(58)【調査した分野】(Int.Cl.,DB名)
前記アウトライア除去部は、前記連結オプティカルフローの直線らしさに基づいて、前記アウトライアを除去することを特徴とする請求項1に記載の移動体認識システム。
前記アウトライア除去部は、同一の特徴点についての連結する前記単オプティカルフローの数が異なる複数の連結オプティカルフローのそれぞれの衝突時間の類似度に基づいて、前記アウトライアを除去することを特徴とする請求項1に記載の移動体認識システム。
前記アウトライア除去部は、前記複数の連結オプティカルフローの各々がとり得る消失点の範囲を求め、前記消失点の範囲が他の連結オプティカルフローの消失点の範囲と重複しない連結オプティカルフローを前記アウトライアとして除去することを特徴とする請求項1に記載の移動体認識システム。
前記アウトライア除去部は、前記連結オプティカルフロー及びその誤差範囲内のベクトルの延長線と前記画像中に定義された地平線との交点のとり得る範囲を前記消失点の範囲として求めることを特徴とする請求項4に記載の移動体認識システム。
前記アウトライア除去部は、前記複数の連結オプティカルフローの各々がとり得る衝突時間の範囲を求め、前記衝突時間が他の連結オプティカルフローの衝突時間の範囲と重複しない連結オプティカルフローを前記アウトライアとして除去することを特徴とする請求項1に記載の移動体認識システム。
前記アウトライア除去部は、前記連結オプティカルフロー及びその誤差範囲内のベクトルの延長線と前記画像中に定義された地平線との交点のとり得る範囲を消失点の範囲として求め、前記消失点の範囲及び前記連結オプティカルフローに基づいて前記衝突時間の範囲を求めることを特徴とする請求項6に記載の移動体認識システム。
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1の技術は、オプティカルフローのアウトライアに対して頑健であるが、それでもなお稀に複数のオプティカルフローが、アウトライアであるにもかかわらず同一の消失点と外分比を許容誤差の範囲で有することがある。この場合、アウトライアを検出してしまうので、誤った報知をしてしまうことになる。
【0007】
本発明は、少ない演算量でオプティカルフローのアウトライアを除去する移動体認識システムを提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の移動体認識システムは、車両に設置され、連続する複数のフレームの画像を撮影するカメラと、前記複数のフレームの画像の各々から前記複数のフレームの画像の間で互いに対応する特徴点を抽出して、隣り合うフレームの抽出された前記特徴点どうしを結ぶ複数の単オプティカルフローを連結した連結オプティカルフローを算出する連結オプティカルフロー算出部と、前記連結オプティカルフローを用いてアウトライアを除去するアウトライア除去部と、前記アウトライア除去部にて連結オプティカルフローがアウトライアとして除去された後に残った複数の前記特徴点のうち、延長された前記連結オプティカルフローが1つの消失点に収束する複数の特徴点を前記移動体上の複数の特徴点としてグルーピングするグループ決定部とを備えた構成を有している。
【0009】
この構成によれば、連結オプティカルフローを用いてアウトライアが除去されるので、演算量が少なく、かつ誤認識の少ない移動体認識を行なうことができる。
【0010】
上記の移動体認識システムにおいて、前記アウトライア除去部は、前記連結オプティカルフローの直線らしさに基づいて、前記アウトライアを除去してよい。
【0011】
特徴点が複数のフレームにわたって正確にトラッキングされている場合には、複数の単オプティカルフローは、直線状に連なることになる。よって、この構成によれば、複数の単オプティカルフローを連結した場合の直線らしさを調べるという少ない演算量で有効にアウトライアを判定して除去できる。
【0012】
上記の移動体認識システムにおいて、前記アウトライア除去部は、同一の特徴点についての連結する前記単オプティカルフローの数が異なる複数の連結オプティカルフローのそれぞれの衝突時間の類似度に基づいて、前記アウトライアを除去してよい。
【0013】
