(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0006】
内側シュラウドの径方向外側の面、つまり外側シュラウドと対向する面は、燃焼ガスに接する面である。このため、内側シュラウドを高温の燃焼ガスから保護するために、この内側シュラウドを空気等の冷却媒体で冷却する必要がある。このため、特許文献1に記載の内側シュラウドには、空気が通る冷却空気流路が形成され、支持レールには、貫通孔が形成されている。
【0007】
特許文献1に記載の静翼では、内側シュラウドのうち、リテーナが設けられている部分の剛性が他の部分に比べて高い。このため、特許文献1に記載の静翼では、内側シュラウドのうち、リテーナが設けられている部分に高い熱応力が生じる。よって、特許文献1に記載の静翼では、耐久性を高めることが難しい。
【0008】
そこで、本発明は、熱応力を抑えて耐久性を高めることができる技術を提供することを目的とする。
【課題を解決するための手段】
【0009】
前記目的を達成するための発明に係る一態様としての静翼は、
軸線を中心として回転するタービンロータの動翼に対して、前記軸線が延びる軸線方向における上流側に配置されている静翼において、前記軸線に対する径方向に延びる翼体
と、前記翼体の径方向外側に形成されている外側シュラウドと、前記翼体の径方向内側に形成され、前記外側シュラウドとの間に燃焼ガスが流れる燃焼ガス流路を形成する内側シュラウドと、前記内側シュラウドの前記軸線方向における前記上流側の縁と前記軸線方向における下流側の縁との間の位置で、前記内側シュラウドから前記径方向内側に突出し且つ前記軸線を中心とする周方向に延びるリテーナと、を備え、前記リテーナには、前記軸線方向に貫通
し、空気が流れる空間を画定する開口が形成され、前記開口の前記周方向の幅は、前記軸線方向で前記リテーナが存在する位置での前記翼体の径方向内側端における前記翼体の前記周方向の幅より広い。
【0010】
当該静翼では、リテーナの開口面積が特許文献1に記載の静翼における支持レール(又はリテーナ)の開口面積より大きい。このため、当該静翼のリテーナの剛性は、特許文献1に記載の静翼の支持レール(又はリテーナ)よりも低くい。また、当該静翼では、リテーナの開口の周方向における幅が、軸線方向でリテーナが存在する位置での翼体の径方向内側端における翼体の周方向の幅より広い。このため、内側シュラウド内でリテーナが設けられている位置と、内側シュラウド内で翼体が設けられている位置とが、周方向で重複することを回避可能である。よって、当該静翼では、内側シュラウド周りの剛性が特許文献1に記載の静翼よりも低くなる。従って、当該静翼では、内側シュラウドに生じる熱応力を抑えることができる。
【0011】
ここで、前記静翼において、前記内側シュラウドは、前記軸線方向及び前記周方向に広がり、前記径方向外側の面が前記燃焼ガスに接する内側シュラウド本体と、前記内側シュラウド本体の外周縁に沿って前記内側シュラウド本体から前記径方向内側に突出する周壁と、を有し、前記内側シュラウドには、前記内側シュラウド本体と前記周壁とにより、前記径方向外側に向かって凹む凹部が形成され、前記凹部内を前記径方向内側の領域と前記径方向外側の領域である内側キャビティとに仕切し、複数の空気孔が形成されている衝突板を備え、前記開口の前記径方向内側の縁は、前記衝突板の前記径方向内側の面よりも前記径方向内側に位置し、前記開口の前記径方向外側の縁は、前記衝突板の前記径方向外側の面よりも前記径方向外側に位置してもよい。
【0012】
当該静翼では、内側シュラウド本体の径方向内側の面のうち、軸線方向でリテーナが存在する部分をインピンジメント冷却することができる。このため、当該静翼では、軸線方向でリテーナが存在する部分を効果的に冷却することができる。特に、当該静翼では、開口の周方向の幅が軸線方向でリテーナが存在する位置での翼体の周方向の幅より広くしたことにより、この開口内を含めて衝突板を配置できるために、軸線方向でリテナーナが存在する位置で衝突板の複数の空気を通過した空気によりインピンメント冷却できる範囲を、特許文献1に記載の静翼よりも広げることができる。よって、当該静翼では、内側シュラウドに生じる熱応力をより抑えることができる。
【0013】
また、以上のいずれかの前記静翼において、前記開口の前記周方向における一方側の縁は、前記軸線方向で前記リテーナが存在する位置での前記翼体の径方向内側端における前記翼体の前記一方側の外面よりも前記一方側に位置し、前記開口の前記周方向における他方側の縁は、前記軸線方向で前記リテーナが存在する位置での前記翼体の径方向内側端における前記翼体の前記他方側の外面よりも前記他方側に位置してもよい。
【0014】
当該静翼では、内側シュラウド内でリテーナが設けられている位置と、内側シュラウド内で翼体が設けられている位置とが、周方向で重複することを確実に回避することができる。
【0015】
前記内側シュラウドに前記凹部が形成されている、以上のいずれかの前記静翼において、前記リテーナを前記軸線方向に貫通する前記開口の内周面のうち、径方向外側を向く面は、前記上流側から前記下流側に向かうに連れて次第に前記径方向外側に向かって傾斜していてもよい。
【0016】
