(58)【調査した分野】(Int.Cl.,DB名)
水ネットワークモニタリングシステム内の関連事象を識別するためにプロセッサを使用して実施され、該事象が、該水ネットワーク内の複数のセンサから受け入れたセンサデータを含む1つ又はそれよりも多くのソースから受け入れたデータから導出された格納された事象データによって表され、各事象データが、事象を識別するデータと該事象のうちの1つ又はそれよりも多くの特性とを含むコンピュータ式方法であって、
前記水ネットワークモニタリングシステムから受け入れた異常から処理されており、かつ事象始まり時間と事象の大きさとを含む複数のデータフィールドを各々が含む複数の事象を表す事象データを事象データベースから取り出す段階と、
前記事象データからの少なくとも2つの事象を複合事象の一部を構成する可能性が高い候補事象であるとして識別する段階であって、該識別された候補事象の各々が、前記水ネットワークモニタリングシステムによってそれ自体では事象として報告するほど十分に統計的に有意でないと決定されたものである前記識別する段階と、
前記候補事象が関連し、かつ結合されて定められた事象タイプの複合事象を形成することができるか否かを決定するための1つ又はそれよりも多くの試験を含む事象結合規則を選択する段階と、
前記事象結合規則に基づいて前記少なくとも2つの候補事象間の1つ又はそれよりも多くの事象特性を比較する段階と、
前記比較に少なくとも部分的に基づいて、少なくとも2つの候補事象が互いに関連し、かつ前記定められた事象タイプの単一事象として処理可能であると決定する段階と、
関連しているとして、かつ前記定められた事象タイプの前記単一事象であるとしての前記少なくとも2つの候補事象の前記決定をユーザインタフェースを通じてユーザに報告する段階と、
を含むことを特徴とする方法。
前記1つ又はそれよりも多くの事象特性は、流量、圧力、貯水池レベル、濁度、塩素レベル、及びpHのうちの少なくとも1つを含むことを特徴とする請求項1に記載の方法。
前記1つ又はそれよりも多くの試験は、前記検出された連続した又は頻繁な発生に基づいて異常が有意であると決定するための試験を含むことを特徴とする請求項3に記載の方法。
モニタされている前記システムにいかなる異常な事象もない状態で前記異常とランダムに発生するそのような異常の確率を示すスコアとを関連付ける段階を更に含むことを特徴とする請求項1に記載の方法。
前記少なくとも2つの候補事象が関連し、かつ複合事象に関連付けられると決定する段階は、該少なくとも2つの候補事象に対応する関連場所を決定する段階を含むことを特徴とする請求項1に記載の方法。
前記少なくとも2つの候補事象の始まり時間を決定する段階は、該始まり時間前のセンサのデータと該始まり時間後の該センサのデータとの間の明確な偏差を決定する段階を含むことを特徴とする請求項7に記載の方法。
始まり時間前の第1の間隔における前記データの第1の百分率が、該始まり時間後の第2の間隔における該データの第2の百分率よりも大きいか又は小さいかを比較する段階、
を含む明確な始まり時間を決定する段階を更に含むことを特徴とする請求項8に記載の方法。
前記少なくとも2つの候補事象が関連し、かつ複合事象に関連付けられると決定する段階は、近い始まり時間を有する該少なくとも2つの候補事象を決定する段階を含むことを特徴とする請求項7に記載の方法。
近い始まり時間を有する前記少なくとも2つの候補事象を決定する段階は、前記事象結合規則からのパラメータに基づいて該少なくとも2つの候補事象の間のデータサンプルの量を決定する段階を含むことを特徴とする請求項12に記載の方法。
前記少なくとも2つの候補事象が関連し、かつ複合事象に関連付けられると決定する段階は、適合する異常の方向を有する該少なくとも2つの候補事象を決定する段階を含むことを特徴とする請求項1に記載の方法。
適合する異常の方向が、測定値の増加に関連付けられた正確に2つの候補のうちの一方及び測定値の減少に関連付けられた他方を含むことを特徴とする請求項14に記載の方法。
前記少なくとも2つの候補事象が関連し、かつ複合事象に関連付けられると決定する段階は、適合する異常の大きさを有する該少なくとも2つの候補事象を決定する段階を含むことを特徴とする請求項1に記載の方法。
適合する異常の大きさが、少なくとも実質的に類似の大きさの測定値の増加に関連付けられた前記少なくとも2つの候補事象を含むことを特徴とする請求項18に記載の方法。
適合する異常の大きさが、少なくとも実質的に類似の大きさの測定値の減少に関連付けられた前記少なくとも2つの候補事象を含むことを特徴とする請求項18に記載の方法。
適合する異常の大きさが、合計すると約ゼロになる測定値の増加及び減少に関連付けられた前記少なくとも2つの候補事象を含むことを特徴とする請求項18に記載の方法。
ネットワークモニタリングシステム内の関連事象を識別するためにプロセッサを使用して実施され、該事象が、モニタされている該ネットワークに発生しているとして検出された異常から導出され、各事象データが、事象のタイプを識別するデータと該事象の1つ又はそれよりも多くの特性とを含むコンピュータ式方法であって、
前記ネットワークモニタリングシステムから受け入れた異常から処理されており、かつ事象始まり時間と事象の大きさとを含む複数のデータフィールドを各々が包含する複数の事象を表す事象データを事象データベースから取り出す段階と、
事象結合規則の格納された集合から第1の事象結合規則を取り出す段階であって、該事象結合規則の各々が、複合事象の一部を構成する可能性が高い候補事象を識別するための1つ又はそれよりも多くのパラメータと、該候補事象が関連し、かつ結合されて定められた事象タイプの複合事象を形成すことができるか否かを決定するための1つ又はそれよりも多くの試験とを含み、該識別された候補事象が、それ自体では事象として報告するほど十分に統計的に有意ではないと前記ネットワークモニタリングシステムによって決定されたものであり、該1つ又はそれよりも多くの試験が、2つ又はそれよりも多くの候補事象が該ネットワーク内の関連場所で起こったか否かを決定するための第1の試験と、2つ又はそれよりも多くの候補事象が互いに近い始まり時間に起こったか否かを決定するための第2の試験と、該候補事象がそこから決定された前記異常に対する大きさ又は方向の許容集合を決定するための第3の規則とを含む前記第1の事象結合規則を取り出す段階と、
前記事象データからの少なくとも2つの事象を候補事象であるとして識別するために前記第1の事象結合規則を適用する段階と、
前記第1の事象結合規則に含まれる前記試験のうちの1つ又はそれよりも多くに基づいて、前記少なくとも2つの候補事象間の1つ又はそれよりも多くの事象特性を比較する段階と、
前記比較に少なくとも部分的に基づいて、少なくとも2つの候補事象が互いに関連し、かつ前記定められた事象タイプの単一事象として処理可能であると決定する段階と、
前記複合事象を前記定められた事象タイプの前記単一事象としてユーザインタフェースを通じてユーザに報告する段階と、
を含むことを特徴とする方法。
前記少なくとも2つの候補事象の近い始まり時間を決定するための前記第2の試験は、該少なくとも2つの候補事象に対して可能な始まり時間を識別し、最も可能性の高い始まり時間が明確な異常始まり時間であるか否かを各候補事象に対して決定し、かつ該候補事象に対する該明確な始まり時間の間の差を決定するための1つ又はそれよりも多くのパラメータを含むことを特徴とする請求項23に記載の方法。
前記少なくとも2つの候補事象間の1つ又はそれよりも多くの事象特性を比較する段階は、前記第1の事象結合規則に含まれる前記試験の全てに基づいて該特徴を比較する段階を含むことを特徴とする請求項23に記載の方法。
水ネットワークモニタリングシステム内の関連事象を識別するためにプロセッサを使用して実施され、該事象が、該水ネットワーク内の複数のセンサから受け入れたセンサデータを含む1つ又はそれよりも多くのソースから受け入れたデータから導出されて格納された事象データによって表され、各事象データが、事象を識別するデータと該事象の1つ又はそれよりも多くの特性とを含むコンピュータ式方法であって、
前記水ネットワークモニタリングシステムから受け入れた異常から処理されており、かつ事象始まり時間と事象の大きさとを含む複数のデータフィールドを各々が包含する複数の事象を表す事象データを事象データベースから取り出す段階と、
前記複数の事象が関連し、かつ結合されて定められた事象タイプの複合事象を形成することができるか否かを決定するための1つ又はそれよりも多くの試験を含む事象結合規則を選択する段階であって、候補事象が、それ自体では事象として報告するほど十分に統計的に有意でないと前記水ネットワークモニタリングシステムによって決定されたものである前記事象結合規則を選択する段階と、
前記事象結合規則に基づいて複数の候補事象を発生させる段階と、
前記比較に少なくとも部分的に基づいて、互いに関連し、かつ前記定められた事象タイプの単一事象として処理可能である前記候補事象の部分集合を識別する段階と、
関連しているとして、かつ前記定められた事象タイプの前記単一事象としての前記候補事象の部分集合の前記識別をユーザインタフェースを通じてユーザに報告する段階と、
を含むことを特徴とする方法。
【発明を実施するための形態】
【0023】
本発明の実施形態の以下の説明では、説明の一部を形成し、本発明を実施することができる例示的な実施形態を例示的に示す添付の図面を参照する。本発明の範囲から逸脱することなく他の実施形態を使用することができ、構造的な変更を行うことができることは理解されるものとする。
【0024】
図1は、水分配システムにおける水ネットワークモニタリングシステムの一実施形態を示すブロック図を提示している。
図1に示すように、本発明のシステムは、複合事象検出及び分類システム100、入力ソース150、及び出力宛先160を含む。入力ソース150は、候補事象102、センサ104、異常検出システム106、事象データベース108、及び事象検出システム110を含む。出力ソース160は、ユーザインタフェース112、更新された事象データベース114、及び事象報告システム116を含む。当業者は、システム100、106、及び110は、コンピュータハードウエアデバイス上に常駐して作動するソフトウエアシステムから構成されること、及び要素100−116は、同じコンピュータ式デバイスに含めるか又はそこに常駐させるか、又はコンピュータネットワークを通じて接続された複数のデバイス間に分散させることができることを認めるであろう。
