【実施例】
【0072】
本発明にしたがうメラノーマペプチド抗原の同定を可能にする方法論的手技は以下に記述する。添付図面も参照のこと。
【0073】
安定的に成長するメラノーマ細胞系を患者D05‐GSおよびD14‐SJRの腫瘍から樹立した。また、数年間、オーストラリアのブリズベンでワクチン接種研究に参加したこれらの患者から血液を採取した。
図1では、ワクチン接種の過程、血液採取の時点ならびに患者D05‐GSの腫瘍反応性MLTCおよびT細胞クローンの起源が図式的に示されている。それに類似して対応する工程を患者モデルD14‐SJRにも行った(図示せず)。
【0074】
ブリズベンで、これらの血液試料からリンパ球を単離し、低温保存した。本発明を支持するものとして、ブリュッセルのLudwig Institute for Cancer Research(LICRと省略)のPierre van der Bruggen教授は、癌/生殖細胞系(CG)カテゴリーおよびメラニン細胞分化抗原カテゴリー中の合計31個の抗原をコードする発現プラスミド中のcDNAクローンのパネルを作成した(表2)。
【0075】
患者D05‐GSのメラノーマ系から、本発明者らはRT‐PCRを用いて、HLA対立遺伝子、HLA‐A
*020101、HLA‐B
*270502、HLA‐B
*44020101、HLA‐Cw
*0501、HLA‐Cw
*020202をクローン化し、患者D14‐SJRのメラノーマ系から、HLA対立遺伝子、HLA‐A
*030101、HLA‐A
*24020101、HLA‐B
*070201、HLA‐B
*510101およびHLA‐Cw
*150201をクローン化した。患者D14‐SJRの対立遺伝子、HLA‐Cw
*0702もまた協力という形で本発明者らは入手することができた。両者のメラノーマ系から、cDNAバンクをpcDNA3.1で構築した。
【0076】
腫瘍反応性MLTCによる候補抗原の試験
【表2】
【0077】
いわゆるリンパ球/腫瘍細胞混合培養(MLTC)において、血液リンパ球を同一のドナー起源の個々の(自己の)腫瘍細胞で刺激した(
図2)。
【0078】
それにより応答系リンパ球において腫瘍特異性T細胞が増加した。各患者モデルにおいて、数年の研究から血液リンパ球により数種のこのようなMLTC応答系集団が産生され、CD8陽性T細胞を事前除去した後に様々な時点で低温保存した(
図2)。低温保存に先立って、それらを自己メラノーマ細胞および自己EBV形質転換B細胞の認識について調査した。また、MLTC応答系の優先的HLA制限は、腫瘍細胞認識をHLA群特異性抗体で遮断することで判定した(図示せず)。
【0079】
様々な時点で低温保存したMLTC集団を、既知のメラノーマ関連抗原に対する反応性の「パネルテスト」で調査した。このため、前述の抗原をコードする発現プラスミドを、COS‐7細胞または293T細胞中の両患者の各HLA対立遺伝子で形質移入した(表2)。形質移入体はその後、インターフェロン‐ガンマELISPOTアッセイで、MLTC応答系による認識について試験した。
図3には、患者モデルD05‐GSのMLTC3.2(
図3A)の、ならびに患者モデルD14‐SJRのMLTC4.1(
図3B)の試験例がそれぞれ示されている。本発明者らは以下の未知の抗原‐HLA複合体に対するT細胞反応性を総括的に判定した(表2も参照):
【0080】
患者(モデル)D05‐GS:
チロシナーゼ/HLA‐Cw5;MAGE‐A3/HLA‐Cw2;MAGE‐A6/HLA‐Cw2;MAGE‐A4/HLA‐B27およびMAGE‐A4/HLA‐Cw5
【0081】
患者(モデル)D14‐SJR:
メラン‐A/HLA−B51;gp100/HLA‐A24;MAGE‐A3/HLA‐A24;MAGE‐A6/HLA‐A24;MAGE‐C2/HLA‐A24;MAGE‐C2/HLA−B7;MAGE‐C2/HLA‐Cw7およびMAGE‐C2/HLA‐Cw15
【0082】
次の工程では、これらの抗原に対するペプチドコード遺伝子領域を同定した。このため、抗原コードcDNAはPCRにより断片化し、該フラグメントを発現ベクター中で再度クローン化し、COS‐7または293T細胞中へそれぞれの提示HLA対立遺伝子を同時形質移入し、MLTC集団またはT細胞クローンによる認識についてIFN‐γ‐ELISPOT試験で試験した。認識されたフラグメントをさらに裁断し、認識されたペプチドのC末端が同定されるまで試験した。
