【実施例】
【0011】
本発明の原理をより明確に理解できるように、以下では図面に例示した実施形態を参照し、同一物を記載するために特定の言語を使用する。それでもなお、本発明の範囲の制限はそれにより制限されることは企図されず、例示した装置におけるそのような変更およびさらなる修飾、ならびに本明細書に例示した本発明の原理についてのそのようなさらなる適用は本発明が関連する分野の当業者であれば標準的に考えつくと企図されていると理解される。本発明の少なくとも1つの実施形態が記載および図示されており、本出願は、本発明の他の実施形態を図示および/または記載することができる。「本発明」という任意の言及は、本発明の1ファミリーの実施形態の言及であり、他に特に規定しない限り、全実施形態に含まれなければならない装置、プロセス、または組成物を含む単一実施形態はない。
要素部材についてのNシリーズのプレフィックス(NXX.XX)の使用は、以下で図示および記載したものを除いて、プレフィックスなしの要素(XX.XX)と同一である要素に関する。1つの例として、要素1020.1は、図示および記載した要素1020.1の異なる機能についてを除いて、要素20.1と同一である。さらに、関連要素の共通要素および共通機能は、異なる図面において同一方法で描出されている、または異なる図面において同一記号を使用している。したがって、同一である1020.1および20.1の共通機能は関連技術分野の当業者には明白であるので、それらの機能を説明する必要はない。本明細書では様々な特異的量(空間的寸法、温度、圧力、時間、力、抵抗、電流、電圧、濃度、波長、周波数、伝熱係数、無次元パラメーターなど)を明記できるが、そのような特異的量は例としてのみ提示されている。さらに、特定合成物に関する考察に関しては、その記載は例示するためだけであり、その組成物の他の種の適用可能性を限定しないし、引用した組成物に関連しない他の組成物の適用可能性を限定もしない。
本発明の1つの実施形態は導管内を流動する流体に、および特にT形もしくはX形流体分岐合流点内での流体流動のために、エネルギーの増加を提供する装置に関する。1つの実施形態では、本装置は、広範囲のクラスのフォンカルマン(von Karman)粘性ポンプの範囲内に含まれる。さらに他の実施形態では、本装置は、遠心ロータ(片側もしくは両側であってもよく、さらに回転軸に垂直な平面の周囲で対称的もしくは非対称的であってもよい)に広汎に似ている。本装置は流体分岐合流点内で回転し、入口に沿った流動を粘性で誘導し(入口の流路は、好ましくは一般には本装置の回転軸と平行である、または同軸性である)、流体を高エネルギーレベルで1つ以上の(好ましくは回転軸に垂直に配列される)出口へ送達する。エネルギーは、本装置のポンピング面に沿って粘性作用によって流体に付与される。
【0012】
1つの実施形態では、ポンピング装置は、平面形または円錐形のいずれかで配列されて、円形である。本明細書で使用する用語「円錐形」は、直面および曲面(凸形または凹形のいずれかで湾曲していてもよい)の両方を含む。さらにまた別の実施形態では、本装置は、背合わせの円錐形の表面を含む。一部の実施形態では、表面は、中心平面の周囲で鏡像である。さらにまた別の実施形態では、平面の片側でのポンピング装置の形状は、該平面の反対側の円錐角より鋭角である。さらに別の実施形態では、ポンピング装置の形状は、所定の状態に対して、2つの対向する入口からの相対流動寄与を変化させることができ、そしてさらに本装置の全ポンピング能力は増加または低下させることができる。
さらに、ポンピング要素、特に粘性ポンピング要素は、回転体として設計することができる。そのような実施形態では、ポンピング要素の表面を表す本体は、軸の周囲で回転させられる(直線、曲線、および両方の組み合わせを含む任意のタイプの)線によって画定される。好ましくは、軸からの線の半径方向距離はハブから、中央部であってもよい、または他方のハブに近位であってもよい最大径の区間に向かって単調に増加する。ポンピング要素が回転するにつれて、流動は最大径の領域から遠心させられる。この遠心させられた流動は、より小さい半径の隣接領域からポンピング表面に沿った流動を誘導する。
【0013】
本明細書に記載した様々な実施形態は、経路の分岐交流点に配置されるポンピング要素に関する。好ましくは、ポンピング要素は、その回転軸が誘導されるべき流動からの第1経路と一般に整列するように位置決めされる。この整列が完全である必要はないことは理解されており、経路が動物の循環系内にある実施形態では、経路は(機械的装置の水圧ライン内に配置される実施形態とは対照的に)対称性をほとんどもしくは全く伴わない、一般に不規則形状の経路である。さらに、流体に好ましくは最大径(鋭角に尖った先端から実質的に円形の腰部のいずれかの範囲に及んでもよい)の中央部領域から、流体が第2経路内に遠心させられるように遠心させられることが好ましい。好ましくは、最大径のセクションから出て行く流動の流線形は、第2経路の入口を指す。この方法では、ポンピング要素を離れる流体の粒子は、第2経路に方向付けられる。さらに他の実施形態では、ポンピング要素は、最大径の領域から生じる法線ベクトルは第2流体経路の入口の方向を指すように整列させられる。流体の粒子、または最大径でのポンピング面が第2経路内への「見通し値(quote of sight)」を有することは、好ましいが必要とはされない。上記で考察した配列のいずれかを用いると、ポンピング要素から流動する流体は、第2経路内に効率的に方向付けられるはずである。しかし本発明のさらにまた別の実施形態は、第2経路との整列が分岐交流点の壁で流体粒子を遠心させる可能性があることを認識し、さらに特に動物における第2経路の入口は形状が不規則であることを認識している。
【0014】
本明細書で使用する流体経路の分岐交流点は、時には文字、例えば「Y」、「T」、および「X」などとのそれらの一般的類似性によって記載される。そのような場合、そのような省略記述は、動物身体内の不規則性を含む生理的分岐交流点を説明すると認識されている。1つの例として、「Y」分岐交流点は、1つの経路が、第1経路と分岐した経路のいずれかとの間の角度または分岐経路間の角度とは無関係に、2つの(径に関して)主要な経路内に分岐するあらゆるタイプである。一部の場合に、「Y」形は1つの経路から分岐経路への相当に小さな角度を表すことができ、その内で似ている2つの「V」形は1つの中央経路を共有する。さらにまた別の例として、「T」形は一般に、交差角度とは無関係に第2経路内に割り込む1つの経路を表す。さらにまた別の例として、「X」形分岐交流点は、1つに集合する4本の経路を含み、これらは他の3本の経路に供給する1本の経路、または他の2本の経路に供給する2本の経路または1本の経路に供給する3本の経路を含むことができる。
【0015】
本明細書で示して記載したのは動物の身体内に移植可能なポンピング装置の様々な実施形態であるが、本発明はそのようには限定されておらず、さらに一般に流体系内に提供されるポンピング装置も企図している。さらに、用語「動物」は、人間を含むと理解されている。
単心室フォンタン手術を受ける患者では、肺を通る全身静脈血をポンピングするための肺下心室が存在しない。この役割を果たすように設計されたポンプは、有益にも全身静脈圧をより生理的範囲内に低下させるように機能するが、他方では同時に単心室の経肺血流および心室充満を改善し、そこで心拍出量を改善する。そのような装置は、現在は存在しない。大静脈肺動脈血流を増強するために有用である圧力範囲は2〜20mmHgオーダーであり、これは全身循環補助(50〜100mmHg)を提供するように設計された現行の市販で入手できる血液ポンプによって生成される圧力より1桁低い範囲である。1つの検討事項は、フォンカルマン粘性ポンプ原理(流体を軸方向に移動させ、流体を半径方向に転出させる回転円板)に沿って作動するアクチュエータ円板の使用である。そのようなポンプは、時には、ポンピング要素の最大径から出て行く流線形が半径方向および軸方向の両方に流動成分を有するような混成流を有すると説明される。
【0016】
本発明の1つの実施形態は、新規なポンプ設計に関する。他の実施形態は、新規な解剖学的領域(部分もしくは完全大静脈肺動脈吻合部)に適用されるポンプに関する。1つの実施形態では、本ポンプは、2つの対向端(下および上大静脈)からの流入を誘導して、垂直の対向端(右および左枝肺動脈)に流出を提供することができる単一のインペラーを有する。本ポンプは、非閉塞性であり、あらゆる状況下で流動を促進する。一部の実施形態では、本ポンプは、非回転時には大静脈肺動脈吻合部の交点における流動に安定化作用を有するように形作られる。ポンプは再循環への障壁を必要とせず、経皮的に配置でき、非侵襲性であり、低い前負荷および後負荷依存性を有し、有用な範囲内での圧力増強を提供する。本ポンプは、現時点では市販では存在しない「拡張型カテーテル式回転血液ポンプ」の1例である。
【0017】
図1a、1b、および1cを参照すると、先天性単心室欠損を有する心臓の幾つかの修復段階が示されている。最も一般的な形態である左心低形成症候群では、左心室は常時機能的な方法では形成することができない。出生直後の数週間以内に実施されなければならない第1の手技では、右心室が血液を肺ではなく身体へポンピングするように転換される(
図1a)。二次的には、肺への血流は、新生児における上昇した肺血管抵抗(PVR)を克服するために、高圧全身動脈源から全身−肺動脈シャントを経由するように導かれなければならない。残念なことに、シャントの使用は重度の低酸素血症を生じさせ、繊細に均衡させられなければならない全身循環と肺循環の本質的に不安定な並列配置を作り出す。結果として、この手技は、20〜30%の不安定性および死亡率が生じることで有名である。中間死亡率(第1〜第2段階)もまた極めて高い(4〜24%)。この死亡の高いリスクは、シャントにとって共通の特徴である本質的に不安定な循環の発現である。代償不全は、特徴的に突然の予測できない、そして識別できる理由がない。対照的に、第2段階および第3段階手術後の安定性および生存率ははるかに良好であり、これはシャントの除去と一致する。
肺血流の信頼できる起源を提供することを犠牲にして、シャントは4つの潜在的に致死性の生理学的結果を作り出す:単心室は、(1)不安定な並列配置にある肺循環および全身循環の両方を(2)標準量の2倍をポンピングすることによって補助しなければならず、さらにこの2倍の仕事量を(3)重度低酸素血症(PaO2:30〜40mmHg)および(4)(a)シャントの流出液からの低下した拡張期血圧および(b)心室容量過負荷のために増加した心筋壁張力に起因する心筋冠潅流障害の過酷な条件下で実施しなければならない。合成シャントは、さらにまた致死性血栓症のリスクも有する。並列循環の均衡に影響を及ぼすあらゆる変化は、平衡を回復するためにどこかで代償を必要とする。危険な正の生理学的フィードバックループは、不安定性を上昇させる:低酸素血症は肺潅流低下を導き、そこで低酸素血症を悪化させる;逆に「高」PaO2(>40mmHg)は肺循環を拡張させ、肺の潅流過剰を引き起こし、さらに全身潅流を犠牲にしてPaO2の上昇を導く。救命管理には、吸入器酸素濃度のさらなる低下(時には0.21未満)や低換気を含む、経験にそぐわない有害なインターベンションを必要とすることがある。驚くには当たらないが、第1段階修復術に続く神経認知障害は一般的である。逆説的に言えば、シャントはまず最初に使用を指令する状態である低酸素性肺血管収縮および肺高血圧を誘導かつ悪化させる。これらは出生後の肺血管成熟を損傷させ、そして初期および後期基礎PVRを上昇させ、その後のフォンタン状態を損傷させる。皮肉なことに、シャント生理学は他の手技を行った場合より第2段階転換術のタイミングを遅くさせる可能性があり、第2段階および第3段階フォンタン転換術の候補を悪化させることがある。
【0018】
第2および第3手術(
図1bおよび1cに集合的に表示)は、「段階的フォンタン転換術」を表している。問題の多いシャントは中止され、肺への血流は低圧全身静脈起源へ大静脈を肺動脈へ直接的に接続させること(大静脈肺動脈吻合部)によって転換される。肺および身体への血流は、正常な2心室生理学において見いだされるように、より安定した直列配列へ回復させられる。しかし、肺血流のための単独のエネルギー源は全身静脈圧へ委ねられるので、これは流動を発生させるために有意に上昇(10〜15mmHg)させられなければならない。これは、フォンタン術関連の健康上の懸念の大半の原因となる2つの新しい問題:1)全身静脈性高血圧、および2)準最適の心室充満および心拍出量、を導入する。第2手術(
