(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5677428
(24)【登録日】2015年1月9日
(45)【発行日】2015年2月25日
(54)【発明の名称】マイクロフルイディックプラットホームを用いた相挙動分析
(51)【国際特許分類】
G01N 35/08 20060101AFI20150205BHJP
G01N 37/00 20060101ALI20150205BHJP
【FI】
G01N35/08 A
G01N37/00 101
【請求項の数】23
【全頁数】19
(21)【出願番号】特願2012-522332(P2012-522332)
(86)(22)【出願日】2010年9月3日
(65)【公表番号】特表2013-527424(P2013-527424A)
(43)【公表日】2013年6月27日
(86)【国際出願番号】IB2010053984
(87)【国際公開番号】WO2011013112
(87)【国際公開日】20110203
【審査請求日】2013年9月3日
(73)【特許権者】
【識別番号】500177204
【氏名又は名称】シュルンベルジェ ホールディングス リミテッド
【氏名又は名称原語表記】Schlnmberger Holdings Limited
(74)【代理人】
【識別番号】100092093
【弁理士】
【氏名又は名称】辻居 幸一
(74)【代理人】
【識別番号】100082005
【弁理士】
【氏名又は名称】熊倉 禎男
(74)【代理人】
【識別番号】100088694
【弁理士】
【氏名又は名称】弟子丸 健
(74)【代理人】
【識別番号】100103609
【弁理士】
【氏名又は名称】井野 砂里
(74)【代理人】
【識別番号】100095898
【弁理士】
【氏名又は名称】松下 満
(74)【代理人】
【識別番号】100098475
【弁理士】
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100170715
【弁理士】
【氏名又は名称】岡本 和道
(72)【発明者】
【氏名】モストウフィ ファーシッド
(72)【発明者】
【氏名】ブラーネック ユネス
【審査官】
長谷 潮
(56)【参考文献】
【文献】
国際公開第2009/109868(WO,A1)
【文献】
米国特許出願公開第2010/0017135(US,A1)
【文献】
特開2002−071547(JP,A)
【文献】
特開平09−218133(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 35/08
G01N 37/00
(57)【特許請求の範囲】
【請求項1】
マイクロフルイディック装置で相特性を分析するシステムであって、
流体を運ぶようになっていて、入口通路及び出口通路を有するマイクロチャネルと、
前記入口通路と流体連通状態にあり、前記流体を、前記入口通路を経て圧力下で導入するようになっている流体導入システムと、
前記流体の相状態を前記マイクロチャネルに沿って第1の複数の場所で検出するよう構成されると共に位置決めされた第1の光学検出システムと
を備え、
前記第1の光学検出システムは、前記マイクロチャネル内の前記流体の複数個のディジタル画像を生成し、また、前記複数個のディジタル画像に基づいて生成された複数個の二値画像に基づいて第1の複数の場所で、前記マイクロチャネル内の流体の気相を液相から区別するよう構成されると共にプログラムされた処理システムを含み、前記処理システムは、少なくとも部分的に前記複数個の二値画像に基づいて、複数の圧力について前記流体中の液体又は気体の体積比に関する値を推定するよう更にプログラムされているシステム。
【請求項2】
前記複数個のディジタル画像は、前記マイクロチャネルの複数の部分に差し向けられた光ファイバのアレイを用いて作られる、請求項1記載のシステム。
【請求項3】
前記流体の圧力を前記マイクロチャネルに沿って第2の複数の場所で測定するよう構成されると共に位置決めされた圧力測定システムを更に有する、請求項1記載のシステム。
【請求項4】
前記圧力測定システムは、
前記マイクロチャネル内の流体圧力を受けて変形するよう構成されると共に位置決めされた1つ又は2つ以上の変形可能なメンブレンと、