特徴点が複数のフレームにわたって正確にトラッキングされている場合には、連結する単オプティカルフローの数が異なる複数の連結オプティカルフローのそれぞれの衝突時間(TTC)は互いに類似する。よって、この構成によれば、そのような複数の連結オプティカルフローのTTCの類似度を調べるという少ない演算量で有効にアウトライアを判定して除去できる。
【0014】
上記の移動体認識システムにおいて、前記アウトライア除去部は、前記複数の連結オプティカルフローの各々がとり得る消失点の範囲を求め、前記消失点の範囲が他の連結オプティカルフローの消失点の範囲と重複しない連結オプティカルフローを前記アウトライアとして除去してよい。
【0015】
特徴点が複数のフレームにわたって正確にトラッキングされている場合には、その特徴点の連結オプティカルフローのとり得る消失点の範囲は一致する。よって、この構成によれば、複数の特徴点どうしの連結オプティカルフローの消失点範囲の重なりを調べるという少ない演算量で有効にアウトライアを判定して除去できる。
【0016】
上記の移動体認識システムにおいて、前記アウトライア除去部は、前記連結オプティカルフロー及びその誤差範囲内のベクトルの延長線と前記画像中に定義された地平線との交点のとり得る範囲を前記消失点の範囲として求めてよい。
【0017】
この構成によれば、簡易な方法で他の特徴点の情報を必要とせずに特徴点ごとの消失点を求めることができる。
【0018】
上記の移動体認識システムにおいて、前記アウトライア除去部は、前記複数の連結オプティカルフローの各々がとり得る衝突時間の範囲を求め、前記衝突時間が他の連結オプティカルフローの衝突時間の範囲と重複しない連結オプティカルフローを前記アウトライアとして除去してよい。
【0019】
特徴点が複数のフレームにわたって正確にトラッキングされている場合には、その特徴点の連結オプティカルフローのとり得るTTCの範囲は一致する。よって、この構成によれば、複数の特徴点どうしの連結オプティカルフローのTTC範囲の重なりを調べるという少ない演算量で有効にアウトライアを判定して除去できる。
【0020】
上記の移動体認識システムにおいて、前記アウトライア除去部は、前記連結オプティカルフロー及びその誤差範囲内のベクトルの延長線と前記画像中に定義された地平線との交点のとり得る範囲を消失点の範囲として求め、前記消失点の範囲及び前記連結オプティカルフローに基づいて前記衝突時間の範囲を求めてよい。
【0021】
この構成によれば、簡易な方法で他の特徴点の情報を必要とせずに特徴点ごとのTTCを求めることができる。
【0022】
本発明の移動体認識プログラムは、コンピュータを、車両に設置されたカメラで撮影された連続する複数のフレームの画像の各々から前記複数のフレームの画像の間で互いに対応する特徴点を抽出して、隣り合うフレームの抽出された特徴点どうしを結ぶ複数の単オプティカルフローを連結した連結オプティカルフローを算出する連結オプティカルフロー算出部、前記連結オプティカルフローを用いてアウトライアを除去するアウトライア除去部、及び前記アウトライア除去部にて連結オプティカルフローがアウトライアとして除去された後に残った複数の前記特徴点のうち、延長された前記連結オプティカルフローが1つの消失点に収束する複数の特徴点を前記移動体上の複数の特徴点としてグルーピングするグループ決定部として機能させる。
【0023】
この構成によっても、連結オプティカルフローを用いてアウトライアが除去されるので、演算量が少なく、かつ誤認識の少ない移動体認識を行なうことができる。
【0024】
本発明の移動体認識方法は、車両に設置されたカメラで連続する複数のフレームの画像を撮影する撮影ステップと、前記複数のフレームの画像の各々から前記複数のフレームの画像の間で互いに対応する特徴点を抽出して、隣り合うフレームの抽出された特徴点どうしを結ぶ複数の単オプティカルフローを連結した連結オプティカルフローを算出する連結オプティカルフロー算出ステップと、前記連結オプティカルフローを用いてアウトライアを除去するアウトライア除去部と、前記アウトライア除去部にて連結オプティカルフローがアウトライアとして除去された後に残った複数の前記特徴点のうち、延長された前記連結オプティカルフローが1つの消失点に収束する複数の特徴点を前記移動体上の複数の特徴点としてグルーピングするグループ決定ステップとを備えた構成を有する。
