,第3配線12Bの幅を狭くすることによって第1配線12A,第3配線12Bの断面積を第2配線13の断面積以下にする場合には、開口率をより大きくすることが可能となる。あるいは、第1配線12A,第3配線12Bの透明導電膜6からの厚さを小さくすることによって第1配線12A,第3配線12Bの断面積を第2配線13の断面積以下にする場合には、作用極1と対極2との間の距離をより短くすることが可能となる。
【0096】
本発明は、上記第1〜第3実施形態に限定されるものではない。例えば上記第1〜第3実施形態では、集電極7Aが、4つの集電ユニット10A〜10Dの接続点14同士を導電性の環状部15を介して接続した構成を有しているが、集電極は、図4に示す集電極7Bのように、環状部15を介さず、4つの集電ユニット10A〜10Dの接続点14同士を直接接続した構成を有していてもよい。この場合、4つの集電ユニット10A〜10Dの第1配線12A,第3配線12Bが、4つの集電部11によって形成される四角形状の環状体の対角線20,21に重なることになる。即ち、環状体の内側において、4つの集電ユニット10A〜10Dのライン12がXの形状を形成することになる。
【0097】
また上記第1〜第3実施形態では、集電極7Aが4つの集電ユニット10A〜10Dで構成されているが、集電極は、図5に示す集電極7Cのように、環状部15、集電ユニット10Bの集電部11および集電ユニット10Cの集電部11を通る線で集電極7Aを2つの集電極に切断して得られる一方の集電極であってもよい。この場合、集電極7Cは、2回回転対称体となることが好ましい。
【0098】
さらに上記第1〜第3実施形態では、集電極7Aは、4つの集電ユニット10A〜10Dで構成されているが、集電極は、集電ユニット10Aのみで構成されてもよい。さらには、集電極は、集電ユニット10Aにおいて、第1配線12B、及び、第3配線12Bと集電部11との間に配置された第2配線13を省略したものであってもよい。
【0099】
さらに、集電極は、例えば図6に示す集電極7Dのように、集電ユニット10A〜10Dの各々が、第2配線13を通り、且つ集電部11の長手方向に対して斜めに配置される補助配線19A,19Bをさらに有してもよい。ここで、補助配線19Aは、例えば第1配線12Aに平行に配置され、補助配線19Bは第配線12Bに平行に配置されている。そして、補助配線19A,19Bの端部同士が接続され、集電部11に対して反対側に凸となるライン19を形成している。この場合、第2配線13に電子が過度に集中している場合であっても、集電部11の近くで発生した電子をスムーズに集電部11に導くことが可能となる。従って、電圧降下をより小さくすることが可能となり、発電効率をより向上させることが可能となる。
【0100】
また上記第1〜第3実施形態では、集電ユニット10A〜10Dの各々は、第1配線12A,第3配線12Bをそれぞれ1本ずつ有しているが、第1配線12A,第3配線12Bをそれぞれ複数本ずつ有していてもよい。この場合、複数本の第1配線12A,第3配線12Bはそれぞれ集電部11に対して第2配線13よりも遠い位置に配置されることになる。
【0101】
また上記第1〜第3実施形態では、集電ユニット10A〜10Dの各々において、第2配線13がライン12に接続されているが、図7に示すように、第2配線13は、ライン12から離れていてもよい。
【0102】
さらに上記第1〜第3実施形態では、配線部Wの外周部と封止部3とが重ね合わされているが、配線部Wの外周部は、封止部3と重ね合わされていなくてもよい。即ち配線部Wの外周部は、環状の封止部3の内側に配置されてもよいし、外側に配置されてもよい。
【0103】
さらにまた上記実施形態では、集電部11が直線状となっているが、集電部11は線状であればよく、曲線状(例えば円弧状)であってもよい。
【実施例】
【0104】
以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
【0105】
(実施例1)
まず作用極を準備した。
【0106】
作用極は以下のようにして準備した。はじめに表面が200×200mmの大きさを有する厚さ4mmのガラス基板を用意し、その上に、スパッタ法により、FTOからなる厚さ1μmの透明導電膜を形成した。
【0107】