前記1つ又は2つ以上の変形可能なメンブレンの変形を検出するよう構成されると共に位置決めされた第2の光学検出システムとを有する、請求項3記載のシステム。
【請求項5】
前記流体は、貯留層流体、生物医学的流体、及び環境モニタリングと関連してモニタされている流体から成る群から選択された種類のものである、請求項1記載のシステム。
【請求項6】
少なくとも一部が前記流体の前記検出相状態に基づいて前記流体についてバブルポイント圧力を推定するよう構成されると共にプログラムされた処理システムを更に有する、請求項1記載のシステム。
【請求項7】
少なくとも一部が前記流体の前記検出相状態に基づいて前記流体についての相挙動と圧力の関係を推定するよう構成されると共にプログラムされた処理システムを更に有する、請求項1記載のシステム。
【請求項8】
少なくとも一部が前記流体の前記検出相状態に基づいて前記流体についての相体積分布比を推定するよう構成されると共にプログラムされた処理システムを更に有する、請求項1記載のシステム。
【請求項9】
前記マイクロチャネルは、実質的に矩形の断面を有する、請求項1記載のシステム。
【請求項10】
前記マイクロチャネルは、少なくとも一部が、シリコン基板にエッチングされたチャネルと、前記第1の光学検出システムが前記マイクロチャネル内の前記流体の前記複数個のディジタル画像を生成することができるよう透明なガラス基板とによって構成されている、請求項1記載のシステム。
【請求項11】
前記マイクロチャネルは、蛇行形状を呈すると共に少なくとも1メートルの長さを備えている、請求項1記載のシステム。
【請求項12】
前記マイクロチャネルは、2マイクロメートルから数百マイクロメートルまでの範囲内の幅を備えている、請求項1記載のシステム。
【請求項13】
マイクロフルイディック装置で相特性を分析する方法であって、
流体を運ぶようになっていて、かつ入口通路及び出口通路を備えたマイクロチャネルを用意するステップと、
前記入口通路を介して流体を前記マイクロチャネル中に圧力下で導入するステップと、 前記流体の相状態を前記マイクロチャネルに沿って第1の複数の場所で光学的に検出するステップと
を有し、
前記光学的検出ステップは、前記マイクロチャネル内の前記流体の複数個のディジタル画像を生成するステップと、前記複数個のディジタル画像に基づいて複数個の二値画像を生成するステップと、前記複数個の二値画像に基づいて、前記第1の複数の場所で、前記マイクロチャネル内の前記流体の液相から気相を区別するステップとを含み、前記光学的検出ステップは、少なくとも部分的に前記複数個の二値画像に基づいて複数の圧力について前記流体中の液体又は気体の比率に関する値を推定するステップを更に含む、方法。
【請求項14】
前記流体の圧力を前記マイクロチャネルに沿って第2の複数の場所で測定するステップを更に有する、請求項13記載の方法。
【請求項15】
前記圧力は、前記マイクロチャネル内の流体圧力を受けて変形するよう位置決めされている1つ又は2つ以上の変形可能なメンブレンの変形を光学的に検出することによって測定される、請求項14記載の方法。
【請求項16】
前記流体は、貯留層流体、生物医学的流体、及び環境モニタリングと関連してモニタされている流体から成る群から選択された種類のものである、請求項13記載の方法。
【請求項17】
少なくとも一部が前記流体の前記検出相状態に基づいて前記流体についてバブルポイント圧力を推定するステップを更に有する、請求項13記載の方法。
【請求項18】
少なくとも一部が前記流体の前記検出相状態に基づいて前記流体に関する相挙動と圧力の関係を推定するステップを更に有する、請求項13記載の方法。
【請求項19】
少なくとも一部が前記流体の前記検出相状態に基づいて前記流体に関する相体積分布比を推定するステップを更に有する、請求項13記載の方法。
【請求項20】
前記マイクロチャネルは、実質的に矩形の断面を有する、請求項13記載の方法。
【請求項21】
前記マイクロチャネルは、少なくとも一部が、シリコン基板にエッチングされたチャネルと、前記光学検出システムが前記マイクロチャネル内の前記流体の複数個のディジタル画像を生成することができるよう透明なガラス基板とによって構成されている、請求項13記載の方法。
【請求項22】
前記マイクロチャネルは、蛇行形状を呈すると共に少なくとも1メートルの長さを備えている、請求項13記載の方法。
【請求項23】