【0025】
これに加えて、当業者は、ネットワークのセンサから受け入れた異常データに起因して発生した事象を検出して報告する他の水ネットワークモニタリングシステムを本発明の関連内で使用することができ、これらのシステムによって検出された事象は、候補事象として処理されることになることを認識するであろう。
【0026】
水分配システムは、1つ又はそれよりも多くの接続された水分配システムであり、又は水分配システムは、その間に僅かな又は何も接続がない異なる区域に位置付けられる。一実施形態において、水分配システムは、地方自治体の、地方の、又は卸売業者の水道施設ネットワーク、工場又は他の大きい建物又は海軍艦艇における液体分配ネットワーク、燃料分配ネットワークのようなあらゆる適切なリソース分配ネットワーク、又は下水道のようなあらゆる適切なリソース回収ネットワークとすることができる。当業者は、水分配システムは、あらゆるリソース分配又は回収システムとすることができることを認めるであろう。
【0027】
センサ104は、センサS1、S2、及びS3を含む。センサは、水の流量、圧力、濁度、貯水池レベル、塩素レベル、及びpHレベルのようなネッワークの作動パラメータを表す時間依存データを生のデータとして異常検出システム106に送信する。例えば、ネットワークは、「監視制御及びデータ取得(SCADA)」システムを使用することによってこの情報を取得することができる。センサ104からのデータは、その一部が関連する場合がある特定の計器/センサ又は計器/センサの集合からのデータを報告することができる。例えば、センサは、当業者が理解するように、ゾーン毎に又は個別被測定区域(DMA)毎に地理的にグループ分けすることができる。
【0028】
生のデータに基づいて、異常検出システム106は、候補事象を複合事象検出及び分類システム100に報告する。異常検出システム106で生成されたデータは、事象データベース108に格納することができる。異常検出システム106はまた、ある期間にわたって事象データベース108に格納されたデータを分析し、以下に更に詳しく説明する結合規則に基づいて候補事象を決定することができる。代替の実施形態において、異常検出システム106からのデータを事象データベース108に集約し、候補事象のバッチとして複合事象検出及び分類システムに送信することができる。更に別の実施形態において、センサ104は、複合事象検出及び分類システム100に候補事象102として直接に提供するのに適するデータを生成することができる事象検出機能を備えた高度センサを含むことができる。本発明は、ネットワークのセンサ、異常検出システム106、事象データベース108、又は事象検出システム110から直接に候補事象102としてデータを受け入れることを可能にする。候補事象102として受け入れたデータは、例えば、事象の平均的大きさのようなデータの新しいタイプを追加又は計算するために、データ準備エンジン(図示せず)によって更に強化することができる。
【0029】
便宜上、「センサデータ」という語は、一般的に単一センサからのデータ、複数のセンサからの読取値の予め定められた意味のある結合、又はDMAへの全体合計流入流量のような時間と共に受信される1つ又はそれよりも多くのセンサからの複数の読取値、又はネットワークの何らかの態様を説明する時間依存データの意味のある集合を生成するあらゆる類似の予め定められた計算を指すために本明細書で使用するものとする。事象データベース108及び事象検出システム110は、異常を決定又は否定するためにセンサ読取値に相関付けることができるデジタル形式のあらゆる情報とすることができるアセット管理情報を含むことができる。例えば、これは、ルーチン又は計画された水ネットワーク作動、流量に影響を与えるバルブの開閉、音響検査、水ネットワークのいずれかの部分に行われた修理又は改良、修理/改良の日付及び時間、修理/改良の場所、ネットワークに行われたルーチン保守、及びネットワーク上で技術スタッフが活動することができる時間及び場所を示すアクセス制御情報のような水ネットワーク作動に関する情報を含むことができる。これに加えて、事象データベース108及び事象検出システム110は、天気レポート、水の消費に影響を与える休日又は他のカレンダーイベント、及びネットワークの定められた部分内のネットワーク挙動、又は水ネットワークの機能に影響を及ぼす場合がある施設自体又は施設の顧客によるあらゆる他の事象のような水の消費及びネットワーク条件に関する追加の情報を含むことができる。事象データベース108におけるこのタイプの2次データの格納及び使用は、本出願人所有の米国特許第7,920,983号明細書(特許文献1)に更に記載されている。
【0030】
異常検出器106は、センサに異常の可能性がないことを試験するためのかつ特定の事象タイプのような代替の前提の可能性を試験するための異常検出器を含む。異常検出器106は、異常を候補事象102として複合事象検出及び分類システム100に送信する。これらの異常の一部は、それ自体内のかつそれ自体の事象を表し、一部は、事象の開始、事象の終了、事象における実質的な変化、事象のピークなどのような事象の各部分を表している。異常検出器106は、送信された予想値の分配ネットワークの予想及び分配ネットワークから取り出された実際の値からのあらゆる偏差の有意性を分析するように作動する。各データセットに対して、各異常検出器は、偏差の有意性を分析することにより、定められた期間中のセンサ読取値が与えられた場合に関連異常が発生しない統計的可能性を決定する。異常検出器106は、例えば、偏差の継続した又は頻繁な発生がこのような偏差の有意性を上げるので、時間、例えば、分、時間、日、又はそれよりも長い時間にわたる偏差の有意性を分析する。当業者が理解するように、システム設計者は、検出のための長い期間にわたる持続した偏差を要求する小さい大きさの事象とは対照的に、取り分け、小時間スケール事象、大きい大きさを有する時に通常検出可能な最近始まった事象に必要な感度に基づいて、期間にわたって偏差を分析するように異常検出器106を設計又は調節することになる。本発明のシステムで使用することができる異常検出器の機能及び作動は、本出願人所有の米国特許第7,920,983号明細書(特許文献1)に記載されている。
【0031】
一実施形態において、異常検出器は、定められた期間にわたる予想される値からの一定した統計的に大きい偏差が存在する異常を見出す。この関連では、統計的に大きいというのは、一般的に、Xパーセンタイルの上のNの標準偏差、又は四分位数間の範囲のK倍、又は特定の実施に応答してデータの実際の分散を考慮に入れる他の標準化のような統計的に有意な相対的境界を示している。更に、瞬間的な読取値を予想される値と比較した時に、予想値からの差の全体的な標準偏差又は他の統計的記述子を使用することで、比較が、例えば1日の高分散時間を1日の低分散時間に共に混合することがあるので、偽陽性の高い数値を生成することがある。従って、この誤差を低減するために、一部の実施形態で本発明のシステムは、例えば、X(t)−P(t)をその曜日の近似の時刻のこのような差の標準偏差に分割することにより、読取値X(t)を予想値P(t)と比較する。相対的な境界の大きさ及び期間の長さは、本方法のパラメータであり、特定のインスタンス化を代わりに短い又は小さい事象に集中させることができる。別の実施形態において、異常検出器は、特定の固定期間にわたって実際値と予想値の差、又は代わりにその差の絶対値の曲線下の区域(AUC)を計算し、これは、低値が次の高値によって無効にされるか否かに影響を与える。
【0032】
一部の実施形態において、異常検出システム106、事象データベース108、及び事象検出システム110からの候補事象をシステム100で集約することができる。候補事象であるとして受け入れたデータは、編成し、フォーマット設定して更に処理することができる。更に、ネットワークの実際の性能に反映しない又はシステム設計者又はネットワーク管理者が対処しないと決定した一時的な現象は、反映しないデータを取り除くことによって分析のためのデータを準備することができ、当業技術で公知の方法をネットワークから収集されたデータを「平滑化」するために適用することができる。異常検出システム106は、センサ104からのデータの統計的分析を実行し、最新のセンサ読取値が与えられた場合に「異常なし」前提の全体的な統計的可能性を決定することができる。
【0033】
各々が一般的には他とは無関係に検出される候補事象102のプールは、密接に関連事象の部分集合の存在を決定するために調べられる。複合事象検出及び分類システム100は、全てが事象の発生を常に示す同じか又は異なるセンサから同時に又は定められた期間にわたってその検出に至る複数の異常の各々よりも大きい統計的有意性を有する複合事象を検出することができる。例えば、1つの異常は、事象の開始を表すことができ、別の異常は、事象の変化又は事象の終了を表すことができ、分類システム100は、これらの異常を単一事象に関連するものとして認識する。別の一例として、類似の時間の関連場所からの増加した流量に関連する異なるセンサからの2つの異常は、両方とも同じ事象を示すことになる。当業者は、少なくとも2つの十分に類似するデータ異常の出現が、等しい異常であるが類似しない候補事象の出現よりもランダム事象である可能性が極めて低いことを認めるであろう。例示的な実施形態において、候補事象は、異常ではない10%の確率を有するとして異常検出システム106によって格付けされた異常、異常ではない1%の確率を有することができる事象の対に基づいて検出される複合事象から生成することができる。複合事象検出は、従って、検出の高い比率を保持しながら「偽陽性」の比率を大きく低下させることができる。
【0034】
