【実施例1】
【0024】
本実施例の気水分離器の構造を説明する前に、この気水分離器が適用される沸騰水型原子炉の概略の構造について
図5および
図6を用いて説明する。
【0025】
図5は、改良型沸騰水型原子炉(以下ABWRと略記する)の縦断面図である。ABWRは、原子炉圧力容器32を有し、原子炉圧力容器32の内部に炉心シュラウド31を設置している。複数の燃料集合体(図示せず)が装荷された炉心34は、炉心シュラウド31内に配置される。気水分離器35及び蒸気乾燥器36は、原子炉圧力容器32内で炉心34の上方に配置される。
【0026】
原子炉圧力容器32と炉心シュラウド31の間に形成される環状のダウンカマ33の下方に炉心に水を供給するためのインターナルポンプ38(再循環ポンプ)が配置される。インターナルポンプ38を運転することにより、ダウンカマ33にある冷却水が炉心へ供給される。炉心では核分裂により発生した熱で冷却水が沸騰し、蒸気と水の二相流状態となる。
【0027】
炉心34で発生した気液二相流は気水分離器35に流入し、気水分離器35内にあるスワラにより旋回速度が与えられる。旋回速度により二相流に遠心力が作用し、水と蒸気の密度差により水と蒸気が分離される。
【0028】
気水分離器35を通過した二相流は、蒸気乾燥器36に流入し、さらに湿分が取り除かれる。このようにして、湿分0.1重量パーセント以下に抑えた蒸気を、主蒸気配管37を通してタービン(図示せず)に送り発電を行っている。
【0029】
図6を用いて気水分離器の構造をさらに詳しく説明する。
図6はABWRに用いられている気水分離器の縦断面図である。
図6の気水分離器35において、炉心34で発生した気液二相流Wは、スタンドパイプ61から進入し、ディフューザ62部分に設置されたスワラ63に至る。スワラ63において、
図2、
図3で説明したようにして気液二相流Wは気液分離される。
【0030】
さらに気水分離器35では、スワラ63で気液分離された水分をダウンカマ33に戻し、また蒸気をタービンに導くための経路を、3段の内外筒により形成する。
【0031】
第1段は、第一段内筒64、第一段ピックオフリング65、第一段外筒66、第一段環状板67により形成される。第一段内筒64の頂部と、第一段環状板67の間には空隙が形成されており、また第一段内筒64と第一段外筒66の間の空間が排水路を形成する。このため、
図3で説明した第1の経路(旋回羽根1の曲面2上を径方向に移動して、第一段内筒の内壁面6又はディフューザの内壁面に至る経路)8を辿り上昇した液膜は、第一段内筒64の頂部に至り、第一段環状板67との間の空隙、第一段内筒64と第一段外筒66の間の排水路を経由してダウンカマ33に戻される。
【0032】
他方、
図2の第2の経路(旋回羽根1の曲面2上を上昇して旋回羽根1の上端部3に至る経路)7を辿った液滴4は、旋回しながらさらに上昇する。そして、その一部は、第1段の頂部に至るまでの間に第一段内筒の内壁面6の内壁面に到達し捕捉されて、上記の排水路に導かれる。また、第一段内筒の内壁面6の内壁面に到達せず、捕捉されなかった液滴4は、第1段の頂部に設けられた第一段ピックオフリング65を通過し、第2段の内外筒に進入する。
【0033】
第2段と、第3段は、スワラが設置されていないだけで、基本的には第1段の内外筒と同様に構成されている。因みに、第2段は、第二段内筒68、第二段ピックオフリング69、第二段外筒70、第二段環状板71で構成され、第3段は、第三段内筒72、第三段ピックオフリング73、第三段外筒74、第三段環状板75で構成されている。
【0034】
なお、スワラ63はハブ26と呼ばれる円柱状の構造物に二相流に旋回速度を与えるための旋回羽根81が複数取り付けられており、旋回羽根81の外側縁は第一段内筒又はディフューザ62に固定されている。このため、スワラ63自身は回転することなく、スワラ63を通過した流体が回転するようになっている。
【0035】
気水分離器35は、
図6に図示したように構成されている。この気水分離器35に導入される炉心34からの気液二相流Wは、クオリティが約14%である。スタンドパイプ61に流入した二相流Wは、スタンドパイプ61の内壁面に液膜を形成し、中心部を蒸気が流れ、その蒸気中に液滴が浮遊している環状噴霧流になっている。スワラ63により気液二相流Wに旋回速度を与えると、気液密度差による遠心力の違いにより、壁面の液膜内に混在していた蒸気が中心部の蒸気側へ移動するとともに、蒸気中に浮遊していた液滴が壁面へ移動し液膜に取り込まれる。
【0036】