前記マイクロチャネルは、2マイクロメートルから数百マイクロメートルまでの範囲にある幅を備えている、請求項13記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、流体の熱物性を測定する装置及び方法に関する。より詳細には、本発明は、マイクロフルイディック(microfluidic)装置中を流れる貯留層流体の相挙動特性を分析する装置及び方法に関する。
【0002】
〔関連出願の説明〕
本願は、2009年2月7日に出願された国際出願PCT/IB09/50500号の一部継続出願であり、この国際出願を参照により引用し、その記載内容を本明細書の一部とする。
【背景技術】
【0003】
貯留層流体特性の測定は、眠っている資源としての油田の計画及び開発における重要なステップである。産出プロセスの性能及び挙動の指標を提供する産出井に対してかかる測定をしばしば行なうことが望ましい場合が多い。かかる測定の例は、圧力(pressure)、体積(volume)及び温度(temperature)の測定値であり、これらは、“PVT”測定値と呼ばれる場合が多く、これら測定値は、貯留層流体の複雑な熱物理的挙動の推測に貢献する。PVT測定値の重要な用途の1つは、貯留層流体中の油の状態を説明する状態方程式の構築である。PVT測定値を用いて求めることができる関心のある他の特性としては、流体粘度、密度、化学組成、ガス油比等が挙げられる。PVT分析がいったん完了すると、状態方程式及び他のパラメータを貯留層モデル化ソフトウェアに入力すると、油田地層の挙動を予測することができる。
【0004】
従来型PVT測定は、貯留層流体を収容したシリンダを用いて実施されている。シリンダ内に収納されたピストンは、流体に加わる所望の圧力を維持し、その間に、液相及び気相の高さが、例えばカセトメータを使用して測定される。
【発明の概要】
【発明が解決しようとする課題】
【0005】
広範な用途にもかかわらず、従来型PVT測定法には、幾つかの大きな欠点がある。第1に、従来型PVT分析は、典型的には、完了するのに最長数週間を要する。さらに、4リットルという非常に多い場合のある相当な量の貯留層流体を坑井現場から試験室まで最高約1400キログラム/平方センチメートル(20,000ポンド/平方インチ)の圧力状態に維持しなければならない。このような高い圧力状態にあるかかる大きなサンプルを輸送したり取り扱ったりすることは、コスト高であり、相当な安全上の問題をもたらす。
【0006】
先行技術において知られている貯留層流体の特性を特徴付ける仕方は種々あるが、相当な欠点が依然として存在する。
【課題を解決するための手段】
【0007】
実施形態によれば、マイクロフルイディック装置で相特性を分析するシステムが提供される。このシステムは、流体を運ぶようになっていて、入口通路及び出口通路を備えたマイクロチャネルを有する。入口通路と流体連通状態にある流体導入システムが流体を入口通路を経て圧力下で導入する。光学検出システムが流体の相状態をマイクロチャネルに沿う複数の場所で検出するよう構成されると共に位置決めされている。
【0008】
光学検出システムは、好ましくは、マイクロチャネル内の流体の複数個のディジタル画像に基づいてマイクロチャネルに沿って複数の場所でマイクロチャネル内の流体の気相を液相から区別するよう構成されると共にプログラムされた処理システムを有する。好ましくは、複数個の二値画像をマイクロチャネル内の流体のディジタル画像に基づいて生じさせ、好ましくは、流体中の液体又は気体の比率(フラクション、fraction)に関する値を少なくとも部分的に複数個の二値画像に基づいて複数の圧力について推定する。
【0009】
好ましくは、流体に関する圧力に対する特性、例えばバブルポイント値及び/又は相体積分布比を少なくとも部分的に流体の検出相状態に基づいて推定する。
【0010】
加うるに、幾つかの実施形態よれば、マイクロフルイディック装置で相特性を分析する方法が提供される。流体を運ぶようになっていて、入口通路及び出口通路を備えたマイクロチャネルを用意する。入口通路を介して流体をマイクロチャネル中に圧力下で導入し、流体の相状態をマイクロチャネルに沿う複数の場所で光学的に検出する。
【0011】
本発明の別の特徴及び別の利点は、添付の図面と関連して行なわれる以下の詳細な説明から容易に明らかになろう。
【0012】