分類システム100はまた、関連する高い確率を有する候補事象を分類及び結合するために複合事象タイプ分類子を含むことができる。複合事象タイプ分類子は、候補事象の集合が関連付けられて定められた事象タイプの複合事象を形成するために結合することができるか否かを決定するのに使用される結合規則を含むことができる。各結合規則は、その規則の下で結合された事象を破損バルブ、漏れ、破裂のような特定の事象タイプとしてグループ分けすることができる。各候補事象又は2つ又はそれよりも多くの事象の結合は、事象及び異常を特徴付ける指紋又は署名に基づいて、事象又は異常にグループ分けすることができる。候補事象又は候補事象の集合の署名は、公知の異常タイプの署名と比較して、候補事象がそのタイプの異常であるかを決定することができる。この署名又は指紋は、2つ又はそれよりも多くの候補事象、例えば、同一又は類似の大きさ又は傾向の2つ又はそれよりも多くの候補事象が一緒に取り上げられた時だけ明白とすることができる。
【0035】
特定の結合規則は、取り分け、以下のものを検出することができる。
・破損したモニタされていない境界値(DMA境界破損)を示す2つの隣接するDMA又はサブネットワーク内の同時流量増加及び流量減少、
・その下流での流量増加及び1つ又はそれよりも多くの濁度増加、
・貯水池を清掃しなければならないことを示す貯水池レベル低下及び貯水池の出口の濁度増加、
・予想される生物学的水質問題を示す濁度増加及び密接な塩素減少、
・水が遮断されていることを示すいくつかの近隣センサにおけるゼロ圧力(単一のゼロセンサではなく、センサの故障の可能性を示す)、
・供給ゾーンにおけるいくつかの(類似の)圧力低下、
・同じ区域におけるいくつかの類似の送信失敗事象、単一の送信問題の可能性を示す(及び単一事象として適切に報告されている)、
・漏れを示す流量増加及び1つ又はそれよりも多くの圧力低下、及び
・漏れ及びその修理を示す類似の流量減少に続く流量増加。
【0036】
分析エンジンによって検出される事象の例は、水漏れ、破裂、欠陥センサ、水の盗難、通信失敗、水質問題、消費における予想されない増加、消費パターンの変化、異常な貯水池レベル又は圧力のようなネットワーク誤作動などである。一例として、事象の始まり時間、事象の終了時間、事象の大きさ、事象に関連する総水損失量のような事象に関する更なる詳細を含むことができる。
【0037】
分類エンジン100は、事象の始まり時間、終了時間、大きさ、漏れが始まってから失われた総水損失量のような事象の累積大きさ、タイプ、ステータス、及び圧力単位、pH、又は塩素濃度のような事象の物理的単位のような各候補事象に関する追加のデータを生成する。事象の大きさは、一部の実施形態において、正常な条件を超える余分の流量の計算、センサの計算ミス、又は塩素変化のような事象のサイズ又は比率を表す値である。この情報は、事象データベース108に格納し、更新された事象データベース114に更に格納することができる。異常の特定の出力は、データベース108に格納された事象の特定のフィールドにマップされる。
【0038】
データベース114は、複合事象検出及び分類システム100から情報を受け入れ、ユーザインタフェース112及び事象報告システム116によって取り出すことができる。別の実施形態において、ユーザインタフェース112及び事象報告システムは、複合事象検出及び分類システム100から直接に情報を受け入れることができる。事象報告システム116は、水分配システムのオペレータによって使用される別のソフトウエアプログラムにインタフェースで接続するシステムとすることができる。例えば、事象データは、ワークフローシステム又はアセット管理システムに送信することができ、それによって事象に容易に対処することができる。データベース114又は分類システム100は、水ネットワークの計器データ、警報、報告、統計的分析、及び地図をユーザインタフェースに関連付けるユーザインタフェース112のような対話型ソフトウエアアプリケーションをホストすることができ、システムのユーザが、水漏れ又は他の事象の位置のような特徴を容易に識別し、複合事象がどのように及び何故検出されたかを候補事象に基づいて調査することを可能にする。
【0039】
一実施形態において、ユーザインタフェース112及び事象報告システム116は、ネットワーク又はインターネットを通してユーザが見ることができるウェブページとすることができる。ユーザインタフェース112は、本発明のシステムが水ネットワークの異常をモニタした最後の日付及び時間をユーザに通知する更新ステータスを含むことができる。事象リストパネルは、以前に検出された事象のリスト、事象の日付、時間、位置、及びステータスをユーザに提供することができる。別の実施形態において、事象リストパネルは、ユーザインタフェース112を見ている人が事象リストパネルの事象を選択することを可能にする。選択された事象に関連する詳細な情報は、事象情報、グラフ、及び地図として再生される。事象情報は、例えば、異常の始まり時間、異常の終了時間、異常の大きさ、異常に関連付けられた総水損失量、及び本発明のシステムのユーザによって供給されたあらゆるコメントを含む。グラフは、該当する計器での水の実際の流量及び予想される(ルーチン)流量の視覚的比較のようなユーザ選択事象に関する詳細な情報を含むことができる。一実施形態において、ユーザ選択事象を特定の計器に関連付けることができ、計器の位置は、事象地図上に生成され、又は事象地図は、検出された事象によって影響を受けるネットワークの区域、又は実際の事象位置が統計的に含まれている可能性が高い推定区域を表示することを可能にする。ユーザインタフェースは、複合事象検出及び分類システム100以外のシステムによって報告された事象へのアクセスを可能にすることができ、ユーザに単一の有利なインタフェースを提供する。このようなシステムによって生成されるユーザインタフェーススクリーンの例は、本出願人所有の米国特許第7,920,983号明細書(特許文献1)に含まれている。
【0040】
要素100−116は、ネットワークに接続することができるデスクトップパーソナルコンピュータ、ワークステーション、端末、ラップトップ、携帯情報端末(PDA)、携帯電話、又はあらゆるコンピュータデバイスを含むことができるデバイスにアクセス及び/又はデバイス上に実施することができる。デバイスは、ディスプレイ(例えば、モニタ画面、LCD又はLEDディスプレイ、プロジェクタなど)上に与えられるグラフィカルユーザインタフェース(GUI)又はブラウザアプリケーションを含むことができる。要素100−116間で送信されるデータは、ネットワークによって達成することができる。ネットワークは、データ通信のトランスポートをその間で可能にするネットワークのあらゆる適切なタイプとすることができる。一実施形態において、ネットワークは、データ通信、又はあらゆる他の通信ネットワークのための公知のインターネットプロトコルによるインターネット、例えば、あらゆるローカルエリアネットワーク(LAN)、又はワイドエリアネットワーク(WAN)接続とすることができる。
【0041】
図2Aは、本発明の実施形態による候補事象から複合事象を決定する方法を示す流れ図を提示している。
【0042】
入力ソース150からのデータは、
図1に示すような複合事象検出及び分類システムによって受け入れることができる。データは、特定の結合規則に従って異なる事象タイプに対して異常検出器を実行することによって候補事象を発生させるために使用することができる。事象の異なるタイプの各々に対して、候補事象を選択、結合、及びカテゴライズ化することに関連したアルゴリズム、試験、及びパラメータを含む異なる結合規則が使用される。段階201で、データが1つ又はそれよりも多くのソースから受信される。ソースは、センサ、異常検出システム、事象データベース、及び事象検出システムからのものとすることができる。データは、データを候補事象のプールとして識別することができるこれらの入力ソースから本発明の複合事象検出及び分類システムのようなシステムによって受信される。本発明のシステムは、段階203で事象タイプ分類子に関連付けられた各結合規則に対して候補事象を調べる複合事象タイプ分類子を含む。
【0043】
候補事象を処理するための1つ又はそれよりも多くの規則及びパラメータは、定められた複合事象タイプに基づいて選択される。これらの候補事象の一部は、事象それ自体を表すことができ、一部は、事象の開始、事象の終了、事象における大きい変化、事象のピークなどのような事象の各部分を表すことができる。事象タイプの例は、水漏れ、破裂、説明できない流量増加又は減少、説明できない圧力増加又は低下、欠陥センサ、水の盗難、通信障害、水質問題、消費における予想されない増加、消費パターンの変化、異常な貯水池レベル又は圧力のようなネットワークの誤作動などを含むことができる。次の段階205で、定められた結合規則によって指定された候補事象が選択される。定められた結合規則によって設定された基準及びパラメータに従って候補事象のプールから2つ又はそれよりも多くの候補事象が選択される。選択された候補事象は、段階207で定められた結合規則に基づいて複合事象にアセンブルされる。複合事象は、結合された時に単一事象として見ることができる候補事象の集合を含むことができる。候補事象を複合事象にアセンブルした状態で、処理を繰返し、段階203に戻り、追加の結合規則を使用して分析する。
【0044】
図2Bは、本発明の実施形態による候補事象から複合事象を決定する方法を示す別の流れ図を提示している。複合事象タイプ分類子は、段階202で複合事象タイプ分類子に関連付けられた候補事象を各結合規則に対して調べる。各結合規則は、結合された時に事象の単一タイプを形成することができる候補事象の集合か否かを検出するための規則、試験、又はパラメータの集合とすることができる。候補事象は、上述の候補事象の入力ソースから受け入れられ、分析のために候補事象のプールに入れることができる。候補事象は、低有意性異常又は大きさが低い異常性である場合がある。これらの候補事象は、それらが事象であるか否かを決定するために定められた期間にわたって観察することができる。各候補事象は、結合規則からの特定の基準に基づいてタグ付け又は選択することができる。
【0045】
段階204で、候補事象は、使用される定められた結合規則によって決定されるような一部の基準に適合する事象特性に大まかに相関付けられた2つ又はそれよりも多くの候補事象の集合にアセンブルされる。例えば、規則は、候補事象の全ての可能な対を選択することとすることができ、又は同一又は近隣場所を有する5までの候補事象の全ての集合を選択することとすることができる。一実施形態において、候補事象のこのような特徴比較を実行することができ、当業技術で公知のようなクラスター化方法に従って事象をクラスターにグループ分けすることができる。様々な結合規則における他のアセンブリ又は分類基準、例えば、時間近似、関連する流量大きさ及び方向、始まり時間などの検出可能な特徴を考えることができる。一般的に、この大まかな相関付け段階は、コンピュータ的に多くを求めない方法を使用して候補事象の部分集合の一部だけに注意を制限し、計算集中型試験の次の使用を実行し、真に相関付けられる事象をより適切に識別する。