当該静翼では、開口の内周面のうち、径方向外側を向く面は、上流側から下流側に向かうに連れて次第に径方向外側に向かって傾斜している。このため、当該静翼では、内側シュラウド本体の径方向内側の面に対して、衝突板を傾斜させて、この衝突板を容易に着脱させることができる。
【0017】
前記内側シュラウドに前記凹部が形成されている、以上のいずれかの前記静翼において、前記衝突板は、前記開口に挿通され、前記リテーナを基準として前記上流側及び前記下流側に広がっている一枚の多孔板で形成されていてもよい。
【0018】
前記衝突板が一枚の多孔板で形成されている前記静翼において、前記衝突板を形成する前記一枚の多孔板は、前記上流側に位置する多孔板と、前記下流側に位置する多孔板とが接合されて一体化されたものであってもよい。
【0019】
当該静翼では、特許文献1に記載のリテーナの開口と比較して、周方向の開口の幅が拡大されているため、複数の多孔板の一体化接合が確実に行えるようになる。その結果、接合部分での冷却空気の漏れが減少して、インピンジメント冷却による冷却効果が改善され、冷却空気量が低減される。
【0020】
前記内側シュラウドに前記凹部が形成されている、以上のいずれかの前記静翼において、前記リテーナを基準として前記下流側に配置され、前記凹部の開口のうち、前記リテーナよりも前記下流側の部分を塞ぐ封止板を備えてもよい。
【0021】
前記内側シュラウドに前記凹部が形成されている、以上のいずれかの前記静翼において、前記内側シュラウドの前記周壁は、前記周方向で互いの間隔をあけて対向する一対の側周壁を有し、前記開口の前記周方向における一方側の縁は、一対の前記側周壁のうち前記一方側の側周壁における前記内側キャビティ側の面内に位置し、前記開口の前記周方向における他方側の縁は、一対の前記側周壁うち前記他方側の側周壁における前記内側キャビティ側の面内に位置してもよい。
【0022】
当該静翼では、リテーナの開口面積がより大きくなり、リテーナの剛性がより低くなる上に、開口内を含めて衝突板を配置することで、内側シュラウドの径方向内側の領域における軸方向のリテーナの位置でのインピンジメント冷却できる範囲を周方向に広げることができる。このため、当該静翼では、内側シュラウドに発生する熱応力をより抑えることができる。しかも、当該静翼では、内側シュラウド本体の径方向内側の面のうち、軸線方向でリテーナが存在する部分の周方向のほぼ全体をほぼ均等に冷却することができる。よって、当該静翼では、この観点からも、内側シュラウドに発生する熱応力をより抑えることができる。
【0023】
前記内側シュラウドに前記凹部が形成されている、以上のいずれかの前記静翼において、前記内側シュラウド本体には、前記下流側を向く下流端面が形成されており、前記内側シュラウドには、前記内側キャビティから前記内側シュラウドを貫通して、前記内側シュラウド本体の前記下流端面で開口する冷却空気噴出孔が形成されていてもよい。
【0024】
前記冷却空気噴出孔が形成されている前記静翼において、前記内側シュラウドには、前記周方向に並ぶ複数の前記冷却空気噴出孔が形成されていてもよい。
【0025】
前記内側シュラウドに前記凹部が形成されている、以上のいずれかの前記静翼において、前記内側シュラウド本体には、前記内側キャビティから前記内側シュラウド本体を前記径方向外側に向かって貫通する冷却空気噴出孔が形成されていてもよい。
【0026】
前記目的を達成するための発明に係る一態様としての静翼は、
以上のいずれかの静翼と、前記タービンロータと、前記タービンロータを回転可能に覆い、且つ前記静翼が内周側に固定されているタービン車室と、前記タービン車室に固定され、前記燃焼ガスを生成する燃焼器と、を備える。
【0027】
当該ガスタービンでも、以上で説明した静翼を備えているので、この静翼の耐久性を高めることができる。
【0028】
前記目的を達成するための発明に係る一態様としての静翼の製造方法は、
軸線を中心として回転するタービンロータの動翼に対して、前記軸線が延びる軸線方向における上流側に配置されている静翼であって、前記軸線に対する径方向に延びる翼体と、前記翼体の径方向外側に形成されている外側シュラウドと、前記翼体の径方向内側に形成され、前記外側シュラウドとの間に燃焼ガスが流れる燃焼ガス流路を形成する内側シュラウドと、前記内側シュラウドの前記軸線方向における前記上流側の縁と前記軸線方向における下流側の縁との間の位置で、前記内側シュラウドから前記径方向内側に突出し且つ前記軸線を中心とした周方向に延びるリテーナと、を備え、前記リテーナには、前記軸線方向に貫通
し、空気が流れる空間を画定する開口が形成されている静翼の製造方法において、前記周方向の幅が、前記軸線方向で前記リテーナが存在する位置での前記翼体の径方向内側端における前記翼体の前記周方向の幅より広い前記開口が形成されている前記リテーナと、前記翼体と、前記外側シュラウドと、前記内側シュラウドと、を鋳造で一体形成する。
【0029】
前記目的を達成するための発明に係る一態様としての静翼の改造方法は、