図1b)では、上大静脈(SVC)は肺動脈流の単独の起源である肺動脈に接続される。この段階は、典型的には、上昇した肺血管抵抗のリスクが低くなる4月齢を越えてから実施される。下大静脈(IVC)流は共通心房へ流入し続け、有意な右左シャントおよび低酸素血症を残すので、肺性高血圧を悪化させ続ける。肺血流は非拍動性の定常流潅流へ移行させられ、これは肺血管インピーダンスを上昇させる。
第3手術(
図1c)では、IVC(したがって全)静脈還流は肺動脈へ迂回させられる。下半身および内臓循環は、上昇した静脈圧に曝される。IVC圧が12〜15mmHgを超える限界候補者は、低心拍出量、肝機能障害に悩まされ、さらに腹水および浸出液を発生することがある。この段階のために理想的な年齢およびタイミングは不明であり、医療機関間で異なる。しかし、フォンタン完了術(completion)が忍容される年齢は、低下しつつあると思われる。この傾向は、予想外にも臨床的教義に基づいているので興味深いが、同等もしくはより良好な転帰は未だ解明されていない。新生児を含む幼児は、慢性的に上昇した全身静脈圧に同等もしくはより良好に適応して忍容できるようになるという説明がもっともらしく思われる。
【0019】
第2および第3手技は、血管反応性の新生児の肺を通して受動的血流を達成するという問題が未解決であるために、新生児において実施することはできない。しかし、新生児の完全フォンタン修復術がこれまで試みられたことがないことに注目することが重要である。フォンタン修復術の臨床的進化のために、この生理学は極めて年少の幼児においては実行できないと想定されている。段階的治療の支持者は、4月齢未満の幼児において第2段階手技を実施することの困難さについて言及している;しかし、これは持続的低酸素血症および全身循環へのIVC流の流入に起因して上昇したPVRに対する持続的刺激の条件下で発生するので、このため右左シャントが生じない完全フォンタン転換術と合理的に比較することはできない。
第2段階および第3段階手技は、一般には2つの理由から単一転換術として安全に実施することができない。第1に、高度にコンプライアントな全身静脈領域内での総全身静脈圧の急性上昇は、重大な容量変化を誘発する。補助を行わないと、心拍出量を持続するために必要とされる容量の急性投与は、特に毛細管漏出および心肺バイパス術後の第3間隔と重ね合わされると、浮腫および受け容れがたい組織潅流異常を導く。この移行への神経ホルモン、間質、および膠質適応を許容するために橋渡し補助が提供されれば、それは1つの段階で安全に行うことができる。第2に、容量過負荷から非コンプライアントな心室を備える容量正常心臓への急変は望ましいことではない。段階的治療は、心室が容量「正常」状態へより段階的にリモデリングすることを許容する。これは、段階的治療のパラドックスを例示する:生理学は以前には異常な状況に不適応だった後に正常に戻るように適応させられなければならない。第1段階病態生理(心室過負荷および肥大)は、段階的転換術を指令する状態を作り出す;それがなければ、転換術は必ずしも段階的治療を行う必要がない。研究は、心室機能は容量除荷後に改善すること、そして容量除荷が早期に行われるほど後期フォンタン転帰を改善することを証明している。数学的モデルは、体表面積が小さいほど、または年齢が低いほど単心室フォンタン循環への影響が小さいと予測している。これらの所見は、早期の段階的フォンタン転換術、または病期診断を全く行わないことを支持している。フォンタン生理学は、これまで考えられていたよりはるかに早期に実行可能な可能性がある。
【0020】
単心室フォンタン循環では、循環の4区域:1)全身性静脈圧、2)大静脈肺動脈勾配(解剖学的問題)、3)経肺動脈勾配(生理学的問題)、および4)心室充満圧が極めて相互依存性になる。これらの4つの部位を横断する圧力差は相当に小さく(約12mmHg)、その大部分は肺を横断して発生する。これらの部位のいずれかでの一見したところ些細な圧力損失(2〜5mmHg)は、循環の残りに拡大された影響を有する。同様に、この領域における2〜5mmHgに過ぎない水圧エネルギー利得は循環状態を有意に改善する(例えば、静脈圧における2〜5mmHgの減少および心室充満圧における釣り合った増加)。おそらく、慢性生理的適応性の一部の形態は、神経ホルモンおよび間質/膠質圧力変化を含めて、フォンタン転換術に応答して発生するが、これらの機序は不明である。第2段階転換術のための時期は歴史的にはPVR状態によって指令されてきたので、全身適合性の性質、適合のために必要とされる時間、または上昇した中心静脈圧がフォンタン循環術に応答して新生児または年少幼児において実行可能であるかどうかは決して関連性ではなかった。
フォンタン循環は、肺下心室の非存在に起因して共在する全身静脈性低血圧および相対肺動脈性低血圧を特徴とする。このため、肺下動力源の添加はこれらの問題を無効にし、正常2心室を再現することは理にかなっている。多数のリスクおよび病変を伴う現行の複雑な段階的外科的アプローチとは反対に、この概念は賢明にも、そのために身体が最適に機能するように目的論的にプログラムされている2心室生理学の安定性に基づいている。
このパラダイムは、補助された単心室循環(大静脈肺動脈ポンプ+単心室)から肺が静脈圧単独によって潅流される補助されていない単心室循環への移行を促進するように変化させる。大静脈肺動脈補助は、任意の時点および任意に組み合わせで、待期的順序で、またはフォンタン完了術後後期に適用することができる。大静脈肺動脈補助を移植するためには、2つのことが発生しなければならない:1)独自のポンプが開発されなければならない;2)フォンタン生理学への移行が特性解析されなければならない。
【0021】
フォンタン生理学が失敗に終わった患者はうっ血性心不全に典型的な特徴(組織/器官潅流の減少、組織/器官水の増加)を示すが、原因因子は必ずしも内因性心筋機能障害の反映ではない。フォンタン患者(正常収縮機能を備える)におけるドップラー心筋心エコー試験は、拡張期機能障害が特発性心筋機能障害ではなくむしろ慢性的に減少した充満の結果であることを証明している。フォンタン患者の70%は、後期フォローアップでは心室収縮機能を保持していた。別な言い方では、循環の他のセグメントがフォンタン心臓を実質的に失敗すると言うことができる。スターリング(Starling)曲線上の「フォンタンに失敗する」心臓の位置は、1つの特徴(差異)であるが、それは大静脈肺動脈補助が、心室充満におけるわずか(2〜5mmHg)の増加が心筋性能および心拍出量を改善するという見解に基づいているからである。大静脈肺動脈補助はフォンタン生理学が失敗した成人患者のための下大静脈流を補助するために優先的に適用できるが、それは彼らの罹患率の大多数がIVC領域から発生し、IVC流が全身静脈還流の大部分を占めるからである。本発明の1つの実施形態による装置は、対向する大静脈における逆流圧力上昇を防止するという点で現行の一方向マイクロアキシアル(microaxial)設計における限界を克服する。それはSVC圧および流量がより極めて重要である年少患者における複合段階フォンタン修復術の可能性を含む二方向補助(SVCおよびIVC領域の両方)として適用することができる。
能動的大静脈肺動脈補助が有用なのは単心室フォンタン手術が行われる患者においてだけではなく、うっ血性心不全を抱える患者においても有用である。そのような患者は、右心室機能のポンプによる能動的補助から利益を得ることができる。
右心室補助のための水圧の必要は、左心室補助のおよそ5分の1である。粘性インペラーポンプは、二心室(正常生体構造)循環を抱える患者における右側循環を非侵襲性で補助するために使用できる。主要肺動脈内に位置決めされた本発明の1つの実施形態による経皮的に挿入された粘性インペラーポンプは、右心室後負荷を減少させ、心筋回復を促進する。さらにまた、全身心室への前負荷も改善し、心拍出量を改善する。本ポンプは、カテーテル検査室内または集中治療室内で経皮的に展開することができる。ポンプヘッドは、エックス線透視誘導および血行動態インジケーターを用いて肺動脈分岐点のレベルで主要肺動脈内に位置決めされる。
【0022】
粘性インペラーポンプは、さらにまた一時的経皮補助の手段として(例えば右冠動脈の切開中に)右心室機能障害が発生する場合にインターベンショナル・カテーテル検査手技中に心カテーテル検査室においても適用できる。これはさらにまた、左心室機能障害の存在下で全身循環を補助するために大動脈内バルーンポンプ(IABP)補助を補助的に使用することもできる。これはカテーテル検査室内で患者を安定化させるために心臓専門医に全医療設備の治療選択肢を付け加える。
一時的右心補助のための本発明の1つの実施形態による粘性インペラーポンプの使用を含む少なくとも1つの態様は、それが永久的RVADの外科的配置の必要を最小限に抑える、または排除するが、これは罹患率および致死率のリスクにおける劇的減少と言い換えることができる。Bi−VAD(LVAD+RVAD)補助には、LVADが単独で補助するより有意に多い合併症が結び付いている。頻回に、RVAD補助が必要であるかどうかに関する臨床決定は、LVAD補助が開始されてから数日後まで下すことができない;この時間窓は患者の健康およびまた別の主要な心臓切開手術手技に耐える能力に関して不確かである。RVAD補助は長期間にわたっては必要とされない場合があるが、それは右心は、その収縮性が十分に正常化しない場合でさえ、適正に機能できるほど十分に回復する可能性が高いからである。右心機能が回復するための時間推定量は、大きな臨床シリーズでは通常は1週間未満である。
【0023】
肺動脈血流を増強するためには、肺動脈分岐部において非対称粘性インペラー形状および/または非対称表面羽根要素(高さ、曲率)を使用できる。非対称性は1方向からの軸方向流入に好都合であり、さらに肺動脈分岐部における二方向流出を増強する。本発明の1つの実施形態によるインペラーおよびケージは、回転時の閉塞の原因となることはなく、非回転時の閉塞は最小限に抑えられる。
能動的(電動)および受動的(静的)両方の肺動脈補助は概念的に独創的である;前者の場合には装置は心室がその機能を回復すると想定されない場所で循環を一時的に補助し、後者の場合には静的装置が乱流を減少させる。ポンプが肺動脈血流を安全に増強するためには、独創的な解剖学的、生理学的およびバイオエンジニアリング問題が検討されなければならない。全身循環に比較して、単心室フォンタン循環の大静脈肺動脈吻合部内の血圧は極めて低い。さらに、たった2〜5mmHgの増圧が、大静脈肺動脈流を増強し、血行動態状態を有意に改善するために必要とされる(または理想的である)全てである可能性がある。流入の上流源は定常流の全身静脈還流である;そこから取り出すためのポンプ入口のための容量リザーバーは存在しない。そこで、ポンプ吸い上げに起因して血管虚脱およびキャビテーションのリスクが通常より高くなる。さらに、大静脈肺動脈吻合部内には、ポンプ本体の周囲での再循環を防止するための天然の閉塞機構(弁)は存在しない。最後に、静脈経路はポンプ展開(回転時または静止時)中および抜去後に遮断されないままであることが有用である。
【0024】
マイクロアキシアルポンプは、大静脈肺動脈補助についての概念を証明するために、生体動物における大静脈肺動脈流を補助するために無事に適応させられてきた。これらは経皮的に配置でき、血管内腔内で機能し、体外回路もしくは体外に置かれたカニューレを利用せず、容量リザーバーもしくは大気ベントを必要とせず、(大静脈肺動脈吻合部におけるように)連続流を提供し、広範囲の流量を提供し、最小の準備時間を必要とし、流体/血液のプライミングを必要とせず、そして弁を必要としない。最近のNIHイニシアチブ(NHLBI−HV−04−01、小児科循環補助)は、機能的単心室を抱える小児の循環を補助するために、使用法が容易で、迅速に展開でき、最少のプライミング容量、ならびに感染、出血もしくは血栓症の最少のリスクを伴う技術を用いる、新規な革新的アプローチの開発を呼びかけた。本発明の1つの実施形態によるポンプは、これらの要件の一部または全部を満たす。
現在臨床使用できる全ての装置は、大静脈肺動脈補助のための所望範囲をはるかに超える圧力および流量を生成する。SVPの機械的補助装置を用いた経験は、大半がサルベージとして体外膜型人工肺(ECMO)を使用する全身補助(間違った標的)に限定されている。ECMOによって補助されたSVP患者の生存率は不良であり(40〜50%)、失敗の原因は出血、血栓症、および脳卒中である。SVPを抱える患者における大静脈肺動脈流を補助するのに適した装置はなく、より有効な選択肢に対する明白な必要がある。