【0046】
候補事象の各集合は、段階206で反復して分析される。各反復では、1つ又はそれよりも多くの試験が、段階208で選択された定められた結合規則に基づいて候補事象の定められた集合に適用される。適用される試験は、候補事象の集合に対して選択された各結合規則に対して固有とすることができる。候補事象の集合が定められた結合規則の試験に合格したか否かの決定が段階210で行われる。候補事象の集合は、候補事象の集合が試験に合格し、定められた結合規則に基づいて複合事象に対応するという決定に応答して一緒に融合することができる。候補事象の集合が試験に合格しなかった場合に、本方法は、段階214で候補事象の集合の全てが実行されたか否かの決定に進む。候補事象の集合の全てが実行された時に、本方法は、段階202に戻り、別の結合規則を実行する。そうでなければ、集合の全てが実行されなかった場合に、本方法は、段階206に戻り、候補事象の残りの集合を試験する。
【0047】
複合事象は、全体として結合された時に事象の特定のタイプとして分類される候補事象の集合を含むことができる。候補事象の集合の結合は、圧力降下、破損バルブのような事象の異なるタイプを生成することができる。候補事象の定められた集合は、段階212で複合事象として格納される。複合事象は、更に処理することができ、単一の「定期的」事象として同じ方式で分析することができる。候補事象の集合が、結合規則によって設定された試験又はある一定の量の試験に合格しなかった場合に、候補事象の集合は廃棄することができ、候補事象は、候補事象の他の集合に対する可能な選択のために候補事象のプールに戻される。候補事象の集合の全てが実行されたかどうかの決定が段階214で行われる。本方法は、集合の全てが実行された場合に段階202に戻り、そうでなければ、本方法は段階206に進む。
【0048】
図2Cは、本発明の実施形態による候補事象から複合事象を決定する方法を示す更に別の流れ図を提示している。
【0049】
上述したように、候補事象は、複合事象検出及び分類システムによって候補事象のプールに受け入れることができる。候補事象のプールから定められた結合規則に基づく候補事象の選択が行われ、候補事象を候補事象の集合に相関付けてアセンブルすることができる。候補事象の集合は、段階220で分析のための定められた結合規則に基づいて選択される。候補事象の特定の集合は、結合規則を使用して探される事象タイプに関連付けられた特定の基準に基づいて選択することができる。
【0050】
候補事象の各集合は、段階222aで定められた結合規則に従って分析される。候補事象の定められた集合の段階222bの各試験に対して、定められた結合規則からの定められた試験が、段階224で候補事象の定められた集合に適用されるように選択される。試験は、定められた結合規則に基づいて、地理的な近接性、時間的な近接性、大きさなどを決定する段階を含むことができる。定められた試験に関連付けられた試験手順及びパラメータが、段階226で定められた結合規則に基づいて取り出される。各結合は、このような事象のタイプを検出するための異なる試験手順及びパラメータによって異なる事象タイプに関連付けることができる。段階228aで、候補集合が試験に合格したか否かの決定が行われる。候補事象の集合が試験に合格しなかった場合に、候補集合は拒否され、本方法は段階222aに戻り、結合規則によって候補事象の別の集合を分析する。そうでなければ、段階228bで、定められた結合規則からまだ試験があるか否かの決定が行われる。追加の試験がある場合に、本方法は段階222bに戻り、別の試験を選択する。定められた結合規則に対する試験の全てが完了した時に、候補事象の集合は、段階222aに戻る前に段階230で最初に複合事象として格納され、候補事象の追加の集合を分析する。
【0051】
図3は、ある一定の実施形態による水ネットワークモニタリングシステムの更なる詳細を示すブロック図を提示している。
図3は、水ネットワーク300、水ネットワーク301、データ302、ネットワーク情報データベース303、データ準備エンジン304、予想子305、異常検出器306、複合事象分類エンジン307、事象決定及び分類エンジン308、事象データベース309、及びユーザインタフェース310を含む。水ネットワーク300、水ネットワーク301、データ302、ネットワーク情報データベース303、データ準備エンジン304、予想子305、及び異常検出器306は、入力150の更に別の実施形態とすることができ、事象データベース309及びユーザインタフェース310は、出力160の代替の実施形態とすることができる。
【0052】
要素300及び301によって表される水分配システムは、1つ又はそれよりも多くの接続された水分配システム、又はその間にほとんど接続を持たない異なる区域に位置付けられた水分配システムとすることができる。一実施形態において、要素300及び301は、地方自治体の、地方の、又は卸売業者の水道施設、ガス分配ネットワーク、工場又は他の大きい建物又は海軍艦艇における液体分配ネットワークのようなあらゆる適切なリソース分配ネットワーク、又は下水道システムのようなあらゆる適切なリソース回収ネットワークとすることができる。当業者は、要素300及び301をあらゆる水分配又は回収システムにすることができることを認めるであろう。水ネットワーク300及び水ネットワーク301は、流量、圧力、濁度、貯水池レベル、塩素レベル、及びpHレベルのようなネットワークを表す時間依存データを送信する。
【0053】
水ネットワーク300又は水ネットワーク301からのデータは、その一部が関連する場合がある特定の計器又は計器の集合からのデータを報告することができる。例えば、計器は、当業者が理解するようにゾーン毎又はDMA毎に地理的にグループ分けすることができる。ネットワーク内の計器又は計器の集合からデータを直接に送信することができ、又はネットワーク情報データベース303からデータを発することができる。更に、例えば、朝及び夕方の平均流量データ、又はゾーン又はDMAへの総流量(いくつかの計器を通じた)のようなデータの新しいタイプを追加又は計算するために、データ準備エンジン304によってデータを強化することができる。便宜上、「計器データ」という語は、本明細書では単一の計器からの実際のデータ、又は複数の計器からの読取値又はDMAへの全体合計流入量のような時間と共に受け入れられる1つ又はそれよりも多くの複数の読取値の予め定められた意味のある結合、又はネットワークの何らかの態様を説明する時間依存データの意味のある集合を生成するあらゆる類似の予め定められた計算を示すために使用されるものとする。当業者は、ネットワークレイアウト及び個々の計器の位置に基づいて、このような意味のある結合を容易に識別するであろう。
【0054】
データ302は、異常を決定又は否定するために計器読取値に相関付けることができるデジタルフォーマットのあらゆる情報とすることができるアセット管理情報を含む他のデータを表している。例えば、これは、ルーチン又は計画された水ネットワーク作動のような水ネットワーク作動に関する情報、流量に影響を与えるバルブの開閉、音響検査、水ネットワークのいずれかの場所に行われた修理又は改良、修理/改良の日付及び時間、修理/改良の場所、ネットワークに行われたルーチン保守、及びネットワーク技術スタッフが活動することができる時間及び場所を示すアクセス制御情報を含むことができる。更に、データ302は、天気レポート、ネットワークの定められた部分内の水の消費、及びネットワーク挙動に影響を与える休日又は他のカレンダーイベント、又は水ネットワークの機能に影響を与える場合がある施設自体又はその顧客によるあらゆる他の事象のような水の消費及びネットワーク条件に関連した追加の情報を含む。
【0055】
ネットワーク情報データベース303は、水ネットワーク300及び301における計器から収集された生データとデータ302とを集約する。ネットワーク情報データベース303からのデータは、データ準備エンジン304に送信される。データ準備エンジン304は、受け入れたデータを編成及びフォーマット設定して更に処理する。当業者に公知のように、様々な水分配システムによって使用されるデータフォーマットは互いに異なる場合がある。例えば、ロンドン市は、ニューヨーク市とは全く異なるフォーマットでネットワークデータを収集及び格納することができる。これに加えて、データ準備エンジン304は、ネットワークの実際の性能を反映しない又はシステム設計者又はネットワーク管理者が対処しないと決定した一時的な現象を反映しないデータを取り除くことによって分析のためのデータを準備し、ネットワークから収集したデータを「平滑化」するために当業技術で公知の方法を適用することができる。これらの方法の一部は、定められた水ネットワークから受け入れられる特定のデータに適用される「局所加重散乱プロット平滑化(LOWESS)」及び経験的学習である。
【0056】
データ準備エンジン304は、ネットワークデータからデータ要素を抽出し、これを適合するフォーマットにフォーマット設定する。濾過された情報は、例えば、計器からのノイズデータ送信、又はデータ測定、送信又は収集に関連する誤差のようなリソースの態様からのデータ送信に関連するノイズとすることができる。データ準備エンジン304は、ほとんど又は全く濾過又は平滑化されずにフォーマット設定された後、水ネットワーク300及び301から受け入れた全てのデータを出力することができ、平滑化技術の1つが最初に適用された場合に廃棄することができるデータを本発明のシステムが分析することを可能にする。データ準備エンジン304は、事前に処理されたデータを予想子305及び異常検出器306に送信する。当業者は、要素303−310を同じデバイスに含めるか又は常駐させることができ、又は複数のデバイスに分散させることができることを認めるであろう。
【0057】