軸線を中心として回転するタービンロータの動翼に対して、前記軸線が延びる軸線方向における上流側に配置されている静翼であって、前記軸線に対する径方向に延びる翼体と、前記翼体の径方向外側に形成されている外側シュラウドと、前記翼体の径方向内側に形成され、前記外側シュラウドとの間に燃焼ガスが流れる燃焼ガス流路を形成する内側シュラウドと、前記内側シュラウドの前記軸線方向における前記上流側の縁と前記軸線方向における下流側の縁との間の位置で、前記内側シュラウドから前記径方向内側に突出し且つ前記軸線を中心とした周方向に延びるリテーナと、を備え、前記リテーナには、前記軸線方向に貫通
し、空気が流れる空間を画定する開口が形成されている静翼の改造方法において、前記開口の前記周方向の幅が、前記軸線方向で前記リテーナが存在する位置での前記翼体の径方向内側端における前記翼体の前記周方向の幅より広くなるよう、前記リテーナを加工する。
【0030】
ここで、前記静翼の改造方法において、前記加工前における前記開口の前記周方向の幅は、前記軸線方向で前記リテーナが存在する位置での前記翼体の径方向内側端における前記翼体の前記周方向の幅より狭く、前記リテーナを加工する際には、前記リテーナを研削して前記開口を拡張してもよい。
【発明の効果】
【0031】
本発明では、静翼の内側シュラウドに発生する熱応力を抑えることができる。よって、本発明によれば、静翼の耐久性を高めることができる。
【発明を実施するための形態】
【0033】
以下、本発明に係る静翼、これを備えるガスタービンの一実施形態、さらに、静翼の各種変形例について、図面を参照して詳細に説明する。
【0034】
「実施形態」
本発明に係る静翼、これを備えるガスタービンの一実施形態について、
図1〜
図11を参照して説明する。
【0035】
本実施形態のガスタービンは、
図1に示すように、空気を圧縮する圧縮機10と、圧縮機10で圧縮された空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器20と、燃焼ガスにより駆動するタービン30と、を備えている。
【0036】
圧縮機10は、
図1及び
図2に示すように、軸線Arを中心として回転する圧縮機ロータ11と、圧縮機ロータ11を回転可能に覆う圧縮機車室15と、複数の静翼段14と、を有する。なお、以下では、軸線Arが延びる方向を軸線方向Da、この軸線方向Daの一方側を上流側、他方側を下流側とする。また、この軸線Arを中心とした周方向を単に周方向Dcとし、軸線Arに対して垂直な方向を径方向Drとする。圧縮機ロータ11は、その軸線Arを中心として軸線方向Daに延びるロータ軸12と、このロータ軸12に取り付けられている複数の動翼段13と、を有する。複数の動翼段13は、軸線方向Daに並んでいる。各動翼段13は、いずれも、周方向Dcに並んでいる複数の動翼で構成されている。複数の動翼段13の各上流側には、静翼段14が配置されている。各静翼段14は、圧縮機車室15の内側に設けられている。各静翼段14は、いずれも、周方向Dcに並んでいる複数の静翼で構成されている。ロータ軸12の径方向外周側と圧縮機車室15の径方向内周側との間であって、軸線方向Daで静翼段14及び動翼段13が配置されている領域の環状の空間は、空気が流れつつ圧縮される空気圧縮流路19を成す。
【0037】
タービン30は、軸線Arを中心として回転するタービンロータ31と、タービンロータ31を回転可能に覆うタービン車室35と、複数の静翼段34と、を有する。燃焼器20は、このタービン車室35の上流側の部分に固定されている。タービンロータ31は、その軸線Arを中心として軸線方向Daに延びるロータ軸32と、このロータ軸32に取り付けられている複数の動翼段33と、を有する。複数の動翼段33は、軸線方向Daに並んでいる。各動翼段33は、いずれも、周方向Dcに並んでいる複数の動翼で構成されている。複数の動翼段33の各上流側には、静翼段34が配置されている。各静翼段34は、タービン車室35の内側に設けられている。各静翼段34は、いずれも、
図3に示すように、周方向Dcに並んでいる複数の静翼40で構成されている。ロータ軸32の外周側とタービン車室35の内周側との間であって、軸線方向Daで静翼段34及び動翼段33が配置されている領域の環状の空間は、燃焼器20からの燃焼ガスGが流れる燃焼ガス流路39を成す。
【0038】
燃焼器20は、高温高圧の燃焼ガスGをタービン30の燃焼ガス流路39内に送る燃焼筒(又は尾筒)21と、この燃焼筒21内に空気と共に燃料を噴射する燃料噴射器22と、を有する。燃料噴射器22は、燃焼筒21内に燃料を噴射する複数のノズル23を有する。各ノズル23には、燃料供給源からの燃料が燃料ラインを介して供給される。
【0039】
圧縮機ロータ11とタービンロータ31とは、同一軸線Ar上に位置して互いに連結されてガスタービンロータ1を成す。また、圧縮機車室15とタービン車室35とは、互いに連結されてガスタービン車室5を成す。ガスタービンは、さらに、ガスタービン車室5の内周側であって、軸線方向Daにおける圧縮機10の空気圧縮流路19とタービン30の燃焼ガス流路39との間でガスタービンロータ1の外周側を覆う内側カバー6を備えている。この内側カバー6は、軸線方向Daで、タービン30の各静翼段34のうちの最も上流側の第一静翼段34fの位置まで延びている。
【0040】
タービン30の各静翼段34を構成する複数の静翼40は、