【0025】
この構成によっても、連結オプティカルフローを用いてアウトライアが除去されるので、演算量が少なく、かつ誤認識の少ない移動体認識を行なうことができる。
【発明の効果】
【0026】
本発明によれば、連結オプティカルフローを用いてアウトライアが除去されるので、演算量が少なく、かつ誤認識の少ない移動体認識を行なうことができる。
【発明を実施するための形態】
【0028】
(第1の実施の形態)
以下、本発明の第1の実施の形態の移動体認識システムについて、図面を参照しながら説明する。
図1は、本発明の第1の実施の形態の移動体認識システムの構成を示すブロック図である。本実施の形態の移動体認識システム101は、画像から移動体を認識するシステムである。移動体認識システム101は、カメラ10、連結オプティカルフロー算出部20、回転移動量・消失点推定部30、背景点除去部40、グルーピング部50、及び結果出力部60を備えている。なお、連結オプティカルフロー算出部20、回転移動量・消失点推定部30、背景点除去部40、及びグルーピング部50 からなる構成は、コンピュータが本発明の実施の形態の移動体認識プログラムを実行することで実現される。移動体認識プログラムは、記憶媒体に記憶されて、記憶媒体からコンピュータによって読み出されて、コンピュータで実行されてよい。
【0029】
カメラ10は、車両に搭載されて、車両の周辺を撮影する。カメラ10は、自車両の進行方向を撮影するように、車両に設置される。カメラ10は車両の前方を撮影するように、例えばルームミラーの裏側(前方側)に設置されてよい。車両は後退することも可能であるので、カメラ10が車両の後方を撮影するように、例えば後ろのナンバープレート近くに設置されてもよい。カメラ10は、一系統の光学系及び撮像素子を備えた単眼のカメラである。カメラ10は、所定の周期で(例えば1/30秒ごとに)連続的に撮像をして画像信号を出力する。
【0030】
連結オプティカルフロー算出部20は、カメラ10で得られた複数のフレームの画像から、複数のフレームの画像間で互いに対応する特徴点を抽出し、特徴点ごとにオプティカルフローを算出する(J. shi and C. Tomasi, "Good features to track,", IEEE CVPR, pp. 593-600, 1994を参照)。本実施の形態ではオプティカルフローの算出アルゴリズムには、LK法を使用する(B. D. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision," IJCAI, pp. 674-679, 1981を参照)。
【0031】
オプティカルフローの算出においては、アウトライアが少ないことが望ましい。アウトライアとは、一般には想定外の計算結果のことを指し、オプティカルフローのアウトライアとは、特に、誤って追跡された軌跡のことを指す。上記の特許文献1の技術はオプティカルフローのアウトライアに対して頑健であるが、それでもなお稀に複数のオプティカルフローが、アウトライアであるにもかかわらず同一の消失点と外分比を許容誤差の範囲で有することがある。この場合、アウトライアを検出してしまうため、危険度の計算を誤る結果となる。本実施の形態では演算量の低い、アウトライア除去方法を提供する。
【0032】
オプティカルフローの精度を高めるために、本実施の形態では、互いに隣り合う2つのフレーム間のオプティカルフローを使う代わりに、隣り合うフレーム間のオプティカルフローを連続する複数フレーム分連結したものを使う。本明細書では、互いに隣り合う2つのフレーム間のオプティカルフロー、即ち、あるフレームの特徴点から当該フレームの次のフレームにおける当該特徴点と同じ(対応する)特徴点へのベクトルを「単オプティカルフロー」と呼び、複数の単オプティカルフローを連結して得られたオプティカルフロー、即ち、あるフレームにおける特徴点から、そのフレームから1以上の所定のフレーム数を隔てたフレームにおける当該特徴点と同じ(対応する)特徴点へのベクトルを「連結オプティカルフロー」と呼ぶ。
【0033】
図2は、本発明の実施の形態における連結オプティカルフローを説明する図である。