本発明を本発明の例示の実施形態の非限定的な例により以下に説明する複数の図を参照して次の詳細な説明において更に説明する。図面の幾つかの図全体にわたり同一の参照符号は、同一又は類似の部分を示している。
【図面の簡単な説明】
【0013】
【
図1】貯留層流体の熱物性を測定するマイクロフルイディック装置の第1の例示の実施形態の概略分解組立て斜視図である。
【
図2】貯留層流体が
図1のマイクロフルイディック装置を通って流れるときの貯留層の反応の状態を示す略図である。
【
図3】
図1のマイクロフルイディック装置の平面図であり、3つの貯留層流体の流れ方式を示す図である。
【
図4】
図1のマイクロフルイディック装置とマイクロフルイディック装置の画像を使用中に生じさせるカメラとを含む貯留層流体測定システムの側面模式図である。
【
図5】貯留層流体の熱物性を測定するマイクロフルイディック装置の第2の例示の実施形態の平面図である。
【
図6】
図5のマイクロフルイディック装置の側面図である。
【
図7】
図5のマイクロフルイディック装置の例示のマイクロチャネル絞り部を示す図である。
【
図8】
図5のマイクロフルイディック装置の例示のマイクロチャネル絞り部を示す図である。
【
図9】
図5のマイクロフルイディック装置の例示のマイクロチャネル絞り部を示す図である。
【
図10】幾つかの実施形態による相挙動分析システムの略図である。
【
図11】幾つかの実施形態によるマイクロフルイディック装置を通って流れる流体からの撮像映像の1コマの一例を示す図である。
【
図12A】幾つかの実施形態によるC
1とC
10の混合物についてのマイクロチャネル内の圧力降下とチャネル長さの関係を表すプロット図である。
【
図12B】幾つかの実施形態によるC
1とC
10の混合物についての相容量分布状態と圧力の関係を表すプロット図である。
【
図13A】幾つかの実施形態による多成分ガスとC
10の混合物についてのマイクロチャネル内における圧力降下とチャネル長さの関係を表すプロット図である。
【
図13B】幾つかの実施形態による多成分ガスとC
10の混合物についての相容量分布状態と圧力の関係を表すプロット図である。
【
図14A】幾つかの実施形態による軽油とC
1の混合物についてのマイクロチャネル内における圧力降下とチャネル長さの関係を表すプロット図である。
【
図14B】幾つかの実施形態による軽油とC
1の混合物についての相容量分布状態と圧力の関係を表すプロット図である。
【
図15】他の幾つかの実施形態によるマイクロフルイディック装置で液体の比率を測定する線走査方法の一例を示す図である。
【
図16】幾つかの実施形態による相状態のマトリックスの一例を示す図である。
【
図17A】幾つかの実施形態による線走査映像の結果を示すプロット図である。
【
図17B】幾つかの実施形態による線走査映像の結果を示すプロット図である。
【
図18A】変形実施形態によるマイクロチャネルを示す図である。
【
図18B】変形実施形態によるマイクロチャネルを示す図である。
【
図19】変形実施形態による螺旋マイクロチャネルレイアウトパターンの一例を示す図である。
【発明を実施するための形態】
【0014】
本発明は、種々の改造例及び変形形態で実施できるが、その特定の実施形態が例示として図面に記載されており、これら実施家板について本明細書において詳細に説明する。しかしながら、理解されるべきこととして、特定の実施形態に関する本明細書における説明は、本発明を開示する特定の形態に限定するものではなく、これとは異なり、本発明は、特許請求の範囲に記載された本発明の範囲に含まれる全ての改造例、均等例及び変形例を含むものである。
【0015】
本発明の例示の実施形態について以下に説明する。分かりやすくするために、実際の具体化例の特徴の全てを本明細書において説明しているわけではない。理解されるように、かかる実施形態のどれについてもその開発にあたり、開発者の特定の目標を達成し、例えば、具体化例ごとに異なるシステム関連及び業務関連上の制約に従うための多くの具体化例特有の決定を行なわなければならない。さらに、理解されるように、かかる開発努力は、複雑であり且つ時間がかかるが、それにもかかわらず、この開示内容の恩恵を受ける当業者にとって日常行なわれている業務である。さらに、種々の図に記載されている参照符号及び指示記号は、同一の要素を示している。
【0016】