図4に示すように、いずれも、径方向Drに延びる翼体41と、翼体41の径方向外側に形成されている外側シュラウド51と、翼体41の径方向内側に形成されている内側シュラウド61とを有する。内側シュラウド61と外側シュラウド51との間は、前述の燃焼ガス流路39の一部を成す。各静翼段34のうち、最も上流側の第一静翼段34fを構成する複数の静翼40fは、さらに、内側シュラウド61から径方向内側に突出し且つ周方向に延びるリテーナ91を有する。
【0041】
翼体41には、径方向Drに延びて冷却空気が流れる冷却空気主流路42と、この冷却空気主流路42から翼体41を上流側に向かって貫通し翼体41の前縁で開口する複数の冷却空気噴出孔43と、が形成されている。なお、この翼体41には、冷却空気主流路42から翼体41を下流側に向かって貫通し翼体41の後縁で開口する複数の冷却空気噴出孔を形成してもよい。
【0042】
外側シュラウド51は、軸線方向Da及び周方向Dcに広がる板状の外側シュラウド本体52と、外側シュラウド本体52の外周縁に沿って外側シュラウド本体52から径方向外側に突出する周壁55と、を有する。周壁55は、軸線方向Daで互いに対向する上流周壁56及び下流周壁57と、周方向Dcで互いに対向する一対の側周壁58と、を有する。上流周壁56及び下流周壁57は、いずれも、外側シュラウド本体52に対して、一対の側周壁58よりも径方向外側に突出しており、フック部を成す。フック部を成す上流周壁56及び下流周壁57は、静翼40をタービン車室35の内周側に取り付ける役目を担う。外側シュラウド51には、外側シュラウド本体52と周壁55とにより、径方向内側に向かって凹む凹部54が形成されている。翼体41の冷却空気主流路42は、この凹部54内で開口している。よって、翼体41の冷却空気主流路42には、外側シュラウド51の径方向外側からの空気が流入する。冷却空気主流路42に流入した空気は、複数の冷却空気噴出口から燃焼ガス流路39内に噴出する。
【0043】
静翼40は、さらに、外側シュラウド51の凹部54を径方向内側の領域と径方向外側の領域とに仕切る衝突板59を備えている。この衝突板59には、径方向Drに貫通する複数の空気孔が形成されている。
【0044】
内側シュラウド61は、
図4及び
図5に示すように、軸線方向Da及び周方向Dcに広がる板状の内側シュラウド本体62と、内側シュラウド本体62の外周縁に沿って内側シュラウド本体62から径方向内側に突出する周壁71と、を有する。
【0045】
内側シュラウド本体62の径方向外側の面は、燃焼ガスに接するガスパス面66を成す。この内側シュラウド本体62には、軸線方向Daで互いに対向する上流端面63及び下流端面64と、周方向Dcで互いに対向する一対の側端面65とが形成されている。一対の側端面65は、いずれも、
図3に示すように、上流側から下流側に向かうに連れて次第に周方向Dcの一方側に位置するよう傾斜している。このため、内側シュラウド本体62は、径方向内側から径方向外側に向かって見た場合、平行四辺形状を成している。周壁71は、軸線方向Daで互いに対向する上流周壁73及び下流周壁74と、周方向Dcで互いに対向する一対の側周壁75と、を有する。上流周壁73は、内側シュラウド本体62の上流端面63よりも僅かに下流側位置において、上流端面63に沿って周方向Dcに延びている。下流周壁74は、内側シュラウド本体62の下流端面64よりも僅かに上流側位置において、下流端面64に沿って周方向Dcに延びている。側周壁75は、上流周壁73と下流周壁74との間に内側シュラウド本体62の側端面65に沿って形成されている。内側シュラウド61には、内側シュラウド本体62と周壁71とにより、径方向外側に向かって凹む凹部84が形成されている。翼体41の冷却空気主流路42は、前述したように、外側シュラウド51の凹部54内で開口していると共に、この内側シュラウド61の凹部84内でも開口している。
【0046】
リテーナ91は、
図3〜
図6に示すように、軸線方向Daで翼体41が存在する領域内の位置に、内側シュラウド61の一対の側周壁75の一方の側周壁75から周方向Dcに延びて他方の側周壁75まで形成されている。このリテーナ91は、周壁71を形成する上流周壁73、下流周壁74、及び側周壁75のいずれよりも、径方向内側に突出している。このリテーナ91は、内側カバー6の下流側の径方向外側端6a(
図6参照)に接し、静翼40fの径方向内側の部分を内側カバー6の下流側の径方向外側端6a(
図6参照)に支持させるための役目を担う。
【0047】
リテーナ91には、軸線方向Daに貫通する開口92(以下、リテーナ開口92とする)が形成されている。このリテーナ開口92は、
図5及び
図7に示すように、軸線方向Daから見ると、周方向Dcに長い矩形状を成している。このリテーナ開口92の内周面のうち、周方向Dcの一方側を向く第一内周面93は、一対の側周壁75のうちの周方向Dcの他方側の側周壁75yにおける凹部84側の面内に位置し、周方向Dcの他方側を向く第二内周面94は、一対の側周壁75のうちの一方側の側周壁75xにおける凹部84側の面内に位置する。言い換えると、リテーナ開口92の周方向Dcにおける一方側の縁94eは、一対の側周壁75のうちの一方側の側周壁75xにおける凹部84側の面内に位置し、リテーナ開口92の周方向Dcにおける他方側の縁93eは、一対の側周壁75のうちの他方側の側周壁75yにおける凹部84側の面内に位置する。また、リテーナ開口92の周方向Dcにおける一方側の縁94eは、軸線方向Daでリテーナ91が存在する位置での翼体41の径方向内側端における翼体41の一方側の外面48よりも一方側に位置する。さらに、リテーナ開口92の周方向Dcにおける他方側の縁93eは、軸線方向Daでリテーナ91が存在する位置での翼体41の径方向内側端における翼体41の他方側の外面47よりも他方側に位置する。すなわち、リテーナ開口92の周方向Dcの幅Woは、内側シュラウド61の凹部84における周方向Dcの幅と一致し、軸線方向Daでリテーナ91が存在する位置での翼体41の径方向内側端における翼体41の周方向Dcの幅Wwより広い。