図4には例として、患者モデルD05‐GSのMAGE‐A4/HLA‐Cw5ペプチドの同定を示してある。数字はcDNAフラグメントにコードされたアミノ酸中のポリペプチド鎖の長さを示している。ペプチドは3工程(I〜III)で同定された。第1の8つのフラグメントの試験から、ペプチドコード領域はアミノ酸86と126間にあることが結論付けられた(I)。第2の試験では、認識されたペプチドのC末端は必ずアミノ酸116〜126間にあることが分かった(II)。1つのアミノ酸によりC末端で連続的に裁断したポリペプチドをコードしたフラグメントの試験の結果として、認識されたペプチドのC末端はアミノ酸121と判定した(III)。C末端ペプチドを正確に位置測定した後、9および10アミノ酸長の最後のペプチドを合成し、T細胞による認識について調査した。表1にこの方式で同定されたペプチドを示す。
【0083】
MLTC応答系の抗腫瘍反応性は既知のメラノーマ関連抗原に対する反応性の合計を上回っていた。MLTC集団を限界希釈法でクローン化し、メラノーマ細胞は認識するが公知の抗原は全く認識しない細胞傷害性T細胞クローンを選択した。
【0084】
このようなクローンを、
新規の抗原を探索するcDNAバンクスクリーニングのために選択した。cDNAライブラリーを各100個のcDNAクローンのプール(100プール)群に分けた。このような100プール群の中の2000個からプラスミドを抽出した。cDNAプール群は、COS‐7および/または293T細胞中の個々のモデル系の各HLA‐cDNAで同時形質移入し、形質移入体を、T細胞による認識についてIFN‐γ‐ELISPOTアッセイで試験した。陽性100プール群から、抗原コードcDNAをクローン化した。該クローンの挿入の配列決定を行った。比較のため、データベースの配列、ならびにRT‐PCRにより作製した両患者の自己EBV‐B‐形質転換B細胞由来の相同cDNA配列を使用した。
【0085】
2つの抗原(モデルD14‐SJRのN‐WASPおよびモデルD05のCCT6A(TCP20はCCT6Aと同義語である))で、腫瘍特異的点突然変異が見られた。これらの変異を含み、利用可能なペプチドアルゴリズムにしたがった提示HLA対立遺伝子に結合する合成ペプチドを合成し、T細胞認識について調査した。両ケースで突然変異ペプチドが認識されるが、相同非突然変異ペプチド(CCT6A、
図5)は認識されず、野生型ペプチドの認識は変異型(N‐WASP、
図6B)と比較して1000倍低頻度である。したがって腫瘍特異的新規突然変異により免疫原性ペプチドが生成された。これまで、他のメラノーマもN‐WASPおよびCCT6Aの突然変異を示すかは不明であった。バンクスクリーニング中に見られる他の抗原、TRP‐2は、T細胞抗原としても知られている構造的に正常なメラノソーム分化抗原に対応している。cDNA断片化を介して、本発明者らは、HLA‐A2、白人集団に最も一般的なHLAクラスI対立遺伝子に提示される新規のペプチドを見出した(表1を参照)。
【0086】
図5には、いわゆるクロム遊離試験における患者モデルD05‐GSから得た全抗原の認識をまとめてある。放射性
51Crを用いてクロム酸化した患者のB細胞を、10
3nmol/lから10
−4nmol/lの濃度の指定のペプチドで滴定により添加し、ペプチド反応性T細胞クローンと4時間共インキュベートした。T細胞が該ペプチドを認識するとB細胞が溶解し、それによって細胞からクロムが放出し、その放出を細胞上清から判定した(灰色部分のKは対照を含んでいる;中黒の丸はペプチドのないB細胞の認識を示す;三角は自己クロム酸化メラノーマ細胞を示す;E:T=標的細胞に対するエフェクター細胞の割合)。
【0087】
図6Aおよび6Bには、IFN‐γELISPOTアッセイにおける患者モデルD14‐SJRから得た抗原の認識をまとめてある。ここで、個々のHLA‐cDNAを形質移入した自己B細胞またはCOS‐7または293T細胞も抗原提示細胞として働く。これらは指定のペプチドを添加し、T細胞と20時間共インキュベートした。これらの試験で該ペプチドもまた滴定した(6Aの灰色部分のKは対照を含んでいる:中黒の丸はペプチドのないB細胞の認識を示す;三角はD14メラノーマ細胞の認識を示す。)。
【0088】
参考文献:
T. Wolfel, A. Van Pel, E. De Plaen, C. Lurquin, J. Maryanski and T. Boon. Immunogenic (tum-) variants obtained by mutagenesis of mouse mastocytoma P815. VIII. Detection of stable transfectants expressing a tum- antigen with a cytolytic T cell stimulation assay. Immunogenetics 26: 178-187, 1987.