一実施形態において、予想子305は、様々な技術を使用するN数の個々の予想子を含む。予想子305は、データの集合を分析し、異常事象が起こっていないと仮定して予想される実際の計器値の統計的分布の予想を提供する。当業技術で公知のように、予想子は、データを統計的に分析するために機械学習フレームワークを使用して設計することができる。機械学習フレームワークの例は、引用によってその全体が本明細書に組み込まれているEthem Alpaydm著「機械学習の紹介(適応コンピューテーション及び機械学習)」、MITプレス(2004)、ISBN0262012111(非特許文献1)、Ryszard S.Michalski、Jaime G.Carbonell、Tom M.Mitchell著「機械学習:人工知能方式」、Tioga出版会社(1983)、ISBN0−935382−05−4(非特許文献2)に記載されている。
【0058】
N数の個々の検出器を含むことができる異常検出器306は、予想子305から統計的予想データ及びデータ準備エンジン304から事前に処理されたデータを受け入れる。異常検出器306は、事象決定及び分類エンジン308又は複合事象分類エンジン307のいずれかに異常を送信することができる。エンジン308は、一般的に単一の異常に基づいて各々の事象を出力することができ、エンジン307は、一般的に2つ又はそれよりも多くの異常に基づいて各々の事象を出力することになる。両方のエンジン307及び308は、N異常検出器306からの統計的分析を比較して最新の計器読取値が与えられた場合の異常のない前提の全体的な統計的可能性を決定することができる。しかし、特定のタイプの異常事象は、異常検出器306から受け入れたデータをフォーマット設定するために複合事象分類エンジンによって受け入れられる前に事象決定及び分類エンジン308を通過することができる。エンジン307及び308からの情報又はデータは、データベース309に格納され、かつユーザインタフェース310に送信される。異常のある一定の出力は、データベース309に格納された事象の特定のフィールドにマップされる。データベース309は、データベース309への格納及びユーザインタフェース310によるデータベース309からの取り出しのためにエンジン307及び308から情報を受け入れる。
【0059】
図4は、本発明の実施形態による水分配システムのブロック図を示している。
図4のシステムは、水道施設400、水道本管401、センサ402、403、404、405、ポンプ406、バルブ407、408、409、及びDMA410及び411を含む。図は、私邸、又は工業、商業、又は公共機関の建造物、及び消火栓のような他のポイントとすることができる消費者への水の分配のためのパイプネットワークを示している。
【0060】
水道施設400は、湖、川、又は地下帯水層からの地下水のような水が溜まる水回収ポイントとすることができる。水道施設400で回収された水は、処理され、水道本管401を使用して移動されて消費用水を分配することができる。水道本管401は、上水道から水を運ぶための複数のパイプを含む水分配システムにおける1次地下パイプとすることができる。代替の実施形態において、水道本管401は、覆われていない地上の水管及び覆われているトンネルに対応する場合がある。水道本管401は、2次水道パイプによってタップして水分配システムを延長させることができる。これらの2次水道パイプには、センサ402−405を設置して様々な水に関する属性を測定することができる。センサ402−405は、水流量、圧力、流れ方向、及びパイプで取ることができる他の測定値を測定することができる。更に、センサを水道本管401に設置して水道本管401を通って流れる水の属性をモニタすることができる(図示せず)。
【0061】
水は、センサを通って動き、領域又はポイントに配分することができる場所に続く。水道本管401が2次水パイプに分岐する区域は、DMA又は流量モニタリングゾーン(FMZ)とすることができる。DMAは、例えば、バルブの閉止によって具体的に定義される分配システムの区域を表し、その区域に出入りする水の量が測定される。当業者に公知のように、流量の分析、特に夜の流量の分析は、その区域内の漏れのレベルを調べるために使用されることが多い。これは、漏れを低減するために作業を実行すべきかを決定するためだけでなく、漏れの位置付けの活動を始めることが最も有利である場合を認めるために異なる区域での漏れのレベルを比較するためである。
【0062】
ポンプ406のような追加の水加圧構成要素を図のように水道本管401内の中間ポイントに配置して、水を運び、水分配システムの要求を満足させるために水圧を上げることができる。バルブ408及び409は、パイプのサブネットワークが、可能であればDMA内の追加のバルブ(図示せず)によって水を領域に提供することができるDMAの境界に存在することができる。2次パイプは、相互接続することができ、サブネットワークを形成して全領域に水を提供することができる。バルブの1つ又はそれよりも多くを開いて、水道本管401からDMA410及び411に経路指定するパイプにセンサ403及び404を通して水を流すことができる。図示のように、DMA410は、バルブ407に接続されたパイプによってDMA411と相互接続することができる。定義により、2つのDMAを接続するいずれのパイプも、モニタされる流量計器を含むはずであり、又はバルブ407に示すように(閉)バルブを有するはずである。バルブ407は、一般的に閉じられているが、保守、修理、又は緊急事態のために開くことができる。このような構成により、冗長性を達成し、影響を受ける領域に水を提供させながらパイプを修理することができ、ネットワークをモニタする機能の低減を犠牲にするが、正常な作動条件の下ではDMAは効率的に切断される。
【0063】
1つの例では、バルブ407は、水をその対応するパイプに流すことがある「破損した」バルブである場合があり、通常の状況下ではバルブ407は閉じるべきである。センサ404及びセンサ405によって測定される流量の和の減少に応じた第1の事象を検出することができる。ネットワークシステムで発生する定められた事象では、定められた事象に関連する少なくとも1つの他の事象が存在することが多い。バルブ407の破損は、センサ403への流量の減少及び増加の両方を引き起こす場合がある(バルブ407を通るモニタされない流量のために)。2つの流量変化事象は、複合「破損バルブ」事象に関連付けられ、その一部として識別することができる。事象対を単純にするために説明するが、より大きい集合に拡張することができる。関連事象を識別する方法を
図6−12の説明に関連して以下に更に詳しく説明する。
【0064】
図5は、本発明の実施形態による水分配システムのセグメントのブロック図を提示している。水分配システムは、水道本管500、センサ501、502、503、及びバルブ504を含む。図は、消費者への水の分配のためのパイプネットワークの一部を示している。センサ501、502、503、及びバルブ504は、DMA505の境界内にあるものとして示されている。DMA505は、定められた地理的領域内に分類されたパイプ又はセンサのサブネットワークを表している。水道本管500は、上水道から水を運ぶためのパイプのシステムにおける1次パイプを表している。センサ502は、水道本管500に設置して水道本管500を通って流れる水に関連する属性をモニタ又は測定することができる。水道本管500は、1次供給パイプとして機能し、センサ501及び503に至るパイプのような2次水パイプによってタップすることができる。これらの2次水パイプは、DMAとして特徴付けることができるサブネットワークを形成し、モニタされる水分配をDMAに関連する領域に提供する。センサ501−503によって収集されたデータは、異常を識別するために使用することができる。
【0065】
水分配ネットワークのようなモニタされるシステム内で検出される単一の現実世界の事象は、使用される異常検出方法の制限に応答して独立して検出して報告することができ、かつ根本的事象の検出を保証するために全てを要求することができる1つ又はそれよりも多くの関連異常に関連付けられることが多い。しかし、ユーザは、一般的にはシステムにおける根本的原因及び現実の事象に関心があり、モニタリング処理の人為的な結果又は中間段階である再現又は「ゴースト」事象には関心がない。これらの関連事象又は異常は、ネットワーク内の他の異常事象によって引き起こされるか又はこれを引き起こす事象のチェーンである場合がある。例えば、バルブ504は、最初に閉じることができ、水道本管500からセンサ501及び502に接続されたパイプにのみ水が流れるようにする。バルブ504を開けることで、水をセンサ503に至る追加のパイプに分配することができ、これは、例えば、流量の増加を検出させる。圧力の増加は、センサ503でモニタすることができる。逆に、センサ502は、水道本管500を流れる水の測定可能な属性がセンサ502に関連付けられた場所の正常値よりもかなり低い(例えば、水圧力降下)であることを検出することができる。センサ501は、センサ501に関連付けられた場所で測った測定値が正常値とは異なることを検出することができる。
【0066】
これらの測定値は、1日のような定められた持続時間にわたって事象の前にセンサによって測定されたデータと比較することができる。水分配システムのモニタリングシステムは、これらの異常を検出し、その可能性が高い物理的又は論理的位置、サイズ、方向、発生の1つ又は複数の時間、又は異常事象の他の測定値及び特徴に基づいて異常間の相関関係を作ることができ、これは、
図7−12の説明に関連して以下に更に詳しく説明する。一実施形態において、センサ事象は、バルブ504の開栓からもたらされたセンサ503によって測定されるデータにおける大きい偏差に対応するセンサ503で検出された事象に更に相関付けることができる。
【0067】
バルブ504のような水道本管500の上流で発生した事象(
図5の左側)は、通常、センサ501及び502に接続されたパイプに影響を与える。逆に、センサ501及び502に接続されたパイプのような下流で発生した事象(