【0025】
本発明の1つの実施形態は、革新的なポンプに関する。大静脈肺動脈補助を安全に提供するために検討すべき因子には以下が含まれる:1)大静脈肺動脈循環においては静水圧が極めて低い;2)2〜5mmHgという低い増圧が必要とされる全てである。これは、見かけでは些細であるが、それでも有用な2〜5mmHgによって静脈経路を流線形にするためにフォンタン転換術を受けた患者において観察された臨床改善によって支持されている。3)流入の上流源は定常流の全身静脈還流である;4)そこから取り出すためのポンプ入口のための容量リザーバーが存在しない;5)ポンプ吸い上げに起因する血管虚脱およびキャビテーションのリスクが通常より高い;6)ポンプ周囲での再循環を防止するための静脈経路内に天然の閉塞機構が存在しない;7)大静脈経路が装置の展開中、およびポンプの抜去後に遮断されないままであることが有用である。これらの因子は有意な可能性があり、それらは全部が循環補助分野にとって新規である。
保護ケージを備える経皮的拡張型折り畳み式プロペラポンプは、1つの解決策を表すことができる(
図3)。このポンプは、カテーテル検査室または集中治療室内で、大腿静脈もしくは頸静脈挿入およびヘパリン抗凝固を用い、大動脈内バルーンポンプに類似する管理下で比較的容易に適用できる。回復への橋渡しとして、このポンプは、全身静脈圧を減少させ(2〜5mmHg)、心室充満を改善し(2〜5mmHg)、これは順に毛細管および間質静水圧を低下させ、末端器官潅流を改善する。移植への橋渡しとして、このポンプは、ドナー臓器の待機期間を生存する可能性を増加させ、移植が行われる時点の生理的状態を改善する。
【0026】
本発明の1つの実施形態によるポンプ20は、以下の特徴の一部または全部を含む:(1)単純性:可動パーツが少なく、非侵襲性の配置、迅速な展開/抜去、血液もしくは消失のプライミングが不要、最小の準備時間(1時間未満)、輸送可能で、確実な推進法を使用する;(2)正常右心室血行動態に類似する穏当な圧力上昇および高容量流量を提供する相当にフラットな圧力流量水圧特性;(3)低い前負荷および後負荷依存性;(4)最小の静脈経路閉塞;(5)ポンプ周囲での血液の再循環に対する解剖学的もしくは複雑な人工障壁が必要とされない:ポンピング表面が血管内腔全体に及ぶ逆流に対する機能的障壁を提供する;(6)異物表面積対血液容量比が他の装置に比較して低い;(7)より低い異物表面曝露および最大に露出した血管内皮で内張りされた表面に起因して抗凝固の要件が減少する;8)手術もしくは麻酔の必要を伴わないロータの交換可能性は、血栓形成性および他の合併症のリスクを減少させることができる。ロータはさらにまた、様々な生理的要望に適合させるように交換することもできる。
非対称性インペラーを使用する大多数のIVC補助装置は、フォンタンに失敗した成人においては十分な可能性があるが、それは彼らの罹患率の大半はIVC領域から発生するからである。本発明の1つの実施形態によるポンプは、中心静脈カテーテルもしくは大動脈内バルーンポンプに類似して適用され、ICU環境またはカテーテル検査室においてセルジンガー(Seldinger)技術(オーバー・ザ・ワイヤー法)を使用して経皮的に配置することができる。新生児用途には、大多数のSVC、または二方向ポンプ補助(SVC+IVC)が有用な可能性がある。
【0027】
循環補助のためには、折り畳み式プロペラ血液ポンプを使用できる。しかしこの装置には、下行胸大動脈に適用した場合のように、以下の限界がある:1)全身動脈圧を20mmHgの限度で最大に増強することができるが、これは全身補助のためには不十分である;2)上流圧を低下させ、それによって脳および冠潅流圧を低下させる。大静脈肺動脈補助のためには、2〜10mmHg範囲内の圧勾配が健常条件下では好ましいが、増加した圧力水頭(肺高血圧、40+mmHg)を克服するためにはより高い範囲内の圧能力が必要になることがある。さらに、上流全身静脈圧の減少が望ましく、(陰圧を除いて)有害な結果は有しない。
折り畳み式プロペラは、限定されるブレード幅および表面積に起因して水力学の観点からは余り効率的ではない可能性がある。しかし、ある程度の流体滑りが望ましいが、それは流体滑りは前負荷および後負荷依存性を減少させ、それによって上流の過剰の陰圧(吸引、静脈虚脱、キャビテーション)または下流の過度の陽圧(潅流性肺外傷)のリスクを減少させるからである。流体滑りは、さらにまた静脈経路閉塞という重大な問題を排除する。さらに、再循環を防止するための人工障壁が必要とされない;プロペラのブレードは血管内腔全体に及ぶ逆流への物理的障壁ではなく機能的障壁を提供する。
非折り畳み式ブレード設計を備えるポンプ(
図4aおよび4bに示した)が試験された。しかしこのポンプは、他の点では折り畳み式ブレード設計と寸法(狭いブレード幅、比較的幅広のハブ)において類似であった。ポンプ性能は、拡張式保護ケージの存在下では特性付けられなかった。折り畳み式プロペラは、大静脈肺動脈流を緩徐に増強するために必要な穏当な増圧および高容量流量を提供できる相当にフラットな圧−流動特性を有する。以前に、相当に単純な2ブレード型プロペラがこのタイプの補助を提供するために所望の圧力および流量範囲内で機能することが証明されている。それに続くのは、3ブレード型プロトタイプの水圧および溶血性能である。
ポンプの規模および作動範囲は、単心室フォンタン循環を抱える成人において一方向大静脈肺動脈補助を提供するように画定された(表1)。先端から先端までの直径は20mmであり、最大ブレード幅は6mm、およびハブ径は6mmである(
図4aおよび4b)。
【0028】
表1 プロペラ式ポンプの設計仕様
仕様 成人
流量(LPM) 0.5−4
圧上昇(mmHg) 5−20
回転速度(RPM) 3−9000
設計流量(LPM) 1.5
血管径(mm) 30
【0029】
プロトタイプは、圧−流動性能測定のために水圧流動ループのパイプ導管(内径30mm)内に取り付けられた。血液の特性に適合させるために、血液類似流体(水/グリセリン60/40;粘度3.34±0.152cP;比重1.08±0.002)が使用された。流速は、ループ内の抵抗を増加および減少させることによって変動させられた。圧力差は、ダイヤフラム式圧トランスデューサ−を用いて決定された。圧上昇および流速は、定常流条件下で同時に測定された。
溶血試験(n=2)は、1988年および1991年の回転式血液ポンプに関する国際ワークショップ(International Workshops on Rotary Blood Pumps)からのガイドライン下で、米国材料試験協会規格(American Society for Testing and Materials standards)F1841−97(Standard Practice for Assessment of Hemolysis in Continuous Flow Blood Pumps)、F1830−97、およびF756−00を遵守して同一水圧流動ループを使用して実施された。ベースライン時にサンプルが採取された後、ポンプ回転を開始させ、2LPMの流速および6,000RPMの回転速度が6時間にわたって維持された。サンプルは1時間毎に採取された。無血漿ヘモグロビンは、吸光度における加重差に基づいて計算された。溶血の標準指標(NIH)が計算された。試験の結果は、
図5、6a、7、8、および9に示されている。
圧上昇は5〜50mmHgの所望の範囲内にあり、0.5〜3.25LPMの流速は5,000〜7,000RPMの回転速度で観察された(
図5)。数的予測と比較して観察された水圧性能は予測値よりおよそ20%未満であったが、特に低い流速では密接に相関していた。これは数的モデルと実験配置との間の条件における差によって説明される:ブレードの先端隙間は、数値モデルにおける0.2mmとは対照的に、試験時には5mmであった。大きな実験的ギャップ隙間は水圧エネルギー損失に帰せられたが、これは臨床状況で遭遇する条件も反映する可能性がある。
実験期間にわたる回転速度、流速および水圧ループ温度は、
図6aおよび6bに示されている。ヘマトクリット値は、6時間にわたってわずかに低下しながら27%〜30%の間に留まった(
図7)。無血漿ヘモグロビン濃度は最初の1時間内に急速に上昇し、次に1〜6時間には着実に、しかしはるかにより緩徐に増加した(
図8および9)。同様に、NIH値は最初の1時間に急上昇し、その後は一貫して1〜6時間にわたって10mg/dL未満に留まった。初期1時間中の無血漿ヘモグロビン値およびNIH値は、機器に関する制限に続発性の迅速なポンプ始動に起因して赤血球の溶解に起因すると考えられる。50mg/dL未満の無ヘモグロビンレベルは装置関連溶血に対して許容可能であり、10mg/dL未満のレベルが優れている。
【0030】
本発明のさらに別の実施形態は、カテーテル内に含有された柔軟な駆動ワイヤーを備えるカテーテル式回転ポンプに関する(
図10、11、および12参照)。インペラー60は、射出成形された生体適合性エラストマー、例えばシリコーン系ウレタン類、またはその他の柔軟性で、1)バルーンの形状を強化する、および2)インペラー60が回転するにつれて流体流を表面を超えて最適に輸送するように指向性羽根として作用するスパイン74(プラスチックまたは金属)を有するように他の柔軟な材料から製造される。インペラーは、一般に(経皮的挿入および展開を許容するための)虚脱した低プロファイル形から形状を変化させることができ、次に直径の小さなスピンドルから両凹面円錐円板から相当にフラットな円板までの範囲に及ぶ形状を通して心臓の近くの径の大きな中心血管内の適正な場所で拡張することができる。インペラー/バルーンの表面の突起部もしくは波形は、流動を最適化する(エネルギー損失を最小限に抑え、剪断応力および溶血リスクを最小限に抑え、効率を最大化する)ように設計される。表面62の形状は、さらにまた最適流動(例、フラット対円錐形成分)のために最適化される。
インペラー/カテーテルアセンブリは、一部の実施形態では形状記憶Nitinol(登録商標)ワイヤー(設計においては2本の背中合わせで対向する大静脈フィルターに類似する)を用いて構築される拡張型保護ケージを組み込む保護シースによって取り囲まれている。保護ケージはインペラーを大静脈肺動脈分岐合流点の中央に配置し、血管壁をインペラーの接地および血管壁損傷から保護する。カテーテル/シースの外部末端(身体の外側)は、駆動ワイヤーに接着させられる密封磁石を含む。磁石周囲の交流電場の配置は磁石を回転させ、そこで駆動ワイヤーを回転させ、さらに本体の内側のインペラーを回転させて流体の移動を誘導する。ワイヤーによって電源供給される内部モーターまたは経皮的電源もしくは他の駆動システム(遠隔連結されたリザーバーによる骨格筋補助)を適用できる。本発明の一部の実施形態におけるカテーテル駆動ワイヤーは、駆動ワイヤーを潤滑してインペラーを支持している軸受内への凝固素子の侵入を防止するための内蔵型パージシステムを含む。本装置は、経皮的挿入および放射線/心エコー配置/位置決めに関して大動脈内血液ポンプと同様に使用される。
【0031】
図10、11、12、および14は、本発明の1つの実施形態による大静脈肺動脈ポンプアセンブリ20を概略図で示している。アセンブリ20は、ケージアセンブリ40、ポンプ60および中心ロッド34を身体内の肺動脈分岐合流点Jへ経皮的に送達するカテーテル30を含む。
図10において最も明らかなように、ポンプアセンブリ20は、肺動脈分岐合流点Jの壁W内で展開状態で示されている。流動は、湾曲した方向矢印によって指示されたように、左右両方から分岐合流点に近付き、上部および下部から出て行く。
末端ストッパー36を備える中心ロッド34は、カテーテル30のシースの末端から遠位方向に伸びる。固定ケージアセンブリ40はカテーテル30の遠位出口から伸び、一般にはカテーテル30から末端ストッパー36までの距離にわたる。複数の分岐する近位保護部材もしくはフィラメント42.1は、カテーテル30から各頂点44へ半径方向で外向きに伸びる。複数の分岐する遠位保護部材42.2は頂点44から円筒状スペーサー52上の柔軟性もしくヒンジ結合可能な連結部48へ合流する。ケージ40は、容易に繰返し弾性的に変形可能である材料から作製された継ぎ手(および一般にポンプ、ヒンジ継ぎ手、ピン継ぎ手など)を含む関節式継ぎ手またはシース30内に含有された作動シリンダー46への柔軟性連結部50のために適応および構成される。