T. Wolfel, E. Klehmann, C. Muller, K.-H. Schutt, K.-H. Meyer zum Buschenfelde and A. Knuth. Lysis of human melanoma cells by autologous cytolytic T cell (CTL) clones: Identification of HLA-A2 as a restriction element for three different antigens. J. Exp. Med. 170 :797-810, 1989.
V. Brichard, A. Van Pel, T. Wolfel, C. Wolfel, E. de Plaen, B. Leth?, P. Coulie, and T. Boon. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med. 178: 489-495, 1993.
T. Wolfel, A. Van Pel, V. Brichard, J. Schneider, B. Seliger, K.-H. Meyer zum Buschenfelde, and T. Boon. Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur. J. Immunol. 24:759-764, 1994.
P. Coulie, V. Brichard, A. Van Pel, T. Wolfel, J. Schneider, C. Traversari, S. Mattei, E. De Plaen, C. Lurquin, J.-P. Szikora, J.-C. Renauld, and T. Boon. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med. 180:35-42, 1994.
T. Wolfel, M. Hauer, J. Schneider, M. Serrano, C. Wolfel, E. Klehmann-Hieb, E. De Plaen, T.Hankeln, K.-H. Meyer zum Buschenfelde, and D. Beach. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269:1281-1284, 1995.
V. G. Brichard, J. Herman, A. Van Pel, C. Wildman, B. Gaugler, T. Wolfel, T. Boon, and B. Leth?. A tyrosinase peptide presented by HLA-B44 is recognized by autologous cytolytic T lymphocytes. Eur. J. Immunol. 26:224-230, 1996.
W. Herr, J. Schneider, A.W. Lohse, K.-H. Meyer zum Buschenfelde, and T. Wolfel. Detection and quantification of blood-derived T lymphocytes secreting tumor necrosis factor alpha in response to HLA-A2.1-binding melanoma and viral peptide antigens. J.Immunol. Methods 191:131-142, 1996.
W. Herr, B. Linn, N. Leister, E. Wandel, K.-H. Meyer zum Buschenfelde, and T. Wolfel. The use of computer-assisted video image analysis for the quantification of CD8+ T lymphocytes producing tumor necrosis factor a spots in response to peptide antigens. J. Immunol. Methods 203:141-152, 1997.