次に、透明導電膜上に、銀粒子とエチルセルロースとを配合してなる銀ペーストを、図2に示す形状の集電極となるように、スクリーン印刷法を用いて透明導電膜上に塗膜し、500℃で1時間焼成した。こうして透明導電膜上に集電極を得た。こうして得られた集電極の具体的な構成は以下の通りであった。

(1)集電ユニット
個数:4つ
(2)各集電ユニットにおける第1配線
本数:2本
各集電ユニットにおける第1配線同士のなす角度:90°
長さ:111.4mm
幅 :0.2mm
(3)各集電ユニットにおける第2配線
本数:12本
各第1配線と集電部との間に配置された第2配線の長さ:ラインの端部から順次4.9mm、29.4mm、41.6mm、53.9mm、66.2mm、78.5mm
幅 :0.2mm
(4)集電部
長さ:196mm
幅 :3.8mm
【0108】
そして、低融点ガラスフリットに、エチルセルロースを配合してなるペーストを準備し、このペーストをスクリーン印刷法により集電極7Aの全体を被覆するように塗布し、500℃で1時間焼成した。こうして集電極保護層を得た。
【0109】
次に、透明導電膜上で且つ集電極に形成された複数の開口の各々の内側に、TiOペースト(触媒化学社製PST−21NR)を塗布した。続いて電気炉にて500℃で1時間の条件で焼結した後、冷却した。こうして透明導電膜上に多孔質半導体層を形成し、作用極を得た。
【0110】
次に、作用極を、1:1(体積比)で混合したアセトニトリル及びtert−ブタノールの混合溶媒を含み、ルテニウム色素(N719)の濃度を0.3mMとした色素溶液の中に浸漬させ、その色素を多孔質半導体層に吸着させた後に上記混合溶媒で余分な色素を洗い流し、乾燥させることで、光増感色素を多孔質半導体層に吸着させた。
【0111】
一方、対極は、以下のようにして準備した。
【0112】
即ちはじめにTi板を用意し、このTi板に、三次元RFスパッタ装置を用いてPtを蒸着させ、対極を得た。
【0113】
次に、作用極の表面上であって配線部の外周部の上に、エチレン−メタクリル酸共重合体(商品名:ニュクレル、三井・デュポンポリケミカル社製)からなる四角環状の樹脂シートを配置し、この樹脂シートを加熱溶融することにより配線部の外周部の上に固定した。
【0114】
次に、作用極上であって封止部の内側に、メトキシアセトニトリルを溶媒とする揮発性電解質を注入した。
【0115】
そして、対極を、触媒膜を作用極に向けた状態で封止部と重ね合わせ、対極及び作用極の周縁部を熱圧着した。こうして、色素増感太陽電池を得た。
【0116】
(比較例1)
図8に示す形状となるように透明導電膜上に銀ペーストを塗布して集電極を形成したこと以外は実施例1と同様にして色素増感太陽電池を作製した。なお、図8において、符号22は縦配線を、符号23は横配線を示す。得られた集電極の具体的な構成は下記の通りであった。

(1)横配線
本数:10本
長さ:182.3mm
幅 :0.2mm
(2)縦配線
本数:11本
長さ:186.4mm
幅 :0.2mm
(3)集電部
長さ:196mm
幅 :3.8mm
【0117】
[評価]
(開口率)
実施例1及び比較例1で得られた色素増感太陽電池についての開口率の値を表1に示す。
【表1】
【0118】
(最大電圧降下)
実施例1及び比較例1で得られた色素増感太陽電池について、有限要素法により最大電圧降下を測定した。結果を表1に示す。
【0119】
(光電変換効率)
実施例1及び比較例1で得られた色素増感太陽電池について、ソーラーシミュレータ(AM1.5、100mW/cm)にて光を照射して、電流電位曲線を得た。そして、この電流電位曲線の結果から発電効率を算出した。結果を表1に示す。
【0120】
表1に示す結果より、実施例1は、比較例1よりも、開口率の値が大きくなっていた。さらに、実施例1は、比較例1に比べて、最大電圧降下がかなり低減されており、発電効率も十分に大きくなっていた。
【0121】
このことから、本発明の色素増感太陽電池によれば、開口率の低下を十分に抑制しながら発電効率を向上させることができることが確認された。
【符号の説明】
【0122】
1…作用極
2…対極
4…電解質
5…透明基板
6…透明導電膜
7A〜7D…集電極
8…多孔質半導体層
10A〜10D…集電ユニット
11…集電部
12…ライン
12A…第1配線
12B…第3配線
13…第2配線
14…接続点
W…配線部
100…色素増感太陽電池
図1
図2
図3
図4
図5
図6
図7
図8