実施形態によれば、気−液混合物の相挙動を測定する技術が提供される。この技術は、流体の圧力を受けて変形する薄いシリコーンメンブレンに連結されたマイクロチャネルで構成される微細加工チップを用いる。チャネル内の圧力は、更に同時係属中の米国特許出願第12/533,292号明細書及び同日出願の米国特許出願公開第2010/0017135号明細書(発明の名称:PRESSURE MEASUREMENT OF A RESERVOIR FLUID IN A MICROFLUIDIC DEVICE)(代理人事件番号117.0037US・NP)に記載されているようなメンブレンを用いて測定される。なお、この2つの特許文献を参照により引用し、これらの記載内容を本明細書の一部とする。幾つかの実施形態によれば、チャネルに沿って液体の比率は、流れの映像を撮像し、これらをマットラボ(Matlab)プログラムで処理することによって測定される。相挙動曲線は、圧力に対して液体の比率をプロットすることにより得られる。
【0017】
実施形態によれば、マイクロフルイディック装置で貯留層流体の圧力を測定するシステム及び方法が提供される。この開示の目的上、「貯留層流体」という用語は、地下の透過性の岩の塊内に貯蔵され又はこれから送られる流体を意味する。かくして、「貯留層流体」という用語は、炭化水素流体、生理的食塩水、例えば塩水並びに他の地層水及び他の流体、例えば超臨界段階にある二酸化炭素が挙げられるが、これらには限定されない。さらに、この開示の目的上、「マイクロフルイディック」という用語は、数マイクロメートルから数百マイクロメートルまでの範囲にある幅を意味するが、チャネルの幅の何倍も長い長さを示す流体運搬チャネルを有することを意味する。同様に、「マイクロチャネル」という用語は、数マイクロメートルから数百マイクロメートルまでの範囲にある幅を示す流体運搬チャネルを意味している。本明細書において説明するマイクロチャネルのうちの多くは、作製事実の現実性に起因して長方形断面のものであるが、マイクロチャネルの断面は、任意形状のものであって良く、かかる形状としては、丸形、長円形、楕円形、正方形等が挙げられる。
【0018】
図1は、本発明の幾つかの実施形態に従って相挙動を研究するマイクロフルイディック装置101の概略分解組立て斜視図である。図示の実施形態では、マイクロフルイディック装置101は、マイクロチャネル105、入口ウェル107及び出口ウェル109を備えた第1の基板103を有する。マイクロチャネル105は、入口ウェル107と出口ウェル109との間に延びると共にこれらのウェルと流体連通状態にある。マイクロチャネル105は、第1の基板103に蛇行状の又は曲がりくねったパターンを形成し、かくして、マイクロチャネル105は、相当な長さにわたって延びるが、比較的僅かな面積を占める。一実施形態によれば、マイクロチャネル105は、1メートル以上の長さ、約100マイクロメートルの幅及び約50マイクロメートルの深さを備えているが、本発明は、マイクロチャネル105について他の寸法を採用してもよい。マイクロフルイディック装置101は、第1の基板103の上面115に結合された下面113を備えた第2の基板111を更に有する。第2の基板111を第1の基板103に結合すると、マイクロチャネル105は、入口ウェル107のところの入口117及び出口ウェル109のところの出口119を除き密閉される。第2の基板111を貫通して入口通路121及び出口通路123が形成されており、これら通路121,123は、第1の基板103の入口ウェル107及び出口ウェル109とそれぞれ流体連通状態にある。また、
図1には、多数のキャビティ、例えばキャビティ150が示されており、各キャビティは、細い側部チャネルを用いて主マイクロチャネル105に連結されている。以下に更に詳細に示すように、各キャビティ、例えばキャビティ150は、圧力測定を可能にする変形可能なメンブレンによって部分的に構成されている。好ましい実施形態によれば、基板103は、円形の開口部を有する状態で作製され、キャビティは、側部が基板103の開口部の壁によって構成され、底部が変形可能なメンブレンで構成され、頂部が第2の基板111によって構成されている。
【0019】