ポンプアセンブリ20は、中心ロッド34の周囲で支持されて回転可能なポンプ60をさらに含む。ポンプ60は、他の点では柔軟性の連結部70に沿って中心ロッド66に連結されている近位ポンピング面62.1を含む。近位ポンピング面62.1は、連結部70から複数の柔軟性頂点64へ分岐パターンで伸びている。第2の遠位ポンピング面62.2は、頂点64から柔軟性連結部68そして展開ストッパー72へ伸びている。
【0032】
図11は、折り畳み位置にあるポンプアセンブリ20を示している。アセンブリ20は、ケージ40およびポンプ60がシース30のカニューレ内に適合するように適応および構成される。保護部材42.1および42.2は、中心ロッド34に向かって半径方向の内向きに虚脱する。1つの実施形態では、保護部材42.1および42.2は、頂点44、連結部48、およびアタッチメント50の周囲で旋回する。さらに他の実施形態では、保護部材62.1および62.2は、半径方向に内向きの虚脱を許容するために十分に柔軟性である。さらに、ポンプ60の駆動面62.1および62.2は同様に、旋回連結部64、68、および70、ならびに部材自体の柔軟性のいずれかによって、または両方の組み合わせによって、中心ロッド34に向かって半径方向の内向きに虚脱する。
ポンプ20は、
図11の折り畳み状態から
図10の展開状態へ、作動シリンダー66および46ならびに中心ロッド34をカテーテル30の遠位端から押すことによって移行させる。保護部材42.1および42.1はカテーテル30から伸び、これらの保護部材はそれらの材料(例えば、Nitinol(登録商標)の使用による)における残留記憶のために伸びる。同様に、ポンピング面62.1および62.2がシース30の遠位端から外向きに伸びるにつれて、これらのポンピング面は同様にそれらの材料記憶(例えば、Nitinol(登録商標)の使用による)に基づいて半径方向の外向きに伸びる。
作動シリンダー46は、スペーシング部材52が中心ロッド34の末端ストッパー36と接触するまで、シース30内で押すことができる。作動シリンダー66は、作動ストッパー72がスペーサー52の他方の末端に接触するまで、作動シリンダー66内で押すことができる。スペーサー52は、部材42.1および42.2各々を保護するためにポンピング面62.1および62.2からの十分な隙間を備えて、ケージ40の内部容量内でポンプ60を確立する。
【0033】
図12は、折り畳み式ポンプアセンブリ20の断面の概略図である。ケージアセンブリ40およびポンプ60はどちらもカテーテル30の壁32の内径内に適合する。ケージアセンブリ40の保護部材42.2は、ポンプ60の半径方向の外向きに配置される。
図2に示したように、ケージ40の1つの実施形態は、一般に一様な周方向パターンで配列された複数の6つの別個の保護部材42.2を含む。
1つの実施形態では、ポンプ60は、展開されると、頂点44からストッパー72でのヒンジ式連結部68へ伸びる複数の支持ロッド74.2を含む。支持ロッド74.2は、柔軟性のシージング76.2へ取り付けられている。シージング76.2は、ポンピング面62.2の大部分を提供する。支持ロッド74.2は、別個の回転式ポンプ羽根として機能するための周方向の旋回パターンを備えて構成することができる。1つの実施形態では、柔軟性材料76.2は、生物学的に適合性のエラストマーから作製される。折り畳まれると、柔軟性シース材料76.2は、折り畳み傘の折り畳みと概念が類似する、複数の折り畳みスペース78.2を形成する。
図12は遠位ポンピング面62.2を越える断面しか示していないが、近位ポンピング面62.1は同様に、どちらも柔軟性材料76.1を支持して折り畳む複数のロッドもしくはフィラメント74.1を含む。
【0034】
図14は、循環経路の分岐合流点J内に据え付けられたポンピングアセンブリ20の図的記述である。装置20は、患者の体内に経皮的に挿入され、循環系内の経路の分岐合流点Jに向けて方向付けられている。描出された経路はフォンタン修復術を受けた循環に関するが、本発明はそのようには限定されておらず、循環系内の任意のタイプの分岐合流点に適用され、さらに、医学的用途を有していない実施形態については、任意のタイプの2つの流体経路の分岐合流点に関する。ケージ40は、分岐合流点の壁Wをその中で回転するポンピング要素60から保護するために拡張させられている。ポンピング要素60の回転は、ポンピング要素60の中央部で最大径に向かう垂直方向の軸方向流(
図14に示した)を誘導する。流動は、流体がロータ60の粘性ポンピング作用によって誘導される方向へ実質的に直交する方向でインペラー60から出て行く。
【0035】
図13は、本発明のまた別の実施形態によるポンプアセンブリ120の断面図である。ポンプアセンブリ120は、ポンプ40が単一ポンピング面162を含む以外は、ポンプアセンブリ20と同一である。
図13に示したように、ポンピング面162は、展開されると、実質的にフラットな円筒状円板として成形される。円板162の回転は、保護部材142.2を通ってポンピング要素162の遠位側に向かう上流流動を誘導する。同様に、中心ロッド34の周囲での円板162の回転は、円板162の近位面に向かう静的保護部材142.1を通る流動を誘導する。流動場内で回転する円板162の粘性作用は、頂点144の付近での縁164から半径方向に外向きへの流動を誘導する。
ポンプ120は、ケージ140に比較してポンプ160の展開を停止させるための装置に関してポンプ20とは異なる。ポンプ160の作動シリンダー66はそれにストッパー面172を取り付けており、これは完全展開中には、ケージ140の非回転表面154が終端となる。
【0036】
図15は、非対称性の作動可能な形状のポンプアセンブリ620を示している。アセンブリ620のポンプ660は、作動シリンダー666の中央アタッチメント面670から伸びる複数の支持ロッド674を含む近位ポンピング面662.1を含む。柔軟性材料676は、傘と同様の方法でロッド674の各々と結合されている。
一対の支持ロッド674.2は、一端ではポンピング面662.1への対点へ、および他方の端ではカラー672上の各付着点670へ結合されている。カラー672にはさらに作動ケーブル667が取り付けられている。シリンダー666に対するロッド667の選択的相対運動によって、カラー672は、ポンピング面662.1の近位末端のより近くに、またはより遠くに移動させることができる。そこで、ポンピング面662.1の形状は、狭隅角円錐形の形状から平板の形状まで、ロッド674.1および674.2の相対長さに依存して変動してもよい。さらに、ロッド674.2は柔軟性表面676に結合されていないので、入口通路P1から誘導される流動に比較して入口通路P2からは相対的に少ない流体が誘導される。
【0037】
図15に図示および説明されているのは単一ポンピング面662.1を含むポンプ660であるが、本発明はさらにまた相互接続している柔軟性シート676に取り付けられた複数の支持ロッド674.2が存在する実施形態もまた企図している。そのような実施形態では、ロッド674.1および674.2の相対長さに依存して、ある範囲の位置にわたって作動可能であるポンピング面662.2を備える両面ポンプ(ポンプ20に類似する)が提供される。
アクチュエータ円板インペラー62は、その設計内に組み入れられた複合柔軟性設計特徴を有することができるので、その水圧性能は様々の流体前負荷および後負荷条件下で(性能を最適化してキャビテーションリスクを最小限に抑えるために)変動してもよい。
ポンプ20は、インペラー速度が故意に脈動させられた場合に「相性」作動を提供することができるので、ポンプは生理学的拍動流パターンで流動を送達する(これはさらに様々な負荷条件下でキャビテーションリスクを制限して性能を最適化するための柔軟性複合設計の理由も提供する)。インペラーの形状は、所望であるように、または抜去のためのポンプ補助装置のウィーニング中に補助度を変動させるために、使用中に故意に(スピンドルからコーンから円板形状へ、およびその逆もまた同様)修飾することができる。
ポンプのための駆動システムは、大部分がカテーテルおよび内蔵型柔軟性駆動ワイヤーシステムを使用すると説明されているが、駆動システムにはさらにまた例えば完全に移植可能および回収可能なシステム、または磁気駆動システムへの電力の経皮的送電などの代替電源によって電力供給することもできる。
【0038】
本発明のまた別の実施形態によるポンプアセンブリ720は、
図16および17に概略図で示されている。以下の考察は、ポンプアセンブリ720に関する。以下の説明は単に例示であって、限定することは意図されないことを理解されたい。
回転ポンププラットフォームは、シース732およびカテーテル混合流動ロータ760、外部モーター782、駆動ワイヤーシステム、流体シールおよびパージシステム788、および電子制御コンソールを含む。ロータは、ポリウレタンシートによって被覆された、柔軟性駆動ワイヤー734.2に加えられる。シートと密接に連続している磁石は、駆動ワイヤーの外部末端に結合されている;交流電場に配置されると、磁石の回転はポンプヘッドを内部で回転させる。パージシステムは、流体密封完全性を提供して駆動ワイヤーを潤滑させるために、駆動ワイヤーを被覆するシートに接続されている。外部モーター源は、このカテーテル式ポンプの小さな径を許容して一様性を提供するため好ましい。内蔵型モーター(Impella社)を利用する装置はモーターのサイズによって制限され、径が一様ではなく、成人、小児、および新生児のための直径の小さな範囲(9F、3mmまたはそれ以下)を達成できない可能性がある。
ポンプヘッドは、回転インナーインペラー760および静止アウターケージ740を含む(
図17)。各々は、好ましくは、軸方向圧縮されると相互作用をほとんどまたは全く伴わずに既定の形態へ一致して拡張するように修飾された同心チューブ(金属またはプラスチック)から構成される。膜61を用いて被覆されたインナーフレーム(カテーテルバルーンに類似する)は、双円錐円板形状を想定している。これは、その形状および表面が事前に決定されている、縦方向に畝のある射出成形バルーンのように単純であってもよい。膜エラストマーは、主要血液接触面である;基礎にあるフレームは血液とほとんどまたは全く接触しない。アウターケージ740は、インペラーをTCPC流動移動に集中させて血管壁を保護するために、流動干渉をほとんどまたは全く伴わないオープンセルとして球形に拡張する。カテーテル730は、3つの成分:1)開閉を制御するための、アウターシート732(カテーテル)、中間柔軟性駆動コイル786、および中心アクチュエータワイヤー734を有する。2つの地点での軸受783は、ケージに比較したインペラーの同軸位置を提供する。
2つの軸受/シール783は、回転インペラーハブと静止カテーテル/ケージとの間に配置される。内蔵型パージシステム788は、好ましくは:1)密封完全性を増強する;2)駆動コイルおよびシールを潤滑する;および3)血液要素の回転成分と静止成分との間への蓄積を防止する。パージシステム788の固有漏出速度(約3cc/時)は、軸受での濃度を増加させて全身ヘパリン要件を減少させるために、装置内への局所ヘパリン送達のために利用できる。
【0039】
さらに他の実施形態では、パージシステム788は、さらにまたロータ740の容積内での制御された内圧の負荷を許容する加圧システムを含む。そのような実施形態では、装置720は、外部圧力源、1つ以上の圧トランスデューサ−、および圧力コントローラーを含む。圧力源は、液体または気体(例えば、ヘリウム)であってもよい。
外部源からの圧力は、駆動ケーブル734内のルーメンを通して提供することができる。駆動ケーブルは、ロータ760の伸長可能な長さに沿ってどこかに配置された出口開口部を含む。そのような実施形態では、ロータ760は、好ましくはエラストマー材料から作製された連続膜761で被覆されている。膜761のハブ端は、好ましくは展開可能なインナーチューブ763または同等の展開可能なケージアセンブリ762の外径にシールされる。
この装置の虚脱:拡張比は、他の血液ポンプより小さい経皮的サイズ(≦9F(フレンチ)、3mm径)を許容する。幼児(非経皮的)全身補助のために提案された1つのマイクロアキシアル装置は、再循環に対する障壁(例えば、大動脈弁)を使用し、公称25〜50Krpmで回転する、Abiomed(商標)による12F、4mm径のImpella 2.5(商標)である。1つの実施形態では、成人用装置は、閉鎖時9F/3mm径、開放時18mm径のインペラーである。ケージ740の径は、インペラーより20%大きくなり、安全な隙間を提供する。ポンプヘッドの長さは、閉鎖時には約4〜5cm、および解放時には約3cmである。インペラーの径は、大静脈径の80%以下である。新生児用装置の寸法は折り畳み位置では約6Fもしくは2mmの外径である。