図5の右側)は、水道本管500の上流部分に伝播する場合がある。規則は、信号の伝播がどの方向にありそうであるかに対する事象/データタイプに依存する。例えば、一部の水圧の影響は、上流及び下流に伝播する場合があるが、一部の水質の影響は、下流だけに伝播する場合がある。別の実施形態において、例えば、水質事象がパイプを通る汚染物質の流れと共に徐々に伝播する時に、経路に検出される異常が全て単一事象又は原因に関連すると決定することができる異常の「経路」を設定することができる。
【0068】
モニタリングシステムは、正常な測定値を有するセンサに達するまで、連続した異常の経路を移動することができる。別の例では、モニタリングシステムは、バルブ504の開栓に応答してセンサ503に関連付けられた場所のパイプを通って流れる水の突然の「急増」を検出することができる。センサ503で検出される事象は、センサによって検出される事象が発生した時間に基づいてセンサ501及び502の異常に相関付けることができる。センサ503の事象が最初に発生した時間は、センサ501及び502の事象の始まり時間に正確に又は密接に適合すると決定することができる。従って、センサ501、502、及び503によって検出された事象は、共通事象に関連付けられ、及び/又は共通事象によって引き起こされたと決定することができる。各結合規則は、方向、大きさ、及び始まり時間のような異常又は事象の特徴間の近接性又は関係性の特定の大きさに基づいて関連異常又は事象を決定するための基準を決定する。
【0069】
図6−12に関して説明する以下の段階は、一実施形態において、
図1又は
図3のシステムにより、又は代替的にリソース分配ネットワークをモニタすることができるあらゆる他のモニタリングシステムにより実行することができる。以下の図は、本発明のシステムが複合事象を発生させる場合に繰り返すことができる結合規則を表している。本発明のシステムは、例えば、かなり高い感度で異常検出器を実行することによって候補事象を生成し、事象の特徴に基づく大まかな相関関係に基づいて候補事象の集合を選択することができる。候補事象の集合は、例えば、地理的近接性、時間的近接性、及び異常の大きさの「指紋」又は適合集合に基づいて更に試験することができる。使用することができる各このような試験を実行する詳細は以下に説明するが、当業者は、結合規則の同じか又は類似のテンプレートにおいて必要に応じて、以下を他の方法で置換することができる。
【0070】
図6は、本発明の実施形態による候補事象を識別する方法を示す流れ図を提示している。段階601で、定められた結合規則に基づく検査のためにセンサデータが選択される。次の段階603で、本発明のシステムは、定められた結合規則に基づいて異常検出器及び検出器のためのパラメータを選択する。モニタリングシステムは、相対的に長い期間にわたって発生する事象を調べるための比較的低い統計的閾値に設定された異常検出器を含むことができる。候補事象に対する1つ又はそれよりも多くの観察時間窓及び時間窓間の間隔が、段階605で定められた結合規則に基づいて選択される。
【0071】
段階607で、p値閾値が、定められた結合規則に基づいて選択される。選択されたセンサデータの全てが、段階609で分析のために反復される。定められた反復では、定められたセンサデータの時間窓が、段階611で、その間隔での始まり時間を用いて調査される。例えば、窓が1日であり、間隔が半日である場合に、深夜又は正午毎に始まる1日の窓が調べられる。事象が数日間続く場合があり、一時的な影響又は保守作業が数時間続く場合がある水分配ネットワーク上では、観察期間(時間窓)は、1日に設定することができる。例示的な実施形態において、観察期間は数日に設定することができるが、当業者は、変数p値を有する時間のいずれの期間も識別するようにモニタリングシステムを設定することができることを認めるであろう。候補事象は、1つ又はそれよりも多くの予め定められたp値閾値、時間窓、及び候補事象の事象タイプに応じて、閾値に対して試験するための時間窓のシフトを移動するためのスキップ値(間隔)を有することができる。
【0072】
上述したように、予想子は、異常事象が発生していないと仮定してデータの集合を分析し、予想される実際のセンサ値の統計的分布の予想を提供することができる。異常検出器は、センサの異常なしの可能性及び特定の事象タイプのような他の前提の可能性を試験することができる。モニタリングシステムは、各センサに対する異常の期間(例えば、数日)を探すために異常検出器を使用することができ、センサのデータが、例えば、0.1又はそれ未満のp値を有する日(すなわち、このセンサデータが、偽陽性又は異常事象でない可能性が10%しかないことを示す)を識別する。従って、例えば、一度又は1分のような短い期間にしか起こらない小さい偏差は、異常として検出されないことになり、一方、延長期間にわたって又はその期間内に頻繁に起こる同じ小さい偏差は、異常検出器によって統計的に有意であるとして識別されることになる。0.1の例示的なp値は、無関係の又はランダムに現れる候補日の数を低減し、調べなくてはならない無関係の対の数を低減する。p値は、コンピュータの作業量を低減するために高値に設定することができるが、実際の異常を検出する可能性を低下させる場合がある。次の段階で、「粗い相関」を有する候補の集合の選択は、偽陽性を「不当」に保存する可能性が低いので、相対的に感度の高い閾値を使用することができる。上述の例では、候補事象であるとしてセンサ−日数の10%を通すことを許すことは高い割合のように見える場合があるが(現実の異常は、恐らくそれよりも稀であると考えて)、例えば、偽陽性として出力されるセンサ−日数の特定の対に対して、その割合は、10%×10%=1%になる。
【0073】
一部の実施形態において、使用されるセンサデータは、受け入れた元のセンサデータの処理されたバージョンとすることができ、かつ履歴データ全体から時間的に更に制限することができる。例えば、上述の分析のために使用されるデータセットは、連続6時間期間にわたって計算される平均センサ値(6時間毎の各センサの1つの平均値)とすることができる。偏差の有意性を分析することで、例えば、履歴統計データと比較したセンサ読取値は、履歴統計データの観点で有意とすることができる。各データセットに対して、各異常検出器は、偏差の有意性を分析することにより、定められた期間中にセンサ読取値が与えられた場合に関連の異常が起こらない統計的可能性を決定する。異常検出器は、例えば、偏差の連続した又は頻繁な発生がこのような偏差の有意性を上げるので、時間の経過、例えば、数分、数時間、数日、又はそれよりも長いものにわたる偏差の有意性が分析される。本発明のシステムは、異常検出器の異常検出方法によって検出される1つ又は複数の異常のタイプを適切に表す標準化された値を考えている。
【0074】
偏差の有意性の分析に関して、例えば、履歴統計データと比較したセンサ読取値は、履歴統計データの観点から有意とすることができる。例えば、3つの標準偏差の差又は上位パーセンタイルにおける値は、有意な偏差とすることができる。他の実施形態において、統計的偏差は、パラメータの関数として偏差の履歴的に観察される分布によって測定される。1つのこのようなパラメータは、1日のうちの時間とすることができ、偏差の有意性が、1日のうちの時間に従って変化する場合がある偏差の分布に依存する場合があることを意味する。他のこのようなパラメータは、温度又は湿度のような天気観測値、天気警報、休日、又はその日又は時刻におけるネットワーク特徴を変化させる場合があるスポーツイベントを含むことができる。センサ読取値の偏差を分析する段階は、ルーチン又は計画された水ネットワーク作動、流量に影響を与えるバルブの開閉、音響検査、水ネットワークのいずれかに場所に行われた修理又は改良、修理/改良の日付及び時間、修理/改良の場所、ネットワークに行われたルーチン保守、及びネットワーク技術スタッフが活動することができる時間及び場所を示すアクセス制御情報のような水ネットワーク作動に関する情報も考慮することができる。
【0075】
ある一定の有意性閾値に合格した異常は、候補事象であるとして識別することができる。
図6を参照すると、段階613で、本発明のシステムは、パラメータを使用して選択された異常検出器によってセンサデータの時間窓を試験する。異常検出器からの出力が、選択されたp値閾値の下であるか否かの決定が段階615で行われる。出力がp値閾値の下ではない場合に、本発明のシステムは戻り、段階609で別のセンサデータを調べる。しかし、異常検出器の出力がp値閾値の下である場合に、処理は段階617に進み、定められたセンサデータが候補事象であるとして記録される。記録された候補事象は、候補事象のリスト又はプールに追加することができる。候補事象のリストは、事象分類システムのような更に別の処理のためのモニタリングシステム内の他の構成要素に提供することができる。例えば、
図6の方法によって決定された候補事象が複合事象の一部を構成するか否かを決定する方法は、
図7−12の説明に関連して以下に詳しく説明する。
【0076】
図7は、本発明の実施形態により関連場所を有する事象対を識別する方法を示す流れ図を提示している。以下の図は、定められた結合規則に基づいて複数の試験のうちの1つを選択する方法を提示している。
【0077】
段階701で、本発明のシステムは、候補事象の集合を選択する。候補事象は、候補事象がそこから発生したセンサ、候補事象の時間、候補事象に関連する領域など毎にグループ分けすることができる。一実施形態において、候補事象は、
図6に関して説明した方法によって識別することができる。試験する特徴の選択は、段階703で選択された候補事象に対する定められた結合規則に基づいて決定される。一実施形態において、候補事象が関連場所を有するか否かを決定する場合に実行する試験のうちの1つを決定するために、一連のケースステートメントを使用することができる。近隣場所を決定するための試験は、段階705a、705b、705c、及び705dによって表されている。試験705a−dのうちの1つは、定められた結合規則に基づいて選択される。特定の試験及びパラメータは、定められた結合規則によって決定することができる。関連場所を決定するのに使用される場所は、例えば、本出願人所有の米国特許出願第13/008,819号明細書(特許文献2)に記載されているシステムによって生成されるサブDMA地理位置情報から提供することができる。
【0078】