J. Schneider, V. Brichard, T. Boon, K.-H. Meyer zum Buschenfelde, and T. Wolfel. Overlapping peptides of melanocyte differentiation antigen Melan-A/MART-1 recognized byautologous cytolytic T lymphocytes in association with HLA-B45.1 and HLA-A2.1. Int. J. Cancer 75:451-458, 1998.
S. Morel, A. Ooms, A. Van Pel, T. Wolfel, V. Brichard, P. van der Bruggen, B. Van den Eynde and G. Degiovanni. A new tyrosinase peptide presented by HLA-B35 is recognized on a human melanoma by autologous cytotoxic T lymphocytes. Int. J. Cancer 83:755-759, 1999.
C.Wolfel, I.Drexler, A. Van Pel, T. Thres, N. Leister, W. Herr, G. Sutter, C. Huber and T. Wolfel. Transporter (TAP)- and proteasome-independent presentation of a melanoma-associated tyrosinase epitope. Int. J. Cancer 88:432-438, 2000.
C.M.Britten, R.G.Meyer, T.Kreer, I.Drexler, T.Wolfel, W.Herr. The use of HLA-A*0201-transfected K562 as standard antigen-presenting cells for CD8(+) T lymphocytes in IFN-gamma ELISPOT assays. J. Immunol. Methods 259:95-110, 2002.
R.Konopitzky, U.Konig, R.G.Meyer, W.Sommergruber, T.Wolfel, and T.Schweighoffer. Identification of HLA-A*0201-restricted T cell epitopes derived from the novel overexpressed tumor antigen CLCA2. J. Immunol., 169:540-547, 2002.
C.M.Britten, R.G.Meyer, N.Frankenberg, C.Huber. T.Wolfel. The use of clonal mRNA as antigenic format for the detection of antigen-specific T lymphocytes in IFN-gamma ELISPOT assays. J. Immunol. Methods, 287:125-136, 2004.
A.Dorrschuck, A.Schmidt, E. Schnurer, M. Gluckmann, C.Albrecht, C.Wolfel, V.Lennerz, A.Lifke, C.Di Natale, E.Ranieri, L.Gesualdo, C.Huber, M.Karas, T.Wolfel, and W.Herr. CD8+ cytotoxic T lymphocytes isolated from allogeneic healthy donors recognize HLA-class Ia/Ib-associated renal carcinoma antigens with ubiquitous or restricted tissue expression. Blood, 104:2591-2599, 2004.
Y.Zhang. Z.Sun. H.Nicolay, R.G.Meyer, N.Renkvist, V.Stroobant, J.Corthals, J.Carrasco, A.M.Eggermont, M.Marchand, K.Thielemans, T.Wolfel, T.Boon, P.van der Bruggen. Monitoring of anti-vaccine CD4 T cell frequencies in melanoma patients vaccianted with a MAGE-3 protein. J. Immunol. 174:2404-2411, 2005.
R.G.Meyer, C.M.Britten, U.Siepmann, B.Petzold, T.A.Sagban, H.A.Lehr, B. Weigle, M.Schmitz, L.Mateo, B.Schmidt, H.Bernhard, T.Jakob, R.Hein, G.Schuler, B.Schuler-Thurner, S.N. Wagner, I.Drexler, G.Sutter, N.Arndtz, P.Chaplin, A.Enk, C.Huber, and T.Wolfel. A phase I vaccination study with tyrosinase in patients with stage II melanoma using recombinant modified vaccinia virus Ankara (MVA-hTyr). Cancer Immunol. Immunother. 54:453-467, 2005.
C.M.Britten, R.G.Meyer, C.Graf, C.Huber, T.Wolfel. Identification of T cell epitopes by the use of rapidly generated mRNA fragments. J. Immunol. Methods 299:165-175, 2005.