図2において、左の列は、カメラ10によって連続的に取得された画像を上から順に時系列に並べたものであり、中央の列は、単オプティカルフローを示しており、右の列は、3つの単オプティカルフローを連結した連結オプティカルフローを示している。連結オプティカルフロー算出部20は、同一の(対応する)特徴点の複数フレーム分の単オプティカルフローを連結し、連結オプティカルフローを算出する。
【0034】
図2に示すように、単オプティカルフローは、隣り合う2つのフレーム間において、同一の特徴点を結ぶことで生成され、連結オプティカルフローは複数の単オプティカルフローを連結することで生成される。
図2の例では、3つ(n=3)のオプティカルフローが連結されることで、連結オプティカルフローが生成されている。
【0035】
回転移動量・消失点推定部30は、連結オプティカルフローから消失点を推定する。一般的に、三次元上の点群が一定の速度で並進移動をするとき、これらの点群を透視投影した二次元の点群の移動の軌跡は、その延長線が一点で交わる特徴を持つ。この交点が消失点である。本明細書では、消失点という用語を、画像平面上の点の軌跡の延長線の交点の意味で用いる。なお、移動体が複数ある場合には、移動体ごとに消失点が推定される。
【0036】
まず、以下の演算において用いる座標を定義する。
図3は、本発明の実施の形態における座標の定義を説明する図である。路面が平坦なとき、カメラ10の光軸と路面は平行であると仮定する。カメラ10の光軸をZ軸、鉛直下方向をY軸とし、X軸は右手座標系により定義する。原点(0,0,0)はカメラ10の光学中心とする。なお、本実施の形態ではカメラ10の光軸を路面と平行と仮定するが、カメラ10の光軸と路面が平行でない場合においても適切な回転行列を導入することで容易に一般化が可能である。透視投影モデルを考え、画像座標は(x,y)=(fX/Z,fY/Z)で与えるものとする。ここで、fはカメラ10の焦点距離であり、既知である。
【0037】
図4は、三次元空間の点群(移動体上の点)が単位時間内に並進移動する距離(点群の三次元空間内での速度)を示す図である。この速度Vを(ΔX,ΔY,ΔZ) とすると、時刻tにおいて透視投影された画像座標 x(t)=f(X+tΔX)/(Z+tΔZ)、y(t)=f(Y+tΔY)/(Z+tΔZ) は、t→−∞又はt→∞の極限において、(fΔX/ΔZ,fΔY/ΔZ) に収束する。よって、消失点の二次元座標は(fΔX/ΔZ,fΔY/ΔZ)と与えられる。なお、t→−∞収束する点群は、カメラから遠ざかる点群であり、t→∞で収束する点群は、カメラに近づく点群である。
【0038】
図5は、消失点を説明する図である。
図5の例では、特徴点FP1〜6の連結オプティカルフローCOF1〜6の延長線が1つの点で交わっており、この点が消失点VPとなる。回転移動量・消失点推定部30は、各特徴点の連結オプティカルフローを延長して、複数の連結オプティカルフローが交わる点を探索して、それを消失点として推定する。オプティカルフローには、アウトライアや、移動体のオプティカルフローや、背景物体のオプティカルフローが混在していることを考えると、消失点の推定にはロバスト推定を適応するのが妥当である。ロバスト推定とは、はずれ値に対して頑健なパラメタ推定のことをいう。本実施の形態では、ロバスト推定として、M推定(P. J. Huber and E. M. Ronchetti, "Robust Statistice, 2nd Edition," Wiley Interscienceを参照)を適用する。
【0039】
なお、例えば演算能力が制限されている等の理由で上述の技術を適応できない場合は、回転移動量・消失点推定部30は、以下の簡易な処理により連結オプティカルフローの消失点を求めてもよい。この方法では、回転移動量・消失点推定部30は、あらかじめカメラ10の画像の中の地平線の位置を記録しておき、地平線と連結オプティカルフローの交点を、この点の軌跡の消失点とする。この方法は、移動体とカメラ10が平らな地面と平行に移動しているとき、移動体の軌跡の消失点は地平線上に存在するという事実に基づいている。但し、連結オプティカルフローの傾きが小さい場合(地平線とほぼ平行である場合)、連結オプティカルフローの誤差が消失点の値を大きく変動させ得るので、連結オプティカルフローの誤差の範囲で消失点の値の範囲が大きすぎる場合には、例外的処理として、この点を検出候補から除外する。