装置7230の挿入および抜去は、中心静脈カテーテルと類似である。シースは、セルジンガー法を使用して大腿静脈もしくは内頸静脈内に位置決めされる。流体パージプライミングおよび全身性ヘパリン加後に、ポンプはTCPCにおけるX線透視法、心エコー法、または触診法(外科的移植)によって前進させて配置される。モーター源に接続された後、インペラー760およびケージ740は、装置720内で引張って、または圧縮してのいずれかで事前に所定された軸方向移動によって開放され、ポンプ760は回転させられる。ロッキング機構は、視覚的に展開状態を指示する。ポンプ機能の証拠は静脈圧の低下、および改善された全身潅流(血圧、尿排出量、酸/塩基状態など)を含む。万一位置異常が生じると、装置は虚脱させて再位置決めされる。抜去のためには、ポンプのスイッチが切られ、インペラー760およびケージ740が閉鎖され、カテーテルおよびシース732が抜去される。
万一回転不良が生じても、径がより大きなマイクロアキシアル装置を用いた場合に必要になる可能性がある緊急手術インターベンションを必要とせず、経皮的インターベンションに関する問題に取り組むための妥当な時間間隔(数時間)が存在する。血行動態は、流体の投与および強心療法によって一時的に補助することができる。
【0040】
本発明の時間枠は、展開位置にある場合でさえ、ポンプ760およびケージアセンブリ740によって提示される最少閉塞の結果である(
図17に示されている)。図の区間DD(およびさらに
図10に示したケージ構造740によっても表される)から最も明らかなように、展開された保護ケージアセンブリ740は、実質的には流路の分岐合流点のいかなる部分も実質的に閉塞しない。本発明の好ましい実施形態では、ポンプアセンブリ720(ならびに20およびその他のX20変形)は、回転ポンピング要素を保護的に含有するための手段を含む。含有するためのこの手段(ケージ40、740、および他のX40変形)は、その中でポンピング要素が分岐交流点Jで任意の経路の壁Wに衝突することなく安全に回転できる容量を規定するワイヤーもしくはフィラメント(42、742、およびX42変形)を含む拡張式(展開式)構造を含む。さらに、これらのワイヤーもしくはフィラメントは、流体粒子が隣接ワイヤーもしくはフィラメント間の間隔を容易に通過するように円周方向に間隔をあけている。一部の実施形態では、フィラメント間の円周方向間隔対単一フィラメントの円周方向の広がりの比率は、約3:1より大きく、好ましくは約6:1より大きい。
このため、インペラーを保護的に含有する手段(40、740、およびX40)が展開された場合でさえ、経路の分岐交流点の閉塞は相当に小さい。これは、ポンプを除いて経路の持続性または完全閉塞を必要とする一部の公知のポンピング装置とは対称的である。
【0041】
図16は、上大静脈、下大静脈、右肺動脈および左肺動脈の「X」分岐交流点内に配置されたポンピング要素760の図的記述である。明確さのために、装置720のケージ740およびその他の要素は省略されている。
回転ポンピング要素760は、循環経路の分岐交流点J内に示されている。ポンピング要素760は、カテーテル730内で作動する駆動手段によって回転させられる。要素760が回転するにつれて、流動S1は分岐交流点Jに向かってSVCおよびIVCにおいて一般に軸方向に誘導される。この流動S1は大きな径の中央部に向かってロータ760の湾曲したポンピング面に沿って移動する。流体の粒子は、中央部の表面の法線である法線ベクトルVの方向と一般に平行な方向で回転する中央部から出て行く。
図16に概略図で示したように、この法線ベクトルは、好ましくは左肺動脈の入口領域Alpaの中心と整列させられる。当業者であれば、動物の循環系の不規則な形状は入口領域ならびに中点を規定することを困難にさせる可能性があることを認識する。それでも、ポンピング装置760の中央部は、ポンピング要素から出て行く流動がLPAの経路内を流動するように仕向けられるように方向付けられる。例えば、一部の実施形態では、分岐交流点Jの形状は、法線ベクトルVが経路の壁、または分岐交流点の壁にさえ衝突するが、それでも所望の経路内への流動を生じさせる圧勾配を確立するようであってもよい。
さらに、本発明のさらに他の実施形態は、回転軸に法線である平面の周囲で非対称性である回転ポンピング要素60を企図している。そのような用途では、IVCからのS1と比較してSVCから誘導された軸方向流動S1における差がある可能性があり、ポンピング要素は他の主要経路と比較して1つの主要経路における少ない流動を誘導する。さらに、回転要素から出てくる流体の粒子にとっての流動流線形S2は、法線ベクトルVに対してある角度で傾斜してもよいと理解されている。この傾斜は、特にポンピング要素の片側から最大径に近付く流動が他方の側から最大径に近付く流動と比較して大きい場合に、流動誘発形状の非対称性から作り出される可能性がある。
【0042】
さらに、本発明の様々な実施形態は、展開された場合でさえ、ポンピング要素を回転させることに関する問題があれば経皮的に介入するための合理的時間間隔(時間)を提供するために分岐交流点内での十分な流動を許容するポンピングのための手段(60、760、およびX60変形)を含む。さらに
図18〜22および41に示されたように、一部の実施形態では、展開されたポンピング要素は、分岐交流点での流体乱流がポンピングのための非回転手段の存在によって減少させられるように形作られる。
装置720は、単心室フォンタン緩和術を受けている、または以前に受けた機能的単心室を抱える新生児、小児および成人に適用される。提案される使用期間は2週間である。新生児のためには、パイロット試験データは、2週間を超える補助が必要とはされない可能性がある。一部の状況では、より長い期間の補助が必要になることがある(例、移植への橋渡し)。2週間を超える補助は、ポンプの交換を含み得る。これは、装置交換が週2回行われる他の臨床シナリオによって支持される:血栓リスクを軽減するためのECMO回路;および感染のリスクを減少させるための中心静脈ライン。
表面改質は、H−Q性能を相当に大きく増加させる。これは、低プロファイルへ折り畳まれる(まとめられる)拡張式インペラー70によって提供される。この構造上の役割に加えて、基礎のインペラーフレームは、インペラー表面羽根の表出のための基材として機能できる。羽根X62.3は、構造的完全性を提供することに加えて、キャビテーションを回避し、流動の分離および乱流を最小限に抑えるように適応させて構成される。シャフトおよび流出縁での移行は、先端およびハブでの渦を最小限に抑えるように流体へ徐々に接触する。
ロータ760を内向きに加圧できる実施形態では、結果として生じるロータ760表面形状は、膜剛性、成形時の膜形状、展開されたワイヤー774もしくはフィラメント763.4の基化学的形状、遠心力、および膜761を横断する圧力差の組み合わせによって決定される。圧力差は、膜761の内圧と膜への圧力(収縮期圧から拡張期圧の範囲に及ぶ)との差によって確定される。所定の圧力差を確定することによって、中間羽根の谷の形状(または内部羽根を有していない用途については、単純にインペラーの形状)は、特定の結果を提供するように変更することができる。
【0043】
1つの実施形態では、加圧システムは気体である。気体は圧縮可能であるので、ロータの形状は圧力差が変化するにつれて変動することができる。純感圧が高いほど、羽根間の谷が深くなることを引き起こす。純感圧が減少するにつれて、膜表面はより外向きに拡張するので、他には深くも明確でもなくなる。そこでポンピング面の形状は、心臓とともにリズムを合わせて変化する可能性がある。さらにまた別の実施形態では、膜の剛性は他の実施形態におけるより高いので、膜を横断する圧力差は形状におけるより少ない変動を提供する。上記の2つの実施形態のいずれかでは、最適なポンピング特性を提供する1つの形状(時間平均形状または実質的不変形状であってもよい)を達成するために内圧を調整することができる。例えば、一部の実施形態では、羽根の表面徴候がほとんどないように推進表面の形状を拡張させることが望ましい場合がある。そのような状態では、ポンピング特性は、フォンカルマン粘性流によって支配される。しかし内圧はさらにまた羽根のより明確な形状を達成するために減少させることができるが(
図32および33に示したように)、その場合にはポンプを出る流動は遠心力によってより強度に影響を及ぼされる。様々な実施形態では、ロータ表面へのそのような修飾は、改善された水圧効率、変化した流動特性、または減少したキャビテーションリスクを生じさせることができる。
流動回転が誘導されると、最少抵抗の経路は、渦流れを最適するためにインペラー表面羽根を修飾することによって入手できる。これは、結果として生じる流動場の内部安定性を補助するコヒーレント渦構造に基づく均質な流動を作り出す。したがって、ポンピング要素の表面が羽根を含む実施形態では、流動は実際的なインペラー自体によってではなくインペラーによって誘導される流体回転によって生成される。回転が確立されると、摩擦およびエネルギー損失は、インペラー自体が流動を駆動するためではなく流入場の回転を支持および持続するために機能するので、最小限に抑えられる。回転場が組織化されて(両側)円錐インペラーを横断して自己伝搬する;回転が停止すると、角運動量が消失するにつれて流体追跡が持続する。
【0044】
ケージ740は回転式インペラー760を中心に置き、ロータが血管壁と接触するのを妨害する。ケージ740の1つの好ましい態様は、外部変形への抵抗である。好ましくは、展開時のケージ740はロータ760の膨らんだ形状より大きい膨らんだ形状を有するので、ロータとケージとの間の接触を回避するために十分な隙間がある。ケージ740は、特にケージおよびロータが分岐交流点で中心に置かれない状態においては、好ましくは循環経路の壁との接触によって変形させられない十分な強度を有する。ケージ740の一部の実施形態のさらに他の態様は:1)安全かつ信頼できる開閉;2)血栓の回避;および3)流動および水圧性能のできる限り少ない崩壊。本発明の一部の実施形態におけるケージは流動修飾において積極的な役割を果たさないが、流動は、CFDおよび流動試験によって指令されるように、流入する軸方向流動がケージハブを通って横断する乱流を最小限に抑えるように修飾することができる。1つの例として、本発明の一部の実施形態では、膨らんだ形状を確立するケージ740のフィラメントはある程度のねじれを含むことができるので、フィラメント形状を越えて流動する任意の血液は少なくとも一部にはねじれた形状によって方向が変えられる。そのような実施形態では、ねじれた形状は、回転式インペラーに流入する、または流出する血液から渦巻きを誘導する、または除去する際に有用な可能性がある。この渦巻きは、ロータ760の中心軸に比して形状が螺旋形であると表現することができる(
図33に示されるのと同様)。さらに、フィラメントの形状は、軸方向にねじれた形状を想定することができる。そのような螺旋形もしくは旋回形状は、一部の実施形態では、形状記憶合金から作製されたチューブの想起された形状として誘導することができる。インペラーおよびケージの結合相互作用は、滞留時間、再循環、および流動崩壊を最小限に抑える。静止から回転シャフトおよびケージフィラメントがハブから生じる場所への移行は、好ましくは凝血塊のリスクを最小限に抑える流動パターンを有する。
【0045】
一部の実施形態では、ケージ740は、複数の縦方向スロットが切断されていて材料がチュービングの壁から抜去されている領域を有するチュービングから作成される。このチューブの領域は、チューブの壁の上に与えられた複数のスロットを有し、各対のスロットはそれらの間にフィラメントを画定する。軸方向圧縮荷重がチューブに印加されると、フィラメントおよびスロットの領域は、弱化させられ、第1形状(
図17の画像Bに最もよく示される)へ外向きに曲がって出っ張る。