【0048】
図6及び
図7に示すように、リテーナ開口92の内周面のうち、径方向内側を向く第三内周面95は、内側シュラウド本体62の径方向内側の面67内に含まれ、この面67と径方向Drの位置が一致している。言い換えると、リテーナ開口92の径方向外側の縁95eは、内側シュラウド本体62の径方向内側の面67内に含まれ、この面67と径方向Drの位置が一致している。リテーナ開口92の内周面のうち、径方向外側を向く第四内周面96は、上流側から下流側に向かって次第に径方向外側に向かうよう傾斜している。この第四内周面96の下流側縁96dは、径方向Drの位置が側周壁75の径方向内側の面の位置とほぼ一致している。よって、この第四内周面96の上流側縁96uは、側周壁75の径方向内側の面の位置よりも径方向内側に位置している。
【0049】
第一静翼段34fを構成する複数の静翼40fは、さらに、前述の凹部84内を径方向内側の領域85と径方向外側の領域である内側キャビティ86とに仕切る衝突板101と、凹部84の開口のうち、リテーナ91よりも下流側の部分を塞ぐ封止板105と、を備える。なお、外側シュラウド51、翼体41、内側シュラウド61、及びリテーナ91は、一体形成され、これらにより静翼本体MB(
図4参照)が構成される。従って、本実施形態の静翼40fは、衝突板101と、封止板105と、この静翼本体MBと、外側シュラウド51の凹部54を仕切る衝突板59と、を有して構成される。
【0050】
衝突板101は、凹部84内の径方向Drのほぼ中間位置においてリテーナ開口92に挿通されている。よって、リテーナ開口92の径方向外側の縁は、衝突板101の径方向外側面よりも径方向外側に位置し、リテーナ開口92の径方向内側の縁は、衝突板101の径方向内側面よりも径方向内側に位置する。衝突板101の上流縁は、内側シュラウド61の上流周壁73に接し、その下流縁が内側シュラウド61の下流周壁74に接し、その周方向Dcの端である側縁が内側シュラウド61の側周壁75に接している。この衝突板101には、径方向内側から径方向外側に向かって貫通する複数の空気孔が形成されている。
【0051】
封止板105は、
図5〜
図8に示すように、リテーナ91よりも下流側であって、衝突板101よりも径方向内側に位置している。封止板105は、その上流縁がリテーナ開口92の第四内周面96に接し、その下流縁が内側シュラウド61の下流周壁74に接し、その周方向Dcの端である側縁が内側シュラウド61の側周壁75に接している。
【0052】
内側シュラウド61には、内側キャビティ86から内側シュラウド61を下流側に向かって貫通して、内側シュラウド本体62の下流端面64で開口する複数の第一冷却空気噴出孔68(
図6参照)が形成されている。複数の第一冷却空気噴出孔68は、周方向Dcに並んでいる(
図3参照)。また、内側シュラウド本体62には、内側キャビティ86から径方向外側に向かって内側シュラウド本体62を貫通して、内側シュラウド本体62のガスパス面66で開口する複数の第二冷却空気噴出孔69(
図6参照)が形成されている。
【0053】
以上で説明したガスタービンの動作、及び静翼40fの作用について説明する。
【0054】
圧縮機10は、外気を吸い込んでこれを圧縮して圧縮空気を生成する。圧縮機10が生成した圧縮空気の一部は、燃焼器20の燃料噴射器22を介して燃焼筒21内に噴出される。また、燃焼筒21内には、燃料噴射器22からの燃料が噴射される。この燃料は、燃焼筒21内の圧縮空気中で燃焼する。この燃焼の結果、燃焼ガスGが生成され、この燃焼ガスGが燃焼筒21からタービン30の燃焼ガス流路39内に流入する。この燃焼ガスGが燃焼ガス流路39を通ることで、タービンロータ31は回転する。
【0055】
燃焼ガス流路39の一部を形成する静翼40fは、高温の燃焼ガスに晒される。このため、本実施形態の静翼40fには、前述したように、冷却空気が流れる流路や孔が形成されている。
【0056】
圧縮機10が生成した圧縮空気の一部は、静翼40fの径方向外側から外側シュラウド51の凹部54に内に流入する。外側シュラウド51の凹部54内に流入した圧縮空気の一部は、衝突板59の複数の空気孔を介して、衝突板59と外側シュラウド本体52との間の外側キャビティ内に流入する。この過程で、圧縮空気は、外側シュラウド本体52に衝突して、外側シュラウド本体をインピンジメント冷却する。さらに、外側シュラウド51の凹部54内に流入した圧縮空気の残りの一部は、翼体41の冷却空気主流路42に流入し、複数の冷却空気噴出孔43から燃焼ガス流路39内に噴出する過程で、さらに、複数の冷却空気噴出孔43から噴出される過程で、翼体41を冷却する。