図1では、第1の基板103は、好ましくは、シリコンで作られ、この第1の基板は、厚さが約500マイクロメートルであり、第2の基板111は、ガラス、例えばホウケイ酸ガラスで作られている。ただし、本発明は、本明細書において詳細に説明するように、第1の基板103について他の材料を想定している。幾つかの実施形態によれば、基板103は、従来型のSOI(絶縁体に実装されたシリコン)ウェーハである。例示のホウケイ酸ガラスは、米国ニューヨーク州エルムスフォード所在のスコット・ノース・アメリカ・インコーポレイテッド(Schott North America, Inc.)及び米国ニューヨーク州コーニング所在のコーニング・インコーポレイテッド(Corning Incorporated)によって製造されている。
【0020】
動作原理を説明すると、加圧貯留層流体を、入口通路121、入口ウェル107及び入口117を通って、マイクロチャネル105中に押し込む。貯留層流体は、出口119、出口ウェル109及び出口通路123を通ってマイクロチャネル105から出る。マイクロチャネル105は、これを通る貯留層流体の流れに対して相当大きな抵抗を与える。というのは、マイクロチャネル105は、マイクロチャネル105の長さに対して断面が非常に小さいからである。流体の流れがマイクロチャネル105の入口117と出口119との間で確立されると、マイクロチャネル105内の貯留層流体の圧力は、入口117のところの入口圧力、例えば貯留層圧力から、出口119のところの出口圧力、例えば大気圧まで低下する。流量は、入口117と出口119との間の全体的圧力降下及び粘度の関数である。マイクロチャネル105を通る流体の流れは層流であり、かくして、貯留層流体が単相流を示す場合、入口117と出口119との間の圧力降下は線形である。貯留層流体の熱物性を測定するマイクロフルイディック装置及び方法のこれ以上の詳細については、例えば、2009年2月7日に出願された国際出願PCT/IB09/50500号明細書を参照されたい。なお、この国際出願を参照により引用し、その記載内容を本明細書の一部とする。この流れがいったん確立されると、各キャビティ、例えばキャビティ150内のメンブレンは、流体圧力に起因して変形し、変形量は、同時係属中の米国特許出願第12/533,292号明細書及び同日出願の米国特許出願公開第2010/0017135号明細書(発明の名称:PRESSURE MEASUREMENT OF A RESERVOIR FLUID IN A MICROFLUIDIC DEVICE)(代理人事件番号117.0037US・NP)に十分に説明されているように光学的に検出可能である。
【0021】
図2は、幾つかの実施形態による貯留層流体が全体として矢印202に一致した方向でマイクロチャネル100を通って流れているときの貯留層流体201の反応状態の略図である。貯留層流体がマイクロチャネル105の入口117に入るとき、貯留層流体は、貯留層流体の「バブルポイント(気泡点)圧力」よりも高い圧力にある。流体のバブルポイント圧力は、流体が所与の温度で沸騰、即ち、泡立ち始める圧力又はこれよりも低い圧力である。貯留層流体がマイクロチャネル105の出口119から出るとき、貯留層流体は、貯留層流体のバブルポイント圧力よりも低い圧力にある。かくして、「最初の」気泡203が、貯留層流体がバブルポイント圧力にあるマイクロチャネル105内の或る場所、例えば
図2の符号205で示された場所で貯留層流体中に生じる。場所205の下流において、貯留層流体201の多相流、例えば気体及び液体の流れがマイクロチャネル105内に生じる。先に生じた気泡、例えば、気泡207,209,211,213,215等は、貯留層流体201がマイクロチャネル105内で最初の気泡の生成に対応した場所を越えて流れると、マイクロチャネル105のこの部分の減圧及び貯留層流体201の軽い成分の蒸発に起因して、サイズが増大する。気泡は、液体のスラッグ、例えば、スラッグ217,219,221,223,225等によって互いに分離されている。気泡、例えば気泡207,209,211,213,215の膨張の結果として、マイクロチャネル105内の気泡及び液体スラッグ、例えばスラッグ217,219,221,223,225の流速が増大する。貯留層流体201の質量流量は、マイクロチャネル105に沿って実質的に一定であるが、貯留層流体201の体積流量は、貯留層流体がマイクロチャネル105に沿って流れるにつれて増大する。貯留層流体はまた、細いチャネル152を通ってキャビティ170に流入する。幾つかの実施形態によれば、細い側部チャネル152の幅は、約50マイクロメートルであり、即ち、マイクロチャネル105の幅の約半分であり、深さが約50マイクロメートルである。