【0040】
また、回転移動量・消失点推定部30は、カメラ10の回転移動に起因するオプティカルフローの成分を推定して、それを連結オプティカルフローから除去する。いま、三次元の並進移動量(V
x,V
y,V
z)と回転移動量Ω=(Ω
x,Ω
y,Ω
z)を持つカメラによって透視投影された三次元上の点(X,Y,Z)のオプティカルフローをv=(v
x,v
y)とすると、このオプティカルフローvは下式(1)で表される。
【数1】
ここで、x=fX/Z、y=fY/Zであり、v
xr、v
yrは、以下の式(2)で与えられるカメラ10の回転量の一次の項からなるオプティカルフローの成分である。
【数2】
【0041】
式(2)からp
F=(x
F,y
F)=(fV
x/V
z,fV
y/V
z)と置き換えられ、奥行き成分ZとV
zを消去すると、以下の式(3)が得られる。
【数3】
ここで、R(p
F,Ω)は、パラメタ空間内の誤差関数であり、理想状態において0をとる。式(3)は即ち、回転成分を取り除いた静止点のオプティカルフローを延長すると、画像上の1点(即ち、拡張焦点:FOE:Focus Of Expansion)で交わることを意味している。
【0042】
オプティカルフローのはずれ値や移動体の点は、一般的にはRの値が大きいと考えられため、本実施の形態では、回転移動量・消失点推定部30は、式(4)のM推定を使用する。
【数4】
ここで、ρ(R)は最小値に0を持つ、R=0に対して対称の関数である。はずれ値に対する頑健性の度合いは、影響関数ψ(R)=∂ρ/∂Rによって特徴付けられる。
【0043】
図6(a)は、ロバスト推定のコスト関数を示すグラフであり、
図6(b)は、ロバスト推定の影響関数を示す図である。
図6(a)及び(b)において、破線はL2ノルムを示し、実線はCauchy関数を示している。本実施の形態では、
図6及び次式(5)で定義されるCauchyの影響関数を用いている。
【数5】
【0044】
Cauchyの影響関数は、R>0において単調増加関数ではなく、極値を境に減少に転じるため、誤差の大きな入力の解に対する影響を低く抑えることができる。式(5)の定数Cは、C=2.385である。この値は、平均を0とするガウス分布の最小二乗法の95%の効率を与えるよう設定されている。
【0045】
回転移動量・消失点推定部30は、M推定の解法として反復再重み付け最小二乗法(IRLS:Iteratively Reweighted Least Squares)を用いる。これは、式(4)のコスト関数を重み付き誤差の二乗和の形に変形し、最小二乗法と重み更新を解が収束するまで交互に繰り返す方法である。この重みは影響関数を用いて、ω=ψ(R)/Rで与えられる。以下に、IRLSのアルゴリズムを示す。
【数6】
【0046】
上記のステップ3)のリスケーリングにおける分母1.48mad(R)は、Rが正規分布に従うとき、標準偏差と等しくなるように設定されている。標準偏差の代わりに中央値絶対偏差(mad:median absolute deviation)を用いた理由は、アウトライアの混在によるスケールの変動を小さく抑えるためである。誤差はFOE座標と回転移動量との積の形で表されるため、ステップ4)は、非線形最小二乗法となる。本実施の形態では、回転移動量・消失点推定部30は、ニュートン法によって解を求める。回転移動量・消失点推定部30は、求めた回転移動量に起因する成分を連結オプティカルフローから除去する。
【0047】
背景点除去部40は、連結オプティカルフローを延長した直線が許容誤差の範囲内で背景の消失点を通る場合に、その連結オプティカルフローを背景、即ち地面に対して移動しない物体として除去する。即ち、地面に対して移動する移動体は、背景とは異なる位置に消失点を有するので、そのような消失点を有する特徴点群を移動体として検出するために、背景点除去部40は、背景の消失点を有する特徴点及びその連結オプティカルフローを除去する。
【0048】