【0057】
圧縮機10が生成した圧縮空気の他の一部は、静翼40fの径方向内側から内側シュラウド61の凹部84内に流入する。より正確には、圧縮空気は、内側シュラウド61の凹部84の開口のうち、リテーナ91よりも上流側の部分から凹部84内の径方向内側の領域85内に流入する。さらに、圧縮空気は、リテーナ開口92からも凹部84内の径方向内側の領域85内に流入する。
【0058】
内側シュラウド61の凹部84の開口のうち、リテーナ91よりも上流側の部分から凹部84内の径方向内側の領域85内に流入した圧縮空気のほとんどは、衝突板101の複数の空気孔102のうちリテーナ91よりも上流側の複数の空気孔102を経て、内側キャビティ86内に流入する。この内側キャビティ86内に流入した圧縮空気のほとんどは、内側シュラウド本体62でリテーナ91よりも上流側の部分に衝突し、この部分をインピンメント冷却する。また、リテーナ開口92から凹部84内の径方向内側の領域85内に流入した圧縮空気のほとんどは、衝突板101の複数の空気孔102のうちリテーナ91よりも下流側の複数の空気孔102を経て、内側キャビティ86内に流入する。この内側キャビティ86内に流入した圧縮空気のほとんどは、内側シュラウド本体62でリテーナ91よりも下流側の部分に衝突し、この部分をインピンメント冷却する。
【0059】
内側キャビティ86内に流入した圧縮空気の一部は、複数の第一冷却空気噴出孔68を流れ、内側シュラウド本体62の下流端面64から内側シュラウド61外の燃焼ガス中に噴出する。この圧縮空気は、複数の第一冷却空気噴出孔68を流れる過程で、内側シュラウド本体62の下流部分を冷却する。
【0060】
内側キャビティ86内に流入した圧縮空気の他の一部は、複数の第二冷却空気噴出孔69を流れ、内側シュラウド本体62のガスパス面66から燃焼ガス流路39に噴出する。この圧縮空気は、複数の第二冷却空気噴出孔69を流れる過程で、内側シュラウド本体62を冷却する。さらに、この圧縮空気は、内側シュラウド本体62にガスパス面66に沿って噴出することで、このガスパス面66をフィルム冷却する。
【0061】
ここで、比較例の静翼40cについて、
図9及び
図10を参照して説明する。
【0062】
比較例の静翼40cは、基本的に、リテーナ91cが本実施形態の静翼40fのリテーナ91と異なっている。比較例の静翼40cにおけるリテーナ91cは、内側シュラウド本体62cの径方向内側の面から径方向内側に向って突出形成されている。このリテーナ91cに形成されているリテーナ開口92cは、径方向Drで、衝突板101cbと封止板105との間の位置に形成されている。このリテーナ開口92cは、
図10に示すように、軸線方向Daから見ると、矩形状を成している。このリテーナ開口92cの径方向Drの寸法は、径方向Drにおける衝突板101cbと封止板105との間隔寸法よりも小さい。このため,このリテーナ開口92cの径方向Drの幅は、本実施形態のリテーナ開口92の径方向Drの幅より遥かに狭い。また、このリテーナ開口92cの周方向Dcの幅である内径寸法Wocは、軸線方向Daでリテーナ91cが存在する位置での翼体41の径方向内側端における翼体41の周方向Dcの幅Wwより狭い。すなわち、比較例のリテーナ開口92cの開口面積は、本実施形態のリテーナ開口92の開口面積よりも遥かに小さい。
【0063】
このように、比較例のリテーナ開口92cの開口面積は、本実施形態のリテーナ開口92の開口面積よりも遥かに小さいため、比較例のリテーナ91cの剛性は、本実施形態のリテーナ91の剛性よりも高い。しかも、比較例では、内側シュラウド本体62c内でリテーナ91cが設けられている位置と、内側シュラウド本体62c内で翼体41が設けられている位置とが、周方向Dcで重なっている。よって、比較例の静翼40cでは、内側シュラウド本体62c周りの剛性、特に内側シュラウド本体62c内でリテーナ91cが設けられている位置周りの剛性が高くなる。このため、比較例では、内側シュラウド本体62c内に温度分布が生じると、内側シュラウド61c内でリテーナ91cが設けられている位置周りに高い熱応力が生じる。
【0064】
一方、実施形態のリテーナ開口92の開口面積は、逆に、比較例のリテーナ開口92cの開口面積よりも遥かに大きいため、本実施形態のリテーナ91の剛性は、比較例のリテーナ91cの剛性よりも低い。しかも、本実施形態では、内側シュラウド61内でリテーナ91が設けられている位置と、内側シュラウド61内で翼体41が設けられている位置とが、周方向Dcで異なっている。よって、本実施形態の静翼40fでは、内側シュラウド本体62周りの剛性が比較例よりも低くなる。このため、本実施形態では、内側シュラウド本体62内に温度分布が生じても、内側シュラウド本体62に発生する熱応力を抑えることができる。
【0065】
図9及び