「破損バルブ」シナリオでは、上述したように、システムは、1つ又はそれよりも多くのパイプによって接続されたDMAの事象が、段階705aにおいて日常的に閉じられたままであるモニタされていないバルブによって分離されたままであるか否かを決定する。この例は、結合規則が、いくつかの「関連場所」試験のうちの1つをどのように使用することができるかを説明している。次の段階707で、モニタリングシステムは、満足されるか又は真である段階705aの試験に基づいて、地理的に関連する事象の集合として(又は複合事象として)候補事象にマーク付けする。段階707は、DMA破損例とは関係のない段階705a−705d内の共通段階であり、段階705aの選択とは関係がない。本方法は、段階701に戻り、追加の候補事象を選択して全ての候補集合を検査し、あらゆる複合事象が候補事象の集合として識別されたか否かが調べられる。
【0079】
他のシナリオでは、結合規則は、段階705bで2つの事象の可能性が高い場所間の最大距離、段階705cで事象の大きさの単位当たりの最大距離、又は段階705dで事象対における事象を同じ領域又はサブネットワーク内に位置付けるべきか否かを決定する。これらは、可能な規則の例であるが、定められた結合規則は、他を指定することができる。段階705bで、可能性が高い場所間の最大距離をネットワークエンジニアによって事前に決定又は定義することができ、結合規則の全てのパラメータに対して当て嵌まる場合がある。段階705cでは、事象の大きさの単位当たりの最大距離は、これらが幾らか離れている場合でも、より大きい異常が隣接すると考えられることに備えるものである。事象の大きさは、センサによって検出される変化の測定可能な量に関するものとすることができる。例えば、水道本管破裂は、かなりの距離にわたって水道本管に接続されたパイプに対する水圧を有意に低下させる場合がある。
【0080】
段階705b−705dに対する次の段階707では、モニタリングシステムは、段階705b−705dの試験の成功に基づいて地理的に関連事象の集合として候補事象にマーク付けし、又は段階705b−705dの試験が不合格又は満足されなかった場合には拒否するようにマーク付けする。ここでもまた、段階707は、例示的シナリオとは独立である共通の段階であり、段階705b−dの選択とは独立である。次の段階701で、追加の候補事象が選択され、あらゆる複合事象が識別されたどうかに関して全ての候補集合が検査される。
【0081】
図8は、本発明の実施形態により単一の候補事象に対する可能性が高い始まり時間を決定する方法を示す流れ図を提示している。
【0082】
段階801で、本発明のシステムは、候補事象に対する結合規則を取り出す。1つ又はそれよりも多くの間隔パラメータが、段階803で結合規則から取り出される。結合規則は、特定の事象タイプに対する1つ又はそれよりも多くのアルゴリズム又はパラメータを含むことができる。結合規則は、候補事象の集合に対して選択された事象タイプに対応して選択される。サンプルサイズは、段階805で、候補事象におけるデータポイントの頻度に基づいて決定される。次の段階807で、固定された間隔が、サンプルサイズ及び間隔パラメータに基づいて選択される。本発明のシステムは、可能性が高い始まり時間を決定し、その時間の前のデータは、その時間の後のデータとは極めて異なっている。始まり時間試験の重要な特徴は、現実の事象開始の正確な検出とは別に、候補事象からの偽陽性が、適正にランダムな始まり時間を生成するはずであるということである。一部の実施形態において、例えば、上述の破損バルブシナリオにおける測定されたデータは、始まり時間に明確な増加又は明確な減少(偏差)を表示しなければならない。
【0083】
結合規則は、第1の間隔及び第2の間隔の長さ、並びに候補事象付近の疑わしい持続時間(例えば、1日)を決定する。各間隔におけるデータ値の分散は、全ての始まり時間に対して計算される。始まり時間の全ては、段階809で反復される。定められた始まり時間に対して、変更された「T試験」が、段階811で固定された間隔にわたって実行される。本発明のシステムは、始まり時間tから先行する持続時間の間隔xにおける値を始まり時間tから後に続く持続時間の間隔yにおける値から最良に分離する始まり時間tを探す。試験は、疑わしい持続時間内の時間tの全てを通して反復される。一実施形態により、この「最良分離」時間は、以下のスコアを用いて全ての時間t付近の間隔の対を試験することによって見出される。
|平均(間隔1)/分散(間隔1)−平均(間隔2)/分散(間隔2)|
最も大きい値を有する始まり時間tを取る。
【0084】
スコアは、段階813で変更されたT試験に従って計算される。スコアは、間隔1(tで終了する)と間隔2(tで開始する)の間の変化に対して計算される。本発明のシステムは、間隔の全てが実行されたか否かを段階815で決定する。間隔の全てが実行されていない場合に、本発明のシステムは段階809に戻り、別の始まり時間tに対して試験する。間隔の全てが実行されている時に、最高スコアが、段階817で選択され、候補事象に対する最も可能性の高い始まり時間を決定する。スコアを最大にする時間tが選択される。最高スコアを有するこの始まり時間が、段階817で選択され、本発明のシステムは、候補事象の次の集合に進み、段階821で、可能性が高い始まり時間を決定する。
【0085】
始まり時間を決定するのに使用される方法、例えば、上述の段落で説明した方法は、常に結果を戻し、候補事象が現実世界の異常を表す場合は、事象始まり時間である可能性が最も高い時間を戻すようにすることができる。しかし、現実の事象が存在しなかった時に、又は候補事象が突然始まらなくなった又はセンサの強い信号を起こさなかった時に、データは、1つの非常に明確な始まり時間を示すのに失敗することがある。このような場合に、前の段階の結果は、あまりにも「ノイズが多い」又は間違いを犯しやすいので更に別の試験に使用できない。一部の実施形態において、本発明のシステムは、始まり時間が「明確な始まり時間」ではない個々の候補事象(又は、一部の実施形態では、候補事象の集合全体)を拒否することになる。
【0086】
図9は、本発明の実施形態による「明確な始まり時間」を有する事象を識別する方法を示す流れ図を提示している。これは、計算された始まり時間にマーク付けされた変化があるか否かを識別するための一般的な段階を含むことができる。以下は、例えば、破損バルブシナリオにおける候補事象を特徴付けるような突然の増加(又は減少)の「明確な始まり時間」の試験の例を説明するものである。
【0087】
段階901で、本発明のシステムは、一実施形態において
図6に説明した段階から決定された候補事象の集合内の候補事象の始まり時間の前及び後の時間間隔を選択する。一実施形態において、候補事象の始まり時間は、
図8に関して説明した方法によって決定された可能性が高い始まり時間とすることができる。本発明のシステムは、段階903で時間間隔の前の候補事象におけるデータポイントの上位X%を時間間隔の後の下位Y%と比較する。それは、候補事象タイプが「減少」である場合はこれを実行し、それは、「増加」である場合は反対を実行する(時間間隔の前の候補事象におけるデータポイントの下位X%を時間間隔の後の上位Y%と比較する)。データポイントの上位X%全体が下位Y%のデータポイントの全てよりも大きいか否かが、段階905で決定される。これは、始まり時間のすぐ前の値(何らかの制限された100−X%を除外して)が、始まり時間のすぐ後の値(何らかの制限された100−Y%を除外して)よりも大きい(又は小さい)ことを保証する。データポイントの上位X%の全てが下位Y%の全てよりも大きくない場合に、本発明のシステムは、段階909で候補事象を「明確でない始まり時間」としてタグ付ける段階に進み、集合内の次の候補事象に対して継続する。そうでなければ、決定段階905が真又は満足された場合に、始まり時間は、段階907で明確な始まり時間として設定され、集合内の次の候補事象が段階911で選択される。
【0088】
図10は、本発明の実施形態により近い始まり時間を有する事象対を識別する方法を示す流れ図を提示している。以下の方法の説明は、試験を連続して行えることを提案しており、いずれかの個々の試験結果に落ちた候補事象の集合は、複合事象内に結合することに関して除外される。しかし、連続試験は一実施形態であり、結合規則に基づく他の試験方法を使用することができる。
【0089】
段階1001で、本発明のシステムは、定められた結合規則に基づいて候補事象の集合を選択する。本発明のシステムは、段階1003で集合内の事象の始まり時間を決定する。始まり時間は、例えば、
図8で説明した段階によって取り出し又は決定することができる。次に、本発明のシステムは、段階1005で始まり時間が明確な始まり時間であるか否かを決定する。明確な始まり時間を決定するための例示的な方法は、
図9の説明に関連して上記に説明している。始まり時間が明確な始まり時間でない場合に、本発明のシステムは、明確な始まり時間に対する試験が失敗し、候補事象の集合が拒否されたと決定し、本発明のシステムは段階1013に進み、次のターゲット(候補事象の集合)を分析する。そうでなければ、始まり時間が明確な始まり時間である場合に、本発明のシステムは、段階1007で、始まり時間の間の差を計算する。関連事象又は異常は、同時に又は距離に関連する可能性があるそれらの間の何らかの短い時間間隔内に始まると予想される。
【0090】
パラメータが、段階1009で、定められた結合規則から取り出される。本発明のシステムは、結合規則に従って始まり時間が予め定められたSデータサンプルよりも離れていないか否かを決定することができる。「破損バルブ」の例では、Sは、2時間のデータを表すことができる。これは、主要事象の開始付近の追加のローカルな一時的特徴がデータ内で明らかである可能性が高い状況を軽減する場合があり、例えば、破損バルブは、一部の保守作動又は極端な水圧事象の後に現れる場合があり、破損の正確な開始を分かりにくくするデータを生成する場合がある。すなわち、始まり時間の統計的推定に何らかの不確実性が発生する場合があり、このパラメータは、相応に選択しなければならない。T(候補事象持続時間)に対してSが増大すると、偽陽性を生じる場合がある。偽陽性率は、2S/Tである。近い始まり時間を有する候補事象が、段階1011で、取り出されたパラメータに基づいて決定される。始まり時間がパラメータより近い場合に、候補集合は、段階1013で試験に合格する、そうでなければ、不合格になり、候補事象の集合は、段階1015で拒否される。次の段階1017で、本発明のシステムは、候補事象の次の集合を選択し、近い始まり時間を有する事象集合を決定する。