【0022】
貯留層流体、例えば
図2の貯留層流体201の熱物性、例えばガス油比、相エンベロープ及び状態方程式は、マイクロチャネル105内の気泡のサイズ及び密度を測定することによって決定することができる。次に、
図3を参照すると、マイクロチャネル105を通る貯留層流体の流れが3つの方式で示されている。第1の気泡、例えば
図2の第1の気泡203は、マイクロチャネル105に沿って場所301のところに形成される。貯留層流体の圧力は、マイクロチャネル105の入口117から、第1の領域303として
図3に示された第1の気泡の場所301まで、バブルポイントを越えている。第1の領域303内に気泡は観察されない。第1の領域303では、貯留層流体の流れは、レイノルズ数が小さいので層流であり、圧力は、この第1の領域内において線形に低下する。いったん気泡が形成されると、気泡は、マイクロチャネル105内でこれに沿って出口119に向かって移動し、気泡の体積は増大する。第2の領域305内では、貯留層流体のボイド率、即ち体積全体に対するガスの体積は、1未満である。第3の領域307内では、貯留層流体の流れよりも高速ガス流の方が支配的である。気泡は、水のような液体の小滴によって分離される。貯留層流体の圧力は、第3の領域307内で急減する。気泡は、第3の領域307内よりもゆっくりとした速度で第2の領域305内を流れ、第3の領域307内では、気泡は、しばしば裸眼で追うことがほとんどできない。
【0023】
貯留層流体の安定化された流れがマイクロチャネル105内でいったん確立されると、
図4に示されているように、カメラ401を用いて流れのスナップショットを撮像する。なお、入口117中への貯留層流体の流れ(
図1及び
図3に示されている)が矢印403によって示され、出口119からの貯留層流体の流れ(
図1及び
図3に示されている)が矢印405によって示されている。一実施形態では、カメラ401は、電荷結合デバイス(charge-coupled device:CCD)型カメラである。カメラ401に生じた画像は、マイクロチャネル105内に入っている貯留層流体中の気泡のサイズ及び密度を測定するため、例えば米国メリーランド州ベッセダ所在のユナイテッド・ステーツ・ナショナル・インスティトューツ・オブ・ヘルス(United States National Institutes of Health)から入手できるImageJ 1.38x、及び米国マサチューセッツ州ケンブリッジ所在のエクサイテックス・インコーポレイテッド(Xcitex, Inc.)から入手できるProAnalystのような画像分析ソフトウェアを用いて処理される。この技術を用いると、貯留層流体の多くの熱物性、例えばガス油比、相エンベロープ及び状態方程式を求めることができる。
【0024】
図5及び
図6は、幾つかの実施形態によるマイクロフルイディック装置501を示す。
図1のマイクロフルイディック装置101の場合と同様、マイクロフルイディック装置501は、マイクロチャネル505、入口ウェル507及び出口ウェル509を備えた第1の基板503を有する。マイクロチャネル500は、入口ウェル507と出口ウェル509との間に延びると共に、これらと流体連通状態にある。図示の実施形態では、第1の基板503は、シリコンで作られているが、第1の基板503は、ガラスで作られてもよい。マイクロチャネル505、入口ウェル507及び出口ウェル509は、一実施形態では、まず、フォトリソグラフィ法を用いて第1の基板503上にパターニングされ、次に、ディープ反応性イオンエッチング法を用いて第1の基板503にエッチングされる。