一部の実施形態におけるインペラーフレームは、複数の羽根762.3を含み、該フレームは好ましくは、金属(ステンレススチール、形状記憶合金Nitinol(登録商標))またはプラスチックいずれかを用いてチュービングのベースから構築される。金属については、チューブはアウター(ケージ)チューブの縦方向長さのほぼ半分である、および所定の折り畳まれていない/開放/変形形状を生じさせるために湾曲および厚さ/幅特性を有するフィラメントを形成するために縦方向で切断された中央領域を有する。フィラメント762.3は、好ましくは閉鎖時にフラットおよび同心性であり、軸方向に圧縮されると双円錐円板を形成する。アウターチューブ(静止ケージ)のフィラメントに比較したインナーチューブのフィラメント長は、チップ:ケージ隙間を決定できるので、そこで修飾可能である。または、さらに他の実施形態はプラスチックを基材とする、柔軟性または弾性膜によって被覆されるインペラーフレームを企図している(マンドレルネジ溝法法または射出成形)。形状および表面変動は、拡張のための過剰材料を提供するための折り畳みもしくは重なりを含むことができ、さらに規則的な所定の虚脱位置に折り畳むための形状記憶を提供することができる。それらの全長に沿ったフレームフィラメント(厚さ、幅、湾曲部など)の修飾は、展開された形状の形態を決定することができる。スパー(円材)は表面羽根流体流動特性を決定するために肥厚またはさもなければ修飾された縁を有することができる。血液接触膜エラストマー762は、構造的完全性を増強するために基礎のフレームに永久的に結合することができる、または基礎のフレーム全体に垂らして掛けられてもよい。
【0046】
インペラー760は、好ましくは最小限に血栓形成性で生体適合性の血液接触面を形成するために高弾性率を備える薄く継ぎ目のない不透過性膜(1つの実施形態では約3mmの径から18mmへ拡張可能)で被覆されている。この機械的性能範囲が可能な材料には、生物安定性であり、許容可能な最終伸び、許容可能な引張強度、許容可能なフレックス寿命、および許容可能な回復を備えて合理的に生体適合性であることが公知であるシリコーン系ポリエーテルウレタン類が含まれる。インペラーフレームは、インペラー流線形化および水圧機能を最適化するために膜表面に指向性表面羽根特性を付与し、インペラーの展開形状が羽根を含む実施形態、およびさらに他の実施形態では、インペラーの外向きに膨張した形状は相当に平滑であり、そのようなインペラーは血液とインペラーの表面との間の粘性抵抗によって混成流(すなわち、軸方向および遠心方向の両方)を誘導する。
インペラー内の容量は、開閉に伴って変動する。一部の実施形態では、これはインペラー表面に影響を及ぼす可能性がある陽圧または陰圧間隙のいずれかであってもよい。一部の実施形態では、円錐インペラー形状、およびフレームストラット間の膜の波形の輪郭を維持するために陰圧が使用される。圧力状態は、開放および/または閉鎖を促進できる;例えば、陽圧は開放を補助し、陰圧は閉鎖を補助する。パージシステムからの流体アクセスは、中央インペラー軸内の開窓部を通して可能である。様々な実施形態では、中心間隙は流体が充満している、または真空であり、そしてさらに他の実施形態では、中心間隙は陽圧または陰圧にある。さらに他の実施形態では、表面形状は、膜上への遠心力によってさらに修飾される。
【0047】
拡張式インペラーは、様々な実施形態では以下:の内の1つ以上を提供する中心軸734.2上に取り付けられる。1)インペラーおよびケージのための軸方向支持;2)インペラー開閉のための滑り接触面;3)展開を制限して過剰拡張を防止するための戻り止め;4)遠位軸受/シールへのパージ流体のための通路;5)設計によって指示される場合は中央インペラー間隙の流体充満のための開窓;6)開放時(表面流動増強のため)または閉鎖時(規則的な折り畳みのため)にインペラーに螺旋形を付与できる軸方向回転成分のための滑り接触面。
ケージは、およそ4〜10本の半径方向に分布した、スロットによって円周方向で分離された縦方向に直線状の平行フィラメントを備える径がより大きな同心金属(例には、ステンレススチール、Nitinol(登録商標))チュービングから構築される。フィラメントは、対称性または非対称性楕円形ケージを形成するために軸方向圧縮されると膨張形状に拡張する。ケージフィラメントは、インペラースプライン(羽根板)の長さのおよそ2倍である。スプラインにおけるけた(管湾曲)は、万一血管壁と接触すると非外傷性表面を自然に形成する。不可欠ではないが、ケージがヒンジ、ピン、凹所、空洞、または鋭角形成点を有していないことが好ましい。装置の閉鎖および抜去は、スネアおよびシースを使用して回収および摘出するために末端フックが組み入れられている大静脈フィルター摘出システムに類似して確保できる。
【0048】
本発明の一部の実施形態には、最大径領域で柔らかさ/変形可能性に好都合であるが、それでも構造がインペラーとケージとの間の空間関係を確立する場所であるハブには剛性/非変形可能性を提供する様々なフィラメント剛性を含む。可変性軸方向剛性に適応させて構成されたフィラメントおよびスロットの追加の例は、図示されており、
図34および35に比較して考察されている。さらに他の実施形態には、特に流入端で、ケージの組織破損のための間隙を制限するために縦方向ストラット(大静脈フィルターおよびステントに類似する)を連結するためのブリッジングストラットが含まれる。ケージ最大径は、好ましくは大静脈径の95%である。
外部結合は、軸方向圧縮によってポンプの開閉を制御する。閉鎖は、結合が各フレームおよび弾性のインペラーカバーリングの張力特性によって解放されると実施される。アウターケージを偏向させるための荷重は、コイルマイクロスプリングを用いて均衡させることができる。
【0049】
図18および19は、上記で考察した粘性インペラーポンプからの一部の機械的概念を含む静的流動安定器に関する。粘性インペラーポンプ(VIP)概念は、流動パターンを安定化させ、さもなければ乱流および衝突流動に起因して発生する運動エネルギーを減少させるためにTCPCにおける静止装置もしくは静的流動安定器860として適用できる。1つの実施形態では、流動安定器860は流体流路の交点内に経皮的に挿入して、配置後には流動安定化形状に拡張させることができる。一部の実施形態では、流動安定化形状は、ケージ840内に配置される。一部の実施形態では、ケージは、分岐交流点で循環系の壁と接触するように適応させて構成される。さらに、ケージは、ケージに対して分岐交流点内に流動安定化形状を配置するための内部補助を含むことができる。VIP概念に基づく拡張式中央安定器は、以下の態様の一部または全部を提供できる:
・TCPC内の衝突流入路からの運動エネルギー損失の減少;
・本装置はTCPC内で自由に懸濁することができ、血管壁に組み込まれることはなく、それによって血栓形成性のリスクおよび増殖可能性の懸念を減少させる;
・拡張式および虚脱可能な設計は、経皮的技術を用いた(大静脈血栓塞栓症用フィルターの配置および回収に類似する)配置および回収を許容する;
・安定器が抜去されると、流動経路は閉塞されないままとなる;
・血管壁の内膜は、既存血管壁内に固定または組み込まれる装置とは対称的に、最大限に露出されるので、血栓形成性のリスクおよび組織傷害を減少させる。
潜在的臨床使用には:(1)静的流動安定器は、循環血流量の改善を必要とする境界型フォンタン機能を抱える患者に非侵襲性で配置できる;および(2)心臓移植のためにリストアップされ、ドナークロスマッチのために長い待ち時間を有する可能性がある患者における血行動態状態改善するために使用できる、が含まれる。
【0050】
図18および19を参照すると、丸みを帯びた先端864で下流部分862.2と結合する一般に円錐形の流入入口部分862.1を有する静的流動安定器860が示されている。1つの実施形態では、安定器860は先端864を通過する平面の周囲で非対称性であり、入口側862.1は流動方向を段階的に変化させることができるように相当に緩徐な勾配を有する(この方向は
図22に示されたように下から上、または
図23に示されたように左から右である)。下流部分862.2はより急角度で円錐形であり、安定器860のこの部分は先端864から離れるにつれて渦電流の形成および流動の再循環を減少させるように機能する。しかし、流動安定器860は先端864の周囲で非対称性であるが、本発明の他の実施形態は、対称性安定器構成を企図している。さらに、安定器860は、中心ロッド834と一致する中心軸の周囲で軸対称性である。しかし、本発明の他の実施形態はそのように制約されず、対称性をほとんどまたは全く伴わずに流動安定器を含むことができる。
流動安定器860は複数の持ち上がった羽根862.3を含み、対応する隣接谷862.4は中心軸の周囲で円周方向に配列されている。
図23で最もよく見えるように、羽根862.3は、インペラー860を越えて流動する流体に渦巻きを付与できるように一貫した角度方法で回転させられる。さらに、羽根および谷のこの代替配列は、先端864を通過して下流側862.2まで続くことを見て取ることができる。しかし本発明のさらに他の実施形態には、中心軸に対して一直線である羽根の配列、装置の上流側でのみ羽根を有するインペラーを含み、および羽根を全く有していないインペラーがさらに含まれる。
図20、21、および22は、以下の3つの状態:にある分岐流路のための流動場予測を表している。(A)2つの開口通路内に分岐する1本の開口通路;(B)流路の頂点に配置された静的流動安定器860を備える流路(A)の構成;および(C)蝶転移回転粘性インペラー860を備える(A)の流路。
【0051】
理想的な分割形状を使用して、心臓から始まる主肺動脈からそれに続く左および右肺動脈(LPAおよびRPA)までの間の肺動脈分岐部のモデルが作り出された。このモデルは、そのためにポンプが作用するより厳しい状態を作り出すために実質的に理想化された。生理学的形状は、YでTにより類似する幅広い角度を有する。ポンプの設計は、分岐交流点の形状によって必要とされるように、軸方向から半径方向へ流体をポンピングするために調整されるので、このモデルは、軸方向流動ポンプに適した流動条件を備えるポンプには難題を与える。
分析は、図示した形状においてさえ流動場を増強する可能性があることを証明している。これを例示するために、このモデルは3つのケースで使用された。第1は、ポンプの性能をそれから分析できるベースラインとして機能する。このベースラインは5L/分の受動的および生理学的流速ならびに各々左および右肺動脈管の流出量の45%〜55%の分割を模擬する。
ポンプは、MPAからLPAおよびRPAへの移行部内に位置する一般的非対称性平滑インペラーとしてモデリングされた。ポンプ860は、2つの基準ケースで試験された。第1のケースは静止している非回転ポンプが周囲の流動場に及ぼす作用を示しており、第2のケースは5,000rpmでのポンプ860の回転の影響を示している。静止ケースは、さらにまた本装置のポンプ配置中および/または早期故障中の流動傷害の程度が小さいこともまた示している。
3つのケース各々の全圧力、速度の大きさ、および乱流運動エネルギーは、各々
図20、21および22に例示されている。静止ポンプは、TCPC内の流動とは対照的にベースライン流動への障害として作用する。この障害は、Y形状は既に流動を分割するために極めて適合するが(旋回がこれを行う方法を有する)、さらに障害の程度が他のポンプよりはるかに小さいという事実のためである(公知の設計のポンプに対しては80%であるのに対して本明細書に示した本発明のポンプについてはおよそ30%である)。
図21における流線形から観察されるように、回転ポンプはLPAおよびRPAに流入する流体が各動脈の中心軸の周囲で回転することを誘発し、肺動脈分岐部内の流動を一般に改善する。これは、回転ポンプのケースの流動場を通して増加した速度の大きさによって気付くことができる。
【0052】
図23〜40は、本発明の様々な実施形態によるポンピングアセンブリの様々な態様を図示している。上記で説明したように、数Yが先行する10位から右手への任意の要素番号((XX.X)(例として、62.3および1262.3)は相互に変形であり、当業者であれば理解されるように、図示および記載された程度まで異なる。
図23、24、および25は、展開された構成での大静脈肺動脈ポンプアセンブリの様々な図を示している。
図26は、第1(’)接尾辞によって示されるように、折り畳み位置にある同一装置を示している。アセンブリ1020は、駆動および移動機構1022を含む近位端(図の右側)を含む。アセンブリ1020の遠位端は、保護ケージアセンブリ1040およびその中に配置されたポンピングアセンブリ1060を含む。可変長で柔軟性駆動ロッド1034.2を収容するカテーテル1030を含む中央スパン1028は、アセンブリ1020の近位端および遠位端を結合する。
図27aおよび27bは、折り畳まれた装置1020’の拡大図を示している。装置の近位端は、作動および軸移動両方の機構1022(