【0091】
図11は、本発明の実施形態により適合する異常の方向を有する事象対を識別する方法を示す流れ図を提示している。
【0092】
候補事象の集合が段階1101で選択される。一部の実施形態において、システムは、探している事象タイプに適合する異常の変化の方向を有する事象対だけを選択する。システムは、候補事象の集合の異常の大きさが妥当な精度で既知であるか否かの決定が行われる段階1103に進む。既知である場合に、適合する異常の大きさの許容集合が、段階1117で決定される。適合する異常の大きさは、
図12の方法に関連して更に詳しく説明する。本方法は、段階1117から段階1115に進み、候補事象の追加の集合を分析する。
【0093】
以下の説明では、方向の比較は、大きさが十分正確に測定できない時のフォールバックとすることができる。段階1105で、候補事象の集合の異常の方向は、異常の大きさが段階1103から既知でない場合に、定められた結合規則に基づいて決定される。段階1107で、集合内の候補事象間の異常の方向の関係が決定される。
【0094】
段階1109で、パラメータが、定められた結合規則から取り出される。結合規則は、定められた事象シナリオに対して実行される個々の試験及びパラメータを決定する。次の段階1111で、事象が、取り出されたパラメータに基づいて対応する異常の方向を有するか否かの決定が行われる。すなわち、本発明のシステムは、候補事象間の異常の方向の許容集合を検査する(すなわち、試験)。結合規則は、異常の方向のどの集合が許容されるかを決定する。例えば、関連する圧力増加又は減少を探している時に、本発明のシステムは、関連事象が全て同じ方向を有する(全てが増加するか又は全てが減少する)ことを要求することができる。破損バルブのシナリオでは、本発明のシステムは、一方の事象が流量増加であり、他方の事象が流量減少である事象の対だけを選択することができる。そうでない場合に、候補事象の集合は、適合する異常の方向を持たないものとして識別され(試験に不合格)、本発明のシステムは、段階1115に進み、次の候補事象の集合を選択して分析する。そうでなければ、本発明のシステムは、段階1113で、集合内の候補事象が適合する異常の方向を有することを識別する(試験に合格)。次に、段階1115で、本発明のシステムは、次の候補事象の集合を選択する。
【0095】
当業者は、結合規則が、異なるタイプの候補事象(圧力及び流量など)の結合を指定する場合に、許容される方向は、事象タイプに応じて異なるものにすることができることを認めるであろう。例えば、結合規則は、流量増加を漏れを示す1つ又はそれよりも多くの圧力減少と結合することができる。
【0096】
図12は、本発明の実施形態により適合する異常の大きさを有する事象対を識別する方法を示す流れ図を提示している。
【0097】
集合内の各候補事象の異常の大きさは、段階1201で、事象情報から取り出される。次の段階1203で、定められた結合規則に従って候補事象の大きさ値が十分な精度で既知であるか否かの決定が行われる(例えば、誤差のマージンが、大きさの集合に比べて、その大きさが「許容集合」を形成するか否かを決定することができるほど十分に小さいか否か)。そうでない場合に、本発明のシステムは、段階1213に進み、
図11に関して説明したような方法を使用して適合する異常の方向を決定する。そうでなければ、候補が誤差のマージン内にある場合に、集合内の候補事象間の異常大きさの関係が段階1205で決定される。構成要素事象の異常の大きさが確実に測定することができる場合に、本発明のシステムは、探している事象タイプによって決定される時の適合する大きさを有する候補事象の集合だけを選択する。例えば、圧力増加又は減少を探している時に、本発明のシステムは、関連事象が相対的に類似の圧力変化を有することを要求することができる。一部の結合規則では、本発明のシステムは、流量異常の大きさが合算して実質的にゼロ(何らかの百分率又は絶対許容誤差内に対して)になる事象の集合を選択することができる。例えば、1つのパイプを通る流量の増加及び別のパイプを通る流量の類似の減少の和は、結果としてゼロの和になるであろう。
【0098】
結合規則によって決定されるパラメータが、段階1207で取り出される。次の段階1209で、事象が、取り出されたパラメータに基づいて対応する異常の大きさを有するか否かの決定が行われる。決定は、事象タイプ規則からの取り出されたパラメータに基づいて行われる。候補事象が、対応する異常の大きさを有するか否かが決定される。候補事象が対応する大きさを有する場合に、候補事象の集合は、適合する異常の大きさを有するものとして段階1211で識別される。そうでなければ、候補事象の集合は、適合する異常大きさを持たないものとして段階1215で識別される。
【0099】
図1から12は、本発明を解説する概念図である。本発明の実施形態の様々な態様は、ハードウエア、ファームウエア、ソフトウエア、又はその組合せに実施することができることは理解されるものとする。このような実施形態において、様々な構成要素及び/又は段階は、ハードウエア、ファームウエア、及び/又はソフトウエアに実施され、本発明の機能を実行すると考えられる。すなわち、ハードウエアか、ファームウエアか、又はソフトウエアのモジュールかの同じ部分が、図示のブロック(例えば、構成要素又は段階)の1つ又はそれよりも多くを実施することができる。
【0100】
本発明は、水道施設ネットワークだけでなく、あらゆるタイプの分配システムにも適用されることは理解されるものとする。他のタイプの分配システムは、石油、汚水又は下水、ガス、電気、電話技術、冷暖房空調機器(「HVAC」システム)、又は1つの区域から消費者までの流体又は流動リソースを含む他のエネルギ送出システムとすることができる。明らかに、本発明は、流量、圧力、品質、又はデータ自体の流れのような分配パラメータを測定するネットワーク内の任意の位置にある計器又はセンサを有するあらゆる分配又は回収システムにも適用することができる。
【0101】
ソフトウエアの実施において、コンピュータソフトウエア(例えば、プログラム又は他の命令)及び/又はデータは、コンピュータプログラム製品の一部として機械可読媒体に格納され、取外し可能ストレージドライブ、ハードドライブ、又は通信インタフェースを通してコンピュータシステム又は他のデバイス又は機械にロードされる。コンピュータプログラム(いわゆるコンピュータ制御論理又はコンピュータ可読プログラムコード)は、主及び/又は2次メモリに格納され、1つ又はそれよりも多くのプロセッサ(コントローラなど)によって実行されて1つ又はそれよりも多くのプロセッサをして本明細書に説明する本発明の機能を実行させる。本文書では、「機械可読媒体」、「コンピュータプログラム媒体」、及び「コンピュータ使用可能媒体」という語は、一般的に、ランダムアクセスメモリ(RAM)、読取専用メモリ(ROM)、取外し可能ストレージユニット(例えば、磁気又は光学ディスク、フラッシュメモリデバイスなど)、又はハードディスクなどのような媒体を示すために使用される。
【0102】
特に、図及び上述の実施例は、本発明の範囲を単一の実施形態に制限するように意味しておらず、他の実施形態は、説明又は図示した要素の一部又は全てを置換することによって可能である。更に、本発明のある一定の要素が、公知の構成要素を使用して部分的又は完全に実施することができる場合には、これらの公知の構成要素の本発明の理解に必要な部分だけを説明し、このような公知の構成要素の他の部分の詳細説明は、本発明を曖昧にしないために省略されている。本明細書では、本明細書に他に明確に指示がない限り、単数の構成要素を示す実施形態は、複数の同じ構成要素を含む他の実施形態に対して必ずしも制限される必要はなく、逆も同様である。更に、本出願人は、本明細書又は特許請求の範囲におけるいずれの語も、明確に示されない限り、稀な又は特別な意味を有するように意図していない。更に、本発明は、一例として本明細書に引用した公知の構成要素に対する現在及び将来の公知の均等物を包含する。
【0103】
特定の実施形態の以上の説明は、当業技術内の知識(本明細書に引用によって明記されかつ組み込まれた文書の内容を含む)を適用することにより、不要な実験なしにかつ本発明の一般的な概念から逸脱することなく、他者がこのような特定の実施形態を様々な応用に対して容易に変更及び/又は適応させることができるほど完全に本発明の一般的な性質を明らかにするであろう。このような適応及び変更は、従って、本明細書に示す教示及び指導に基づいて、開示する実施形態の均等物の意味及び範囲内にあるものとする。本明細書における語法又は用語は、本明細書の用語又は語法が、当業技術に精通した者の知識と組み合わせて本明細書に示す教示及び指導の観点から当業者によって解釈されるように、説明目的のためであり、制限目的のためではないことは理解されるものとする。
【0104】
本発明の様々な実施形態を上述したが、これらは一例として示されており、制限ではないことを理解すべきである。本発明の精神及び範囲から逸脱することなく形態及び詳細の様々な変更を本明細書に行うことができることは当業者には明らかであろう。すなわち、本発明は、上述の例示的な実施形態のいずれによっても制限されるべきではなく、以下の特許請求の範囲及びその均等物によってのみ定められるべきである。
水モニタリングシステム内の関連事象を検出するためのコンピュータ式方法。本方法は、水ネットワーク内の複数のセンサから事象データを受け入れる段階を含む。本方法はまた、事象データから少なくとも2つの候補事象を共通異常事象の一部を構成する可能性が高い候補事象であるとして識別する段階を含み、候補事象の各々は、実質的に異常である。事象結合規則が選択される。1つ又はそれよりも多くの事象特性が、事象結合規則に基づいて少なくとも2つの候補事象間で比較される。少なくとも2つの候補事象は、その比較に基づいて、それらが関連し、かつ少なくとも2つの候補事象を引き起こしている共通事象に関連付けられるか否かが決定される。少なくとも2つの候補事象が関連し、かつ共通事象に関連付けられるという決定は、ユーザインタフェースを通じてユーザに報告される。