図10に示すように、比較例に示すリテーナ91cは、内側シュラウド本体62cから径方向内側に向かい、且つ内側シュラウド本体62cの周方向Dcの全幅に渡って設けられている。そのため、リテーナ91cが存在する内側シュラウド本体62cの軸線方向Daの位置における径方向内側の面67は、周方向Dcの全幅に渡ってインピンジメント冷却が出来ない領域である。一方、本実施形態のリテーナ91に形成されているリテーナ開口92は、軸線方向Daでリテーナ91が存在する位置での翼体41の径方向内側端における翼体41の周方向Dcの幅Wwより周方向Dcに広く形成され、径方向Drにおいて、内側シュラウド本体62の内周面67と面一の位置から側周壁75の径方向内側の面(下流側縁96d)の位置にかけて形成されている。このため、本実施形態では、内側シュラウド本体62の径方向内側の面67で、軸線方向Daにおけるリテーナ91が存在する部分の周方向Dcのほぼ全域にわたって、衝突板101を配置可能である。従って、軸方向Daでリテーナ91が存在する部分を含め、内側シュラウド本体62の内周面67を周方向Dcの全幅に渡ってインピンジメント冷却が可能である。よって、本実施形態の内側シュラウド本体62は、軸線方向Daにおけるリテーナ91が存在する部分を含め、ほぼ全体が圧縮空気により比較例よりも均等に冷却される。この結果、本実施形態の内側シュラウド本体62内における温度差を比較例よりも小さくすることができる。従って、本実施形態では、この観点からも、内側シュラウド本体62に発生する熱応力を抑えることができる。
【0066】
以上のように、本実施形態では、比較例よりも、内側シュラウド本体62周りの剛性が低い上に、内側シュラウド本体62内における温度差が小さいため、比較例よりも、内側シュラウド本体62に生じる熱応力を小さくすることができる。よって、本実施形態では、静翼40fの耐久性を比較例よりも高めることができる。
【0067】
また、比較例では、内側シュラウド61cの凹部84c内がリテーナ91cにより上流側と下流側とに仕切られているため、この凹部84cを径方向内側の領域85と径方向外側の内側キャビティ86とに仕切る衝突板101ca,101cbとして、凹部84c内でリテーナ91cより上流側の部分を径方向内側の領域85と径方向外側の内側キャビティ86とに仕切る上流衝突板101caと、凹部84c内でリテーナ91cより下流側の部分を径方向内側の領域85と径方向外側の内側キャビティ86とに仕切る下流衝突板101cbとが必要になる。
【0068】
一方、本実施形態では、リテーナ開口92の周方向Dcの幅Woが内側シュラウド61の凹部84における周方向Dcの幅と一致するため、一枚の多孔板で衝突板101を形成しても、この一枚の多孔板をリテーナ開口92に挿通させることで、この凹部84を径方向内側の領域85と径方向外側の内側キャビティ86とに仕切ることができる。
【0069】
次に、本実施形態の静翼40fの製造方法について、
図11に示すフローチャートに従って説明する。
【0070】
本実施形態では、静翼本体MBの製造工程(S10)と、衝突板59,101の製造工程(S20)と、封止板105の製造工程(S30)とを個別に行う。
【0071】
静翼本体MBの製造工程(S10)では、まず、静翼本体MBを鋳造するための鋳型及び中子を製造する(S11)。中子は、翼体41に冷却空気主流路42等を形成するためのものである。次に、鋳型内に中子を組み込んだものに、溶融金属を流し込み、静翼本体MBの中間品を鋳造する(S12)。この中間品は、外側シュラウド51、翼体41、内側シュラウド61、及びリテーナ91が一体になっている。また、リテーナ91には、以上で説明したリテーナ開口92が形成されている。次に、この中間品に対して仕上げ処理を施して静翼本体MBを完成させる(S13)。仕上処理としては、中間品の表面の研磨、中間品の表面に対する遮熱コーティングの施工、各種冷却空気噴出孔43,68,69の加工等がある。
【0072】
衝突板59,101の製造工程(S20)では、まず、衝突板59,101の形状及びサイズに応じた板を製造する。次に、この板に、複数の貫通孔を形成する。最後に、複数の貫通孔が形成されている板、つまり多孔板に対して仕上げ加工を施して、衝突板59,101を完成させる。
【0073】
封止板105の製造工程(S30)では、まず、封止板105の形状及びサイズに応じた板を製造する。次に、この板に対して仕上げ加工を施して、封止板105を完成させる。
【0074】
静翼本体MB、衝突板59,101、及び封止板105が完成すると、これらを組み立てる(S40)。本実施形態の静翼40fは、以上で完成する。
【0075】
次に、本実施形態の静翼40fの改造方法について、
図12に示すフローチャートに従って説明する。
【0076】
ここでは、一例として、
図9及び
図10に示す比較例の静翼40cを、本実施形態の静翼40fに改造する例について説明する。
【0077】
比較例の静翼40cの改造にあっては、比較例のリテーナ91cを研削等の加工方法で加工して、リテーナ開口92cを拡張し、このリテーナ開口92cの形状及びサイズを以上で説明した本実施形態のリテーナ開口92の形状及びサイズに合せる(S10a)。
【0078】
さらに、リテーナ開口92cの拡張に併せて、衝突板及び封止板を別途製造する(S20a,S30a)。
【0079】
静翼本体の改造が終了し、新たな衝突板及び封止板が製造されると、これらを組み立てる(S40a)。静翼40cの改造は、以上で完了する。
【0080】
「静翼の第一変形例」
上記実施形態の静翼40fの第一変形例について、
図13を参照して説明する。
【0081】