図27bに折り畳み位置で示した)に適応させて構成された駆動カラー1026を含む。1つの実施形態では、柔軟性中心駆動ロッド1034.1は駆動カラー1026の中心軸に沿って引張られるので、ロッド1034.1の末端は径1026.2内に位置決めされる。そのように行うと、ダイヤモンド形のテンショナー1023が強制的に線形配列にさせられ、そうすることで、後に説明するように、所定の移動が装置1020の末端に付与される。カラー1026の回転によって、テンショナー1023は同様に回転させられる。柔軟性駆動軸1034.1は、最初はテンショナーに結合されており、それにより剛性中心ロッド1034.2内へ、およびそれによりポンピング要素1062内への回転運動を付与する。
この(アウターサブアセンブリに対するインナーサブアセンブリの)所定相対移動が生じると、
図28aおよび28bから最も明らかなように、展開された構成が結果として生じる。
図28aは、アセンブリ1020の遠位チップに伸びる柔軟性駆動ロッドを示している。駆動ロッドの遠位端1034.1は、正面軸受1065.1によって半径方向に軸受によって支持される。軸受1065.1のいずれかの側では、スラスト軸受1036.1および第2の軸方向に位置する軸受1065.2はロッド1034.1の外径に、それにより正面軸受1065.1内の捕捉ロッド1034.1にしっかりと結合される。
丸みを帯びたノーズ1036は、循環系への進入および通過を容易にするためにアセンブリ1020の遠位端上に配置される。
図29bを参照すると、軸受1062.2は剛性ロッド1034.1の全長に沿って軸方向位置で結合されるので、折り畳み位置では軸受1065.1および軸受1065.2の対向面間で軸方向間隙1036.2が存在する。この間隙は、折り畳み形状では全流圧縮な存在しないことを保証するために役立つ少量の緩みを表すので、ケージ1040およびポンプ1061はそれらの小さな径に復帰することができる。
中心駆動ロッドが回転するにつれて、それとともに回転するのはインナー支持チューブ1063、および柔軟な膜1061である。インナーチューブ1063の膨らんだ形状に表面を提供する膜1061は、本発明の1つの実施形態によると、粘性インペラーポンプを含む。
【0053】
図27bおよび36bを参照すると、テンショニングアーム1023が展開(すなわち、フラット)構成に移動するにつれて、カラー1036.1は2本のチューブを押し、これらは順に各々アウターチューブおよびインナーチューブの別々の1つを押す。テンショニング装置がフラットに虚脱するにつれて、それらの右への移動(
図27bおよび36bを参照)は、ロッド1034.2に取り付けられているカラー1036.1aによって制限される。一部の実施形態では、カラー1024aはさらにロッド1034.2へ取り付けられているが、本発明は、テンショニング装置1023が軸とともに回転しないようにロッドがカラー1024a内を自由に通過できる実施形態を企図している。
虚脱するテンショナーの右方向の移動は(図面から見られるように)左へ推進されるので、テンショナーカラー1024b(それを通って駆動ロッドは自由にスライドできる)およびカラー1036.1b(同様に駆動ロッドがそれを通って自由にスライドできる)はアウターチュービング1032.1を押す。このチュービングはアウターチューブ1043へ軸方向荷重を印加し、そのアウターチューブに膨らんで屈曲した形状の付与を生じさせる。さらに、自由間隙1032.4によって駆動ロッドに沿って移動した後、カラー1036.1bは次にインナーチューブ1032.2の末端で終わりになる。このインナーチューブはカラー1036.1bからインナーチューブ1063へ圧縮荷重を伝搬し、同様にそれが膨らんで屈曲した形状を取ることを引き起こす。
図27bおよび36bに示した実施形態では、インナーチューブ1032.2(およびこのためインナーチューブ1043)の軸方向移動より大きなアウターチューブ1032.1(およびこのためアウターチューブ1043)の軸方向移動が生じ、その差は1032.4と指示された軸方向空間である。
【0054】
ポンプ1060は、
図28で最も明らかなように、ケージアセンブリ1040内で回転する。
図28は、軸方向コンプレッサー力が移動機構1022によってアセンブリ1020に印加されている、展開位置にあるアセンブリ1020を示している。テンショナー1023が駆動カラー1026に適合するように虚脱するにつれて、インナー回転アセンブリ(膜1061およびインナーチューブ1063を含むポンプ1060を含む)は引張られて、静的アウターケージアセンブリ1040に対して軸方向に移動させられる。この圧縮荷重は、カラー1036.1と軸受1065.1の対向面の間に印加される。軸方向力は、ケージアセンブリ1040とポンプ1060の両方が、アウターチューブ1043とインナーチューブ1063における剛性の低い複数の所定の局所領域のために局所的に屈曲することを引き起こす。アウターチューブ1043は、インナーチューブ1063.3の中央部で課せられる膨らみより大きな中央部1043.3での膨らみを有するように適応させて構成されている。好ましくは、膜1061は外向きに拡張して、一般に自己弾力性ならびにインナーチューブフィラメント1063.4の形状および間隔によっても決定される形状を取るために十分に弾性である。
【0055】
図29cを参照すると、中央スパン1028内の回転および非回転成分間の界面が図示されている。柔軟性駆動ケーブル1034.2はハンダ付けされたバット継ぎ手において合成駆動ケーブル1034.1と結合されているように図示されているが、本発明の様々な実施形態は、合成および柔軟性駆動ロッドを結合する任意の手段を企図している。合成駆動ロッド1034.1は、軸受1065.3によって半径方向に支持されている。インナーチューブ1063は、軸受1065.3の径が減少した遠位セクションに結合されている。
図30および31は、その成形構成にある柔軟な膜1061の図を示している。膜1061は1つの実施形態では、より小さな、一般に円筒形のハブ1061.2へ遠位および近位方向に直径がくびれる拡大中央部1061.3を含む。1つの実施形態では、実質的に円錐形の近位および遠位表面1062.1および1062.2は各々、大きな中央部からハブへ移行する。好ましくは、膜1061は、中心軸の周囲で円周方向に連続しており、それにより展開位置では連続ポンピング面を提示する。
好ましくは、柔軟な膜1061は弾性であり、折り畳み位置と展開位置との間で反復して移行できる。しかし本発明は装置の単回使用だけが企図される実施形態を企図しているが、そのような実施形態では、膜1061は、装置が廃棄される前に2、3回の展開だけが予想されるように適応させて構成することができる。膜1061は、十分な弾力性を備える、または小さな折り畳み構成に縮小できるために十分な柔軟性を備える任意の材料から作製することができる。例として、本発明は、柔軟な膜1061がエラストマー化合物から作製される実施形態を企図している;さらに他の実施形態では、膜1061は金属箔から作製することができる。
【0056】
図32および33は、本発明の他の実施形態によるインペラーを示している。
図32aは、ロータ1160の軸方向末端の斜視図を示している。ロータ1160は、近位および遠位ハブ1161.2の間の外向きに膨らんた中央部1161.1(それを通って装置1120の中心軸が伸びる)を含む。ロータ1160は、複数の間隔をあけた羽根1162.3を含むポンピング面1162を有する膜1161を含む。1つの実施形態では、羽根1162.3は一般に、インナーチューブ1163(図示せず)のフィラメント1163.4(図示せず)によって確立される。しかし、本発明は、例えば成形法を含む、羽根1162.3およびくぼみもしくは谷1162.4の代替パターンを作製する任意の方法を企図している。例えば、1つの実施形態では、膜1161は一般に一定の厚さを備えるが、作製中に羽根と谷のパターンを含む形状に成形される。さらに他の実施形態では、羽根1162.3、および一部の実施形態では中央部1161.1の頂点1164は、これらの場所に追加の質量が追加されて、一様ではない厚さの膜を成形することによって作製される。遠心荷重下では、増加した質量のこれらの局所領域は膜の追加の伸長および別個の表面特徴の形成を生じさせる。
図32bは、
図32aに類似する外観を備えるロータ1260を示している。少なくとも1つの相違は、ロータ1260が中心軸の周囲である程度の螺旋形旋回を含む羽根1262.3を含む点である。ポンプ1260のポンピング面1262は、ロータ1160のポンピング面1162について上記で記載した方法で作製することができる。さらに、一部の実施形態では、これらのロータ形状のいずれかは、循環経路内の圧力より小さいロータ1260内の圧力の負荷によって誘導することができる。
【0057】
図33aおよび33bは、本発明のまた別の実施形態によるロータ1360を図示している。ロータ1360は、膨らんだ中央部1361.1の頂点1364を通過する平面の周囲で鏡像のように与えられる複数の交互のはね1362.3および谷1362.4を含む。矢印S1(入口)およびS2(出口)によって示されたように、軸方向流動は、近位および遠位ハブに近接するポンピング面1362によって誘導される。ハブに近接するポンピング面1361の半径方向に増加する輪郭は、それと中心軸が一般に整列している循環経路からの流動を粘性で誘導する。軸方向に誘導された流動はポンピング面1361と接触し続けるが、これはポンピング面の単調に増加する半径がポンピング面からの粘性流動の分離を阻止するからである。流線形がポンピング面に沿って持続するにつれて、流線形は膨らんた中央部に到達し、実質的に遠心成分を含む流線形S2で出て行く。頂点1364での流動の分離は、ロータ1360の他方の半分から出て行く流動S2によって阻止される。
【0058】
図34および35は、インナーチューブ1063およびアウターチューブ1043各々の様々な図を示している。
図34aおよび34bは、インナーチューブ1063’の部分(すなわち、折り畳み位置にある)を示している。1つの実施形態では、チューブ1063は、複数の交互のフィラメント1063.4およびスロット1063.3を含む。
図34a、34b、および34cは、本発明のまた別の実施形態によるインナーチューブ1063を図示している。装置1020では、ポンピング面1062は、一部にはインナーチューブ1063(
図34において折り畳み構成で示されている)によって画定されている。1つの実施形態では、チューブ1063は形状記憶合金、例えばNitinol(登録商標)から作製されるが、他の実施形態はステンレススチールおよびチタンを含むその他の生体適合性材料からの作製を含む。
チューブ1063は、チューブ1063の中心領域の周囲で円周方向に間隔をあけたフィラメント1063.4およびスロット1063.1の交互のパターンを含む。一部の実施形態では、各フィラメントの軸方向剛性は、フィラメントの軸方向長さに沿って変動する。剛性におけるこの変化は、チューブ1063が圧縮力に抵抗する能力を変化させる。フィラメントの可変性軸方向剛性は、チューブフィラメントが屈曲するにつれて圧縮中の膨張形状を作り出す。
軸方向における剛性の変化は、様々な方法で実施できる。1つの例として、フィラメントの肉厚を、例えば放電加工(EDM)を用いて、または局所的化学エッチングによって変動させることができる。さらに、フィラメントの形状は、それらの断面形状において、フィラメントのいずれかの側で可変幅を備えるスロットを作製することによって変動させることができる。これらのスロットは、EDM、レーザー切断法、および化学エッチングを含む任意の方法によって作製することができる。さらにまた別の例として、フィラメントは、例えばインナーダイとアウターダイとの間の特徴の圧印加工などによる変形の局所領域を含むことができる。
【0059】
図34bを参照すると、チューブ1063’は、各々が可変軸方向剛性のパターンにある3つのセクションA、B、およびCを含む。一部の実施形態では、各パターンA、B、およびCは実質的に同一であるが、本発明の他の実施形態はパターン内の軸方向脆弱性の任意のタイプおよび配置を企図している。例えば、パターンAおよびCは、実質的に同一であり、同一方法によって形成されるが、他方パターンBは異なるタイプの軸方向脆弱性を備えている可能性がある。