次に、グルーピング部50について説明する。連結オプティカルフロー算出部20によって生成されて、回転移動量・消失点推定部30によって回転移動量に起因する成分が除去され、かつ背景除去部40によって背景として除去された後に残った連結オプティカルフローは、アウトライアか、正しくトラッキングされた移動体上の特徴点のオプティカルフローのいずれかである。グルーピング部50は、連結オプティカルフローを用いて、アウトライアを除去しつつ、特徴点及びその連結オプティカルフローのグルーピングを行なう。グルーピング部50は、残った特徴点とその連結オプティカルフローに対し、再度消失点をロバスト推定する。
【0049】
グルーピング部50は、アウトライア除去部51とグループ決定部52とを備えている。アウトライア除去部51は、直線らしさ判定部511とTTC類似判定部512とを備えている。以下、順に説明する。
【0050】
直線らしさ判定部511は、連結オプティカルフローの直線らしさに基づいて、アウトライアを除去する。特徴点が正しくトラッキングされている場合、その点が三次元空間で等速直線運動をしている限り、その軌跡は直線となる。一般に、十分に短い時間間隔で移動体の位置を観測する場合、等速直線運動モデルは良い近似である。従って、複数の単オプティカルフローが直線的に並んでいるか否かを判定することはアウトライア除去に有効である。
【0051】
図7は、アウトライアが発生しやすい画像の例を示す図である。
図7に示すように、画像の中に樹木があり、似た形状の葉や枝を多く含む画像である場合、即ち、似通ったパターンを複数個含む画像である場合は、複数のフレームについて対応する特徴点を検出すると、本来対応しない点FP
t1、FP
t2、FP
t3、FP
t4が対応する特徴点として検出されてしまう。このような特徴点及びそれらを結ぶオプティカルフローは、アウトライアである。このとき、アウトライアとして検出された特徴点FP
t1、FP
t2、FP
t3、FP
t4の連結オプティカルフローCOFを求めると、
図7に示すように、連結オプティカルフローCOFと各単オプティカルフローとのずれが大きくなる。
【0052】
このようなアウトライアを判定して除去するために、直線らしさ判定部511は、各単オプティカルフローの、連結オプティカルフローに直交する成分を抽出し、そこから直進らしさの度合いを定量化し、その値と閾値とを比較することによりアウトライアの判定を行う。具体的には、直線らしさ判定部511は、特徴点ごとに、連結オプティカルフローを構成する各単オプティカルフローが直線的であるか否かを次の要領で判定する。
【0053】
いま、n連結オプティカルフローを構成する単オプティカルフローを時系列に(V
x(i), V
y(i))、i=1,2,…,nとし、n連結オプティカルフローを(V
x(1:n),V
y(1:n))と表記する。まず、直線らしさ判定部511は、連結オプティカルフローに直交する単位ベクトルを算出する。具体的には、この単位ベクトルは(V
y(1:n),−V
x(1:n))/sqrt(V
x(1:n)
2+V
y(1:n)
2) と与えられる。
【0054】
次に、n連結オプティカルフローを構成する各単オプティカルフローとこの単位ベクトルの内積の絶対値を算出し、n個分の値の和を取り、この値を直線らしさの指標とする。直線らしさ判定部511は、この直線らしさの指標をあらかじめ定めた閾値と比較し、連結オプティカルフローの直線らしさの指標が閾値よりも大きい特徴点及びその連結オプティカルフローをアウトライアとして除外する。
【0055】
TTC類似判定部512は、同一の特徴点についての連結する単オプティカルフローの数が異なる複数の連結オプティカルフローのそれぞれの衝突時間の類似度に基づいて、アウトライアを除去する。TTC類似判定部512は、各特徴点の連結オプティカルフローに基づいて、衝突時間(TTC:Time To Collision)を算出する。TTCとは、三次元上の点がカメラに対して接近しているとき、その点が画像平面に到達するまでの時間をいう。なお、衝突時間の算出において、画像平面は無限の広がりを持つものとする。また、点がカメラから遠ざかるときのTTCは負の値を取る。
【0056】
いま、連結オプティカルフローを表す二次元のベクトルをuとし、そのx成分及びy成分をそれぞれ、u
x,u
yとすると、u
2=u
x2+u
y2を満たし、u
xは、三次元座標X,Z と速度ΔX,ΔZによって下式(6)で表される。
【数7】
ここで、fはカメラ10の焦点距離である。速度の二乗の項は無視できるオーダーであると考えると、下式(7)を得る。