第一段内筒64の壁面に形成された液膜は、第一段ピックオフリング65により、第一段内筒64と第一段外筒66で形成された第一段排水路50を通って気水分離器35の外に排出される。第一段排水路50から排出された水は、再びダウンカマ33に流入しインターナルポンプ38により炉心34に送られる。
【0037】
第一段内筒64で壁面に到達しなった蒸気中の液滴は、第二段内筒68または第三段内筒72で内筒壁面に到達し、第二段ピックオフリング69または第三段ピックオフリング73から第二段排水路51または第三段排水路52を通って気水分離器35の外へ排出される。第三段ピックオフリング73を通過するまでに内筒壁面に到達しなった液滴はそのまま蒸気とともに気水分離器出口55から流出する。
【0038】
気水分離器の分離効率の指標の一つに、キャリーオーバがあり、気水分離器から流出した流体中に含まれる液の重量率として定義される。蒸気質量流量をWg(kg/s)、液質量流量をWl(kg/s)とすると、キャリーオーバCOは次式で表される。
[数1]
CO=Wl/(Wg+Wl)×100(%) (1)
気水分離器は、概略以上のように構成されて気水分離機能を達成しているが、本発明の第一実施例では、気水分離器35を
図1のように構成する。
図1aは気水分離器35の構成、
図1bはスワラ63の拡大図、
図1cは旋回羽根81の水平断面図を示している。
【0039】
図1aは
図6に、
図1bは
図2に、また
図1cは
図4に対応する部分の本発明の実施例である。これらの図で幾つかの相違(例えばスワラの設置場所)はあるが、本発明はこの相違点に関わらず成立する。本発明の特徴は、
図1cによく現れている。つまり、スワラ63の水平断面(
図1c)において、旋回羽根81の輪郭91を直線2から曲線にし、旋回羽根81の表面91と第一段内筒64の内壁面6又はディフューザ62の内壁面を滑らかにつないでいる。
【0040】
この結果、旋回羽根81の曲面91上に形成され遠心力により径方向を移動する液膜93は旋回羽根81と第一段内筒64の内壁面6又はディフューザ62の内壁面との接合部において滞留することなく滑らかに第一段内筒64の内壁面6又はディフューザ62の内壁面へ移動することが可能になる。
【0041】
上記のようにすることによって、旋回羽根81の曲面91上に形成された液膜93のうちより多くが第一段内筒64の内壁面6又はディフューザ62の内壁面へ移動し、
図3の矢印8の軌跡に示すようにスワラ部分を通過後も液膜のまま上昇することができる。また同時に
図2の矢印7の軌跡のように、旋回羽根上端部3において液滴4となってしまう液膜の量が減少することになるので、キャリーオーバが低減され気水分離効率が改善される。
【0042】
なお、
図1cにおいて、旋回羽根81の輪郭91の丸みとほぼ同じ程度の丸みを裏側の輪郭92にも持たせている。
図7は、本発明による気水分離器のスワラを含む部分の水平断面である。本発明によるスワラは、旋回羽根81の2つの曲面のうち液膜が形成される側の曲面91と、その裏側の曲面92の反り方向94、95は同一であるという特徴を持つ。このため、上記の反り94、95を大きくしても二相流の通過部分96の断面積を一定に保つことができ、上記断面積の縮小による圧力損失の増加を防ぐことができる。
【0043】
一方、
図8は従来の気水分離器のスワラを含む部分の水平断面である。スワラは鋳造により製作されるため、旋回羽根81と第一段内筒64の内壁6又はディフューザ62の内壁の接合部には鋳造品特有の曲線部28、29ができる。しかしながら、この曲線部28、29は反り方向が旋回羽根81の両面で異なるため、反りの大きさが増大すると二相流の通過部分30の断面積は縮小し気水分離器の圧力損失増加の原因になってしまう。
【0044】
図1のスワラは、右方向の旋回流を与えているが、これは
図9のように左方向の旋回流を与えるものであっても同様に実現することができる。この場合には、旋回羽根81の2つの曲面のうち液膜が形成される側の曲面91の向きが
図1cと
図9cでは相違している。
【0045】
図1、
図9の実施例から明らかなように、本発明は下方から上方に向かう気液二相流の流路を形成する筒状体(ディフューザ又は第1段内筒)の軸中心に設けられたハブ、及びハブを中心にして筒状体に向けて放射状に取り付けられた複数の旋回羽根を含み、旋回羽根の径方向に内側縁が前記ハブに固定されており、筒状体の内壁に旋回羽根の径方向に外側縁が固定されているスワラを備える気水分離器において、複数の旋回羽根は、
図1b、
図9bのように高さ方向に同一方向の捻りが与えられていると共に、
図1c、
図9cのように水平断面にも同一方向の捻りが与えられている構造の気水分離器ということができる。