本変形例の静翼40aは、上記実施形態のリテーナ開口92aのサイズを変更したもので、その他の構成は、上記実施形態の静翼40fと同一である。
【0082】
本変形例の静翼40aにおけるリテーナ開口92aの周方向Dcの幅Woaは、内側シュラウド61aの凹部84aにおける周方向Dcの幅より狭いものの、上記実施形態と同様に、軸線方向Daでリテーナ91aが存在する位置での翼体41の径方向内側端における翼体41の周方向Dcの幅Wwより広い。また、リテーナ開口92aの周方向Dcにおける一方側の縁94eは、軸線方向Daでリテーナ91aが存在する位置での翼体41の径方向内側端における翼体41の一方側の外面48よりも一方側に位置する。さらに、リテーナ開口92aの周方向Dcにおける他方側の縁93eは、軸線方向Daでリテーナ91aが存在する位置での翼体41の径方向内側端における翼体41の他方側の外面47よりも他方側に位置する。また、このリテーナ開口92aの径方向Drの幅は、上記実施形態と同じである。
【0083】
本変形例のリテーナ開口92aの開口面積も、上記実施形態と同様、比較例のリテーナ開口92cの開口面積より遥かに大きいため、本変形例のリテーナ91aの剛性は、比較例のリテーナ91cの剛性よりも低い。しかも、本変形例では、内側シュラウド61a内でリテーナ91aが設けられている位置と、内側シュラウド61a内で翼体41が設けられている位置とが、周方向Dcで異なっている。このため、本変形例の静翼40aでも、内側シュラウド本体62a周りの剛性が比較例より低くなる。よって、本変形例では、内側シュラウド本体62a内に温度分布が生じても、内側シュラウド本体62aに生じる熱応力を抑えることができる。
【0084】
また、本変形例でも、リテーナ開口92aは、軸線方向Daでリテーナ91aが存在する位置での翼体41の径方向内側端における翼体41の周方向Dcの幅Wwより周方向Dcに広く形成され、径方向Drにおいて、内側シュラウド本体62の内周面67と面一の位置から側周壁75の径方向内側の面(下流側縁96d)の位置にかけて形成されている。このため、本変形例でも、内側シュラウド本体62aの径方向内側の面67で、軸線方向Daにおけるリテーナ91aが存在する部分の周方向Dcの広い領域にわたって、衝突板101aを配置可能である。従って、軸方向Daでリテーナ91aが存在する部分を含め、内側シュラウド本体62aの内周面67を広い領域に渡ってのインピンジメント冷却が可能である。よって、本変形例の内側シュラウド本体62a中で、軸線方向Daにおけるリテーナ91aが存在する部分を比較例よりも冷却することができる。従って、本変形例では、この観点からも、内側シュラウド本体62aに発生する熱応力を抑えることができる。
【0085】
以上のように、本変形例でも、比較例より、内側シュラウド本体62aに生じる熱応力を小さくすることができるので、静翼40aの耐久性を比較例よりも高めることができる。
【0086】
「静翼の第二変形例」
上記実施形態の静翼40fの第二変形例について、
図14を参照して説明する。
【0087】
本変形例の静翼40bは、上記実施形態の衝突板101を変更したもので、その他の構成は、上記実施形態の静翼40fと同一である。
【0088】
上記実施形態の衝突板101は、一枚の多孔板をそのまま一枚の衝突板101として用いている。一方、本変形例では、二枚の多孔板103a,103bを接合して両者を一体化し、これを一枚の衝突板101aとして用いている。二枚の多孔板103a,103bのうち、一枚の多孔板103aは、内側シュラウド61の凹部84内のうち、リテーナ91よりも上流側の部分を径方向内側の領域85と径方向外側の内側キャビティ86とに仕切る上流側多孔板である。二枚の多孔板103a,103bのうち、残りの一枚の多孔板103bは、内側シュラウド61の凹部84内のうち、リテーナ91よりも上流側の一部、リテーナ開口92内の部分、及びリテーナ91よりも下流側の分を径方向内側の領域85と径方向外側の内側キャビティ86とに仕切る下流側多孔板である。
【0089】
上記実施形態では、軸線方向Daに長い一枚の衝突板101を、リテーナ開口92に挿通させてから内側シュラウド61に取り付ける必要がある。このため、内側シュラウド61と衝突板101との取付構造等により、内側シュラウド61に衝突板101を取り付ける手間がかかる場合がある。
【0090】
本変形例は、このようなに手間がかかる場合に対応するものである。本変形例の場合、まず、下流側多孔板103b、及び上流側多孔板103aを内側シュラウド61に仮取付する。次に、下流側多孔板103bと上流側多孔板103aとを溶接等で接合して、両者を一体化し、これを一枚の衝突板101aとする。その後、必要に応じて、この一枚の衝突板101aを内側シュラウド61に本取付する。
【0091】
なお、本変形例は、上記実施形態の衝突板101の変形例であるが、上記第一変形例においても、本変形例にように、二枚の多孔板を接合して両者を一体化し、これを一枚の衝突板として用いてもよい。
【解決手段】静翼40fの内側シュラウド61から径方向内側に突出し且つ周方向Dcに延びるリテーナ91には、軸線方向Daに貫通する開口92が形成されている。開口92の周方向Dcの幅Woは、軸線方向Daでリテーナ91が存在する位置での翼体41の径方向内側端における翼体41の周方向Dcの幅Wwより広い。