【数8】
ここで、消失点のx座標x
∞ は、時間を無限にさかのぼった(点が接近している場合)ときに収束する位置であるため、下式(8)のように表される。
【数9】
【0057】
ここで、TTCをΔTと表記すると、ΔTは、Z/(−ΔZ)で与えられる(特徴点が接近する場合は、ΔZ<0)。オプティカルフローのy成分u
yについても同様の導出ができるため、下式(9)が得られる。
【数10】
式(7)と式(9)を連立して解くと、下式(10)が得られる。
【数11】
ここで、pは特徴点の画像座標であり、p
∞は点の軌跡の消失点の画像座標であり、「・」は内積演算子である。
【0058】
TTC類似判定部512は、各特徴点のn連結オプティカルフロー(V
x(1:n),V
y(1:n))から式(10)を用いて衝突時間ΔT
n を算出する。TTC類似判定部512は、同一の特徴点のΔT
n-1,ΔT
n-2,……もΔT
nと同様の方法で算出する。特徴点が正しくトラッキングされている場合には、その点が三次元空間で等速直線運動をしている限り、ΔT
n,ΔT
n-1,……は互いに等しくなる。上述のように、十分に短い時間間隔で移動体を観測する場合、等速直線運動モデルは良い近似であるため、ΔT
n、ΔT
n-1、……は互いに類似するといえる。ΔT
n,ΔT
n-1,……の類似が崩れている場合、それは点が誤ってトラッキングがなされた結果であり、アウトライアであると判定できる。
【0059】
TTC類似判定部512は、n連結オプティカルフローを構成する特徴点群の各々について、衝突時間ΔT
n、ΔT
n-1、……の類似度を求めて、それを予め定めた閾値と比較し、閾値よりも小さい特徴点及びその連結オプティカルフローを仮のグループから除外する。具体的には、グルーピング部50は、TTCのずれをD
j=|ΔT
n-j−ΔT
n|(j=1,……,n−1) と定量化し、D
j>D
thを満たすjが一つでもある場合、この特徴点及びその連結オプティカルフローをグループから除外する。ここで、D
thはあらかじめ定められた閾値である。
【0060】
グループ決定部52は、アウトライア除去部51にて連結オプティカルフローがアウトライアとして除去された後に残った複数の特徴点のうち、延長された連結オプティカルフローが1つの消失点に収束する複数の特徴点を移動体上の複数の特徴点としてグルーピングする。1つのグループにグルーピングされた複数の連結オプティカルフローの特徴点は、1つの移動体の特徴点である。
【0061】
グルーピング部50は、上記のようにして、アウトライアを除去しつつ特徴点のグルーピングを行なうことで移動体を検出する。なお、グルーピング部50は、上記の直線らしさに基づく方法、及びTTCの類似度に基づく方法のいずれかのみによってアウトライアを除去してもよい。
【0062】
結果出力部60は、グルーピング部50によるグルーピングの結果を受けて、その結果を出力する。具体的には、結果出力部60は、カメラ10で撮影された画像に、グルーピングされた特徴点、即ち移動体を囲う枠を重畳表示する。なお、グルーピングの結果は、車両が移動体に衝突する危険度の算出等、別の処理に利用されてもよい。
【0063】
以上のように、本実施の形態の移動体認識システム101によれば、特徴点を抽出して連結オプティカルフローを算出し、直線らしさ判定部511がその連結オプティカルフローの直線らしさに基づいてアウトライアを除去するので、誤って検出された特徴点を有効に除去して移動体を認識できる。さらに、TTC類似判定部512がTTCの類似度に基づいてアウトライアを除去するので、これによっても誤って検出された特徴点を有効に除去して移動体を認識できる。
【0064】
なお、直線らしさ判定部511によるアウトライアの除去は、連結オプティカルフローを算出した後のどの段階で行ってもよく、例えば、連結オプティカルフロー算出部20の直後に直線らしさ判定部511によるアウトライアの除去を行ってもよい。
【0065】
(第2の実施の形態)
図8は、第2の実施の形態の移動体認識システムを示すブロック図である。
