【0025】
前記発電要素2のセパレータ6は、幅方向端部に中央部よりもポロシティが小さい少なくとも2つの領域を有する。
例えば、
図5に示すように、セパレータ6の幅方向端部の2つの領域をA,B、中央部の領域をCとすると、
図6(a)に示すように、端部の領域A,Bのポロシティを中央部の領域Cのポロシティより小さくし、かつ、領域Aと領域Bのポロシティを中央部の領域Cに向かって段階的に変化させることができる。
また、
図6(b)に示すように、端部側(最端部)の領域Aのポロシティを中央部側の領域Bのポロシティよりも大きくしてもよい。
さらに、
図6(c)に示すように、領域Aと領域Bのポロシティを中央部の領域Cに向かって連続的に変化させてもよい。
端部の2つの領域A,Bのうち、ポロシティの小さい方の領域は、正極と負極の対向部分よりも幅方向の端部側にあることが好ましい。この構成により、正極と負極の対向部分に十分な電解質が保持されるので、高温放置時の容量保持率が高くなり、耐久性が向上する。
【実施例】
【0032】
本発明の効果を確認するため、幅方向端部の2つの領域A,Bと中央部の領域Cでポロシティを変更した本発明の実施例と比較例における高温収縮率と容量保持率を比較した。
【0033】
<正極の作製>
正極活物質であるLiCo
1/3Ni
1/3Mn
1/3O
2を86質量%と、導電助剤であるアセチレンブラック6質量%と、結着剤であるポリフッ化ビニリデン(PVdF)8質量%と、溶媒であるN−メチルピロリドンとを含む正極合剤ペーストを調整した。この正極合剤ペーストを厚さ20μmのアルミニウム集電箔の両面に塗布して真空乾燥した後、ロールプレスで圧縮成型して、正極を得た。
【0034】
<正極の作製>
負極活物質として、層間距離d
002=0.379nm、平均粒径d
50=9μmのハードカーボンを用いた。この負極活物質であるハードカーボン95質量%と、PVdF5質量%と、溶媒であるN−メチルピロリドンとを含む負極合剤ペーストを調整した。この負極合剤ペーストを厚さ10μmの銅集電箔の両面に塗布して真空乾燥した後、ロールプレスで圧縮成型して、正極を得た。
【0035】
<電解液の作製>
エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)とを体積比30:20:50で混合した混合溶液に、六フッ化リン酸リチウム(LiPF
6)を0.8mol/lとなるように溶解し、1,3−プロペンスルトンを0.2質量%添加したものを用いた。
【0036】
<セパレータの作製>
セパレータとして、幅150mm、厚さ0.025mmのポリオレフィン製微多孔膜を用いた。
【0037】
<電池の作製>
負極と正極をセパレータを介して扁平状に巻回して発電要素を作製した。この発電要素を予め集電体を組付けておいた蓋と溶接し、アルミニウム製の電池容器に収納した。電池容器と蓋とをレーザ溶接した後、電解液を注液孔から注入し、注液孔を封止溶接して、所定の電池容量を有する非水電解質二次電池を作製した。
【0038】
<ポロシティの変更>
発電要素の作製時に、セパレータのポロシティを種々変更して、実施例及び比較例を作製した。
実施例1は、事前加温プレスにより、幅方向端部の2つの領域A,Bのポロシティを中央部の領域Cのポロシティより小さくし、かつ、端部側の領域Aのポロシティを中央部側の領域Bのポロシティより小さくした。領域Aは、幅4mmとし、60℃で5MPaの力を30秒間加え、領域Bは幅4mmとし、40℃で5MPaの力を30秒間加えた。
実施例2は、事前加温プレスにより、幅方向端部の2つの領域A,Bのポロシティを中央部の領域Cのポロシティより小さくし、かつ、端部側の領域Aのポロシティを中央部側の領域Bのポロシティより大きくした。領域Aは幅4mmとし、25℃で5MPaの力を30秒間加え、領域Bは幅4mmとし、38℃で5MPaの力を30秒間加えた。
比較例1として、ポロシティ変更を行わない発電要素を作製した。
比較例2は、事前加温プレスにより、幅方向端部の1つの領域Aのポロシティを中央部の領域Cのポロシティより小さくし、領域Bは中央部の領域Cのポロシティと同じにした。領域Aは幅4mmとし、65℃で5MPaの力を30秒間加え、領域B、Cは事前加温プレスを行わなかった。
【0039】
<ポロシティの測定>
実施例1、2と比較例1,2のポロシティは、事前加温プレス後、各領域を所定の寸法に裁断して、測定用試料を作製し、ASTM−D−1622に準拠した方法で測定した。なお、ポロシティは、セパレータの肉厚、幅、長さ及び比重から求めた重量に対する実際の重量の百分率で求めることもできる。
【0040】
<高温時収縮率の測定>
セパレータを所定のサイズ(例えば、100mm×100mm)に切り取り、テンションのかからない状態で支持(洗濯バサミのようなもので吊るすか、平坦な台の上にセパレータの一部をテープなどで固定する)して120℃のオーブンに一定時間曝す。オーブンから取り出した後のセパレータの幅方向のサイズを測定し、オーブンに入れる前の値と比較して、縮んだ割合を高温時収縮率とする。
【0041】
<容量保持率の測定>
前述のように作製した発電要素を、80%充電状態(SOC)にて60℃の高温で120日間保存した後の電池容量保持率を以下の方法より測定した。
具体的には、各実施例1、2及び比較例1,2の電池を1CAの定電流にて4.2Vまで充電し、その後4.2Vにて総充電時間が3時間となるように定電圧充電した後、1CAの定電流にて2.4Vまで放電した。このときの放電容量を高温保存前の放電容量とした。なお、1CAとは、満充電時の電池を1時間で放電するときの電流値である。
次に、各実施例1、2及び比較例1,2の電池を1CAの定電流にてSOC80%に相当する電圧まで充電し、その後、その電圧にて総充電時間が3時間となるように定電圧充電した後、60℃の恒温槽中で保存する試験を120日間行った。
その後、室温にて1CAの定電流にて4.2Vまで充電し、その後、4.2Vにて総充電量が3時間となるように定電圧充電した後、1CAの定電流にて2.4Vまで放電した。このときの放電容量を保存後の放電容量とした、保存後の放電容量を保存前の放電容量で除することにより、保存後の容量保持率を算出した。
【0042】
これらの実施例1、2と比較例1,2のポロシティと、高温時収縮率、容量保持率の測定結果を表1に示す。
【0043】
【表1】
【0044】
表1から明らかなように、中央部の流域(C)のポロシティに対する端部(A,B)の小さい方のポロシティの差は、23〜25%であった。
幅方向端部に中央部の領域Cよりもポロシティが小さい2つの領域A,Bを有する実施例1、2の容量保持率は、全て90%以上であり、幅方向端部に中央部の領域Cよりもポロシティが小さい1つの領域Aを有する比較例2の保持率89%と大差はないが、ポロシティが一定の比較例1の保持率83%よりも大きくなっていることが確認された。
【0045】
なお、本発明は、前記実施形態に記載された構成に限定されるものではなく、種々の変更が可能である。例えば、前記実施例は巻回扁平型であるが、巻回円筒型、積層扁平型の非水電解質二次電池にも適用可能である。