図34bおよび34cを参照すると、チューブ1063は、フィラメントの断面積が大きな(および剛性の)断面積1063.4−1から第2の小さな断面積1063.4−2へ移行するパターンAを含む。断面積におけるこの変化(さらにまた慣性モーメントの領域としても見ることができる)は、半径1063.2−1で始まり第2半径1063.2−1へ発生するスロット幅の増加に伴って隣接スロットの幅を増加させることによって実施される。
図34cに図示したチューブの頂部に沿って明らかなように、この領域の肉厚は実質的に一定である。チューブ1063が軸方向に圧縮されるにつれて、フィラメントのより強度の−1セクション間の脆弱性の−2セクションはチューブの半径が小さくなると屈曲する領域を作り出す。
再び
図34bを参照すると、チューブ1063’が、各々がパターンA、B、およびC内にある減少した剛性の3つの長さ(1063.2a、1063.2b、および1063.2c)を含むことを見て取ることができる。チューブ1063’がその展開された形状1063(
図28で最も明らか)に圧縮されると、Bパターンは中央部1063.3で最大径の領域を生じさせることを見て取ることができる。AおよびC領域の中心は、ハブから中央部に伸長する凹んでいる内向きに移行するセクションを確立する。
【0060】
図35a、35b、および35cは、アウターチューブ1043’を図示している。1つの実施形態では、チューブ1043’は、好ましくはチューブの円周の周囲で等間隔に間隔をあけた複数の交互のスロット1043.1およびフィラメント1043.4を含む。このスロットおよびフィラメントのパターンは、チューブ1043’の遠位および近位端の中間にある領域内に配置される。
図34bを参照すると、アウターチューブのこの中心領域は、修飾された剛性1043.2の領域によって分離された、遠位および近位領域DおよびE各々を含む。
図35cを参照すると、フィラメント1043.4の剛性は、一対の内向きに切断されたくぼみによって中央部の中心で修飾される。これらのくぼみは、減少した剛性の局所領域を作り出すので、チューブ1043の軸方向圧縮は、
図28aに示した膨らんだ形状を生じさせる。
図35に示したように、くぼみ1043.2はスロット1043.1に沿って中央に配置されるので、結果として生じる膨らんだ形状は、頂点1044の周囲で実質的に対称性である。本明細書での「頂点」との言及はより鋭く規定された特徴(例えば
図10および13に示した特徴、より丸みを帯びた領域(例えば
図17、18、および19に示した特徴)だけではなく
図28に示した緩徐に湾曲する形状も含むことを理解されたい。
【0061】
図36〜40は、駆動および移動機構1022の様々な図および詳細な構成要素を示している。
図36aおよび36bは、展開構成および折り畳み構成1022および1022’各々を示している。36aに示した位置では、テンショニング機構は虚脱しており、それによって装置1020の遠位端への所定の軸方向相対移動を付与した。好ましくは、相対軸方向移動の制限は、硬質機械的ストッパーによって達成されるので、折り畳み位置(
図36b)から展開位置(
図36a)への圧縮は機械的接触によって制限される。このため、アウターチューブ1043、インナーチューブ1063、および膜1061の最大径は、様々な材料内の安全応力レベルを超えない安全限界に制限される。
移動および駆動機構1022は、ピン1025によって対応する一対の遠位テンショニング部材1023’へ旋回可能に結合された一対の近位テンショニングアーム1023aを含む。近位対のテンショニングアームは、近位カラー1024aにピン1025によって旋回可能に結合されている。遠位テンショニングアーム1023bは、同様にピン1025によって遠位カラー1024bへ旋回可能に結合されている。柔軟性駆動ロッド1034.2は、カラー1024の内径を通過する。駆動ロッド1034.2はさらに近位および遠位カラー1036.1aおよび1036.1b各々を通過する。カラー1036.1は、中心ロッド1034.2に固定される。ロッド1034.2は、カラー1036.1b内を自由にスライドできる。
テンショニングアーム1023aが駆動カラー1026の内腔内をスライドするにつれて、カラー1036.1bの遠位面はチュービング1032.1の近位面を圧迫する。この方法で、ロッド1034.1および1034.2(一緒に固定されている)は、アウターチューブ1032.1に対して軸方向に(
図36bに示したように右へ)移動させられる。柔軟性ロッド1034.1はさらにアウターチューブ1043およびインナーチューブ1063を引張り、それによって
図28aに示した屈曲した膨らんだ形状を作り出す。
軸1034.2、1034.1、およびポンプ1060の回転駆動に関して、これは駆動カラー1026の内径1026.1を通してのまた別の駆動ケーブルの挿入によって実施できる。この外側の駆動軸は、任意の方法で駆動軸1034.2の近位面へ結合させることができる。または、近位カラー1036.1aは、駆動カラーおよびテンショニングアームが同様に回転するように駆動カラー1026に結合させることもできる。
【0062】
図41および42は、
図18〜22に関して図示および考察した装置を示している。アセンブリ1420は、循環系内の分岐交流点J内に配置される展開可能な静的流動装置を含む。装置1420’は、経皮的に挿入され、循環経路の分岐交流点Jに向けて方向付けられる。1つの実施形態では、これらの図面に図示したように、装置1420は本明細書で示したポンプに形状が類似するが、分岐交流点内の乱流を減少させるために分岐交流点Jで静的に維持されるように適応させて構成された流動安定器1460を含む。
1つの実施形態では、流動安定器1460は、展開位置へ優先的に拡張する(拡張するように偏向している)。安定器1460およびケージ1440は、経皮的進入の前に折り畳み位置へ折り畳まれる。医師は折り畳まれた装置をシース内に前進させ、適正な位置に達すると、医師は流動安定器1460およびケージ1440が十分に拡張した展開位置へリリースされるようにシースを引き戻す。大静脈ステントに類似して、ケージ1440は分岐交流点で血管壁に食い込むので、これは流動安定器1460を適所に保持する。好ましくは、流動安定器1460内の中央間隙は閉鎖間隙であるので、血液はその中に進入したり存在し続けることは許容されない。
代替実施形態では、アセンブリ1420は折り畳み位置へ偏向させられる。医師は、それを所望の場所へ前進させ、ケージおよび流動安定器をカテーテルのルーメン内から抜き出し、該ケージおよび流動安定器を患者特異的な解剖学的構造および血管サイズに調整される拡張度で拡張させる。ケージおよびロータの展開は、それらを拡張位置に展開させるためにケージおよび流動安定器の末端上に軸方向圧縮荷重を課すスクリューアクチュエータによって実施することができる。好ましくは、ネジ山は装置の内部にあり、ネジが血液に曝露させられないように被覆されない。
図41bに示したように、本装置は部分的に展開した状態1460’’で示されており、一般に分岐交流点J内に配置される。
図41bに示したように複数のフィラメント1440.4、保護ケージ1440は、以前に記載した回転装置のために示されたものと一般に同一のサイズに拡張させられている。
【0063】
図41cは、十分に展開された状態にある装置1420を示している。ケージ1440は、フィラメント1440.4が分岐交流点Jの近位で経路の壁と少なくとも部分的に接触するまで拡張し続けた。
図41cに示したように、装置1420の中央スパン1428は、ケージ1440および静的流動分流器1460を含む装置1420の遠位部分から取り外される。
図41dは、分岐交流点J内で完全に展開された装置1440および1460の最終構成を示している。上記で説明されたように、表面1462は、経路P1およびP2から経路P3およびP4内への改良された流路を提供するように適応させて構成される。
図20B、21B、および22Bに示したように、静的流動器具の配置は、減少した乱流、減少した圧力低下、および/または改良された下流流動のいずれかを生じさせる可能性がある。
装置1440および1460は、大静脈フィルターの抜去に類似する方法で抜去することができる。1つの実施形態では、スネアがケージ1440の末端でフック1440.5に係合するために使用される。ルーメンを画定するシースは、次にスネアループの上方に前進させられる。シースは、展開されたケージ1440の残りを越えて前進させられ、そこでケージ1440および流動安定器1460を虚脱させてシース内に折り畳ませる。本装置がシース内に引っ張り込まれると、シースは(装置内側とともに)患者から抜去される。
【0064】
図43〜48は、本発明のまた別の実施形態による柔軟な膜1561’の図を示している。膜1561は、展開したポンピング要素内の凹型チャネルとして機能する谷1562.4を含むように適応させて構成される。谷1562.4は、一部の機能的態様では、その適用の
図2〜6に関してIMPELLER FOR A ROTORY VENTRICULAR ASSIST DEVICE(発明者:Shambaugh et al.)と題する米国特許出願第11/243,722号明細書に図示および記載された4本の流動チャネルと同様である。
1つの実施形態では、膜1561は、遠位および近位ハブ1561.2を分離する中央部1561.1を含む形状に成形される。好ましくは、一連の谷1562.4は、膜の材料内に成形される。本発明は、膜が
図43に示した、または
図30および31に示した形状に類似する形状で成形される、または展開した形状(
図28aに示した)と実質的に同一の形状で成形される実施形態を含む。
1つの実施形態では、流動チャネル1562.4は膜1561の軸に沿って一般に螺旋形のチャネルであるが、この螺旋形は、
図33に示しものと類似して、中央部で鏡像である。好ましくは、谷1562.4は、ポンピング面1562においてチャネルを画定する。一部の実施形態では、谷1562.4は、ハブ区間の近くで幅が広がって丸みを帯びた入口1562.5を含む。この入口は、軸流動の効率的誘導のため、および画定チャネル内への軸方向流動を提供するために適応させて構成されている。
図43〜48は、明確さのために膜の表面内に単一の谷が画定されている膜1561を示している。他の実施形態は、膜の外部の周囲で円周方向に配置された複数の谷を含むことを理解されたい。
【0065】
図44は、折り畳み位置にある、入口1562.5日開谷の断面形を示している。一部の実施形態では、チャネル1562.4−1は一般に台形形状を有する。一部の実施形態では、この形状は膜の非谷部分における肉厚より暑い肉厚を備えて成形される。この方法では、谷は、遠心荷重、膨らんだフィラメント(図示せず)を備えるインナーチューブによる外向き刺激の影響下、または膜内外の膨張圧力差の影響下でその形状を維持する可能性がより高い。
図45は、中央部の同一谷の断面図を示している。この断面形状はより閉鎖しており(一部の実施形態)、これは展開中の膜のこの区間のより大きな拡張を説明している。
一般に、谷の断面形状は断面44から断面45へ連続的に変動する。本発明はさらに、画定チャネルの深さが入口から中央部へ増加する、または減少する実施形態;チャネルを取り囲んでいる肉厚がチャネルの長さに沿って増加する、または減少する実施形態;およびチャネルの幅(特にチャネルの底部を横断する幅)がチャネルの長さに沿って増加する、または減少する実施形態もまた含む。これらの変形の全部は、異なる用途(異なる粘度、新生児もしくは成人などの工業用もしくは医療用流体)からなるロータ内に設計できる様々のポンピング特性(特定回転速度での圧力および流量、およびさらに全サイズについて)を説明する。
【0066】
図46〜48は、展開位置にある
図43の膜を示している。膜1561は、一対のハブ1561.2間に丸みを帯びた膨らんだ中央部1561.1を有する。膨らみは、インナーチューブの拡張からの遠心荷重、圧力差、および伸縮を含む、本明細書に開示されたいずれかの理由のために発生する。
1つの実施形態では、チャネル1562.4は、入口から中央部への一般に一定である幅を有する。しかし、チャネルの半径が増加するので、中央部でのチャネルの断面積は、入口により近い断面積より大きい。このため、流動は一般にチャネルの長さに沿って減速させられ、流体が中央部に向かって流動するにつれてチャネル内の流体の正圧における釣り合った増加が生じる。
【0067】
本発明を添付の図面および上記の説明において例示かつ詳細に記載してきたが、同一物は例示であると見なし文字通り限定的であると見なすべきではなく、好ましい実施形態だけが図示および記載されており、本発明の精神に含まれる全ての変化および修飾は保護されることが所望であると理解すべきである。