図8の移動体認識システム102において、第1の実施の形態の移動体認識システム101と同じ構成については、同一の符号を付して説明を省略する。本実施の形態の移動体認識システム102は、カメラ10、連結オプティカルフロー算出部20、回転移動量・消失点推定部30、背景点除去部40、グルーピング部50、及び結果出力部60を備えている。
【0066】
グルーピング部50は、第1の実施の形態と同様に、アウトライア除去部51及びグルーピング部52を備えている。本実施の形態のアウトライア除去部51は、消失点範囲算出部513、消失点一致判定部514、及びTTC一致判定部515を備えている。消失点範囲算出部513は、特徴点ごとに消失点のとり得る範囲を算出する。
図9は、消失点範囲の算出を説明するための図である。上述のように、消失点は、複数の特徴点のオプティカルフローをそれぞれ延長して、それらが互いに交わる点として求められるが、画像内に地平線を定義することで、オプティカルフローがその地平線と交わる点を消失点とすることもできる。
【0067】
消失点範囲算出部513は、連結オプティカルフローv
0の終点を中心として所定の半径を有する円を誤差範囲Rとして設定し、この誤差範囲内Rに終点を有し、最大の傾きを持つ動きベクトルv
a及び最小の傾きを持つ動きベクトルv
bを設定する。動きベクトルv
a及びv
bをそれぞれ延長して、それぞれが地平線と交わり得る点を点a、点bとすると、消失点範囲算出部53は、この点bから点aまでの範囲を消失点範囲とする。消失点範囲算出部513は、特徴点ごとに、消失点範囲を算出する。
【0068】
消失点一致判定部514は、各特徴点の消失点の範囲に基づいて、特徴点のアウトライアを判定して除去する。
図10は、複数の特徴点の消失点範囲を示すグラフである。
図10において横軸は特徴点番号であり、縦軸は消失点範囲(x座標)である。消失点一致判定部54は、消失点範囲が他の特徴点の消失点範囲と重複する特徴点をグルーピングし、グルーピングされなかった特徴点、即ち消失点範囲が他の特徴点の消失点範囲と重複していない特徴点をアウトライアと判定して、それを除去する。なお、グルーピングされる特徴点の数が所定の値(例えば、3)を下回った場合には、グループ決定部52にてグルーピングを行わないよう、そのようなグループの特徴点はすべて除去する。
【0069】
TTC一致判定部515は、各特徴点のTTC範囲に基づいて、特徴点のアウトライアを判定して除去する。TTC一致判定部55は、消失点範囲算出部153にて算出された各特徴点の消失点範囲を用いて、式(10)によって各特徴点のTTC範囲を算出する。
図11は、複数の特徴点のTTC範囲を示すグラフである。
図11において横軸は特徴点番号であり、縦軸はTTC範囲である。TTC一致判定部515は、TTC範囲が他の特徴点のTTC範囲と重複する特徴点をグルーピングし、グルーピングされなかった特徴点、即ちTTC範囲が他の特徴点のTTC範囲と重複していない特徴点をアウトライアと判定して、それを除去する。なお、グルーピングされる特徴点の数が所定の値(例えば、3)を下回った場合には、グループ決定部52にてグルーピングを行わないよう、そのようなグループの特徴点はすべて除去する。
【0070】
グルーピング部52は、第1の実施の形態と同様に、アウトライア除去部51にて連結オプティカルフローがアウトライアとして除去された後に残った複数の特徴点のうち、延長された連結オプティカルフローが1つの消失点に収束する複数の特徴点を移動体上の複数の特徴点としてグルーピングする。1つのグループにグルーピングされた複数の連結オプティカルフローの特徴点は、1つの移動体の特徴点である。
【0071】
以上のように、第2の実施の形態の移動体認識システム102では、各特徴点について、連結オプティカルフローの消失点範囲を求め、さらにその消失点範囲からTTC範囲を求めて、それらの範囲が他の特徴点と重複しないものをアウトライアと判定して除去するので、誤って検出された特徴点を有効に除去して移動体を認識できる。
【0072】
なお、グルーピング部50は、消失点一致判定部514による消失点の一致判定、及びTTC一致判定部515によるTTCの一致判定のいすれかのみによってアウトライアを除去してもよい。さらに、上記の第2の実施の形態の構成に加えて、第1の実施の形態の直進らしさに基づくアウトライアの除去、及び/又はTTCの類似度に基づくアウトライアの除去を行ってもよい。