図1に示した第1の実施形態の場合と同様、好ましい実施形態では、マイクロチャネル505は、1メートル以上の長さ、約100マイクロメートルの幅、及び約50マイクロメートルの深さを備えるが、本発明はまた、マイクロチャネル505について他の寸法を想定している。所与の数の細い側部チャネル、例えば側部チャネル552,556が主マイクロチャネル505から円形キャビティ、例えばキャビティ550,554まで延びている。また、キャビティ558に通じる側部チャネル560が示されている。幾つかの実施形態によれば、12個のキャビティがマイクロチャネル505の長さに沿って互いに分離され、キャビティの各々は、直径が約2mmであるが、本発明はまた、キャビティの他の個数及び各キャビティについての他の直径を想定している。各キャビティは、一部が装置501の下側に設けられた軟質メンブレンによって構成されている。かかるメンブレンは、局所静圧下で変形する。変形量は、共焦点多色センサ(Confocal PolyChromatic Sensor:CCS)を用いて測定され、較正後、チャネル内部の圧力値をもたらす。
【0025】
マイクロフルイディック装置501は、入口ウェル507及び出口ウェル509とそれぞれ流体連通状態にある入口通路513及び出口通路515を構成する第2の基板511を更に備える。第2の基板511は、第2の基板111(
図1に示されている)に関して本明細書において説明したように、ガラスで作られている。装置501の前側を透明にすることによって、マイクロチャネル500内における流れの観察及び流れの映像の撮像が提供される。一実施形態では、入口通路513及び出口通路515は、ウォータジェット又は研磨ウォータジェット技術を用いて第2の基板511に作られる。第1の基板503と第2の基板511は、好ましくは、基板503,511の結合面の注意深いクリーニング後に、陽極ボンディング法を用いて互いに融着される。
【0026】
本発明は、特定の具体化例に必要な任意適当な寸法及び/又は形状のマイクロフルイディク装置501を想定している。一実施形態では、マイクロフルイディック装置501は、約80ミリメートルの全長Aと、約15ミリメートルの全幅Bとを示す。かかる実施形態では、通路513と通路515は、約72ミリメートルの距離Cだけ互いに離隔され、キャビティ558,550は、約3ミリメートルの距離Dだけ互いに離隔され、マイクロチャネル505の蛇行区分に沿うキャビティ、例えばキャビティ550とキャビティ554は、約5ミリメートルの距離Eだけ互いに離隔されている。注目されるべきこととして、マイクロフルイディック装置101はまた、マイクロフルイディック装置501に対応した寸法を示してもよい。しかしながら、本発明の範囲は、これに限定されるものではない。
【0027】
図7を参照すると、マイクロチャネル505の1つ又は2つ以上の部分は、貯留層流体中に気泡核の形成を引き起こすよう断面積の減少したゾーンを有する。例えば、
図7及び
図8に示されているように、マイクロベンチュリ管701がマイクロチャネル505の入口に組み込まれている。マイクロベンチュリ管701は、マイクロチャネル505の幅W
2よりも小さな幅W
1を備えたノズル開口部801を有している。マイクロベンチュリ701により提供される絞り部により、貯留層流体の流速の増大と共にノズル開口部801のところに貯留層流体中に相当な圧力降下が生じる。圧力降下と流速の増大の組み合わせ効果により、貯留層流体中に気泡核の形成が引き起こされる。好ましくは、マイクロチャネル505は、
図7及び
図9に示されているように1つ又は2つ以上の追加の絞り部703を更に有する。絞り部703は、マイクロチャネル505の幅W
4よりも小さな幅W
3を備えている。好ましくは、ノズル開口部801の幅W
1及び絞り部703の幅W
3は、約20マイクロメートルであり、マイクロチャネル505の好ましい幅W
2,W
4は、100マイクロメートルである。これらの絞り部により、貯留層流体の速度は、最高約500パーセントだけ増大する。
【0028】
図10は、幾つかの実施形態による相挙動分析システムの略図である。コンピュータシステム1030により電子制御される高容量シリンジ1054型ポンプがサンプルボトル1052内に圧力下で貯蔵された試験用流体を押す。流体は、サンプルボトル1052から弁1050を通ってマイクロフルイディック装置501の蛇行チャネル中に流される。一定の入力圧力が維持され、圧力計1056により測定される。強力な光1062がマイクロフルイディック装置501の透明な面511を照明し、カメラ1060がマイクロチャネル内の流れの映像を撮像する。気泡及び液体スラッグがチャネル内に同時に存在している場合、これら2つの相相互間には輝度の大きな差が存在する。次に、カメラ1060により撮像された画像は、流れに沿ってスラッグ及び気泡の分布状態を提供する。光学センサ1010が高精度段1014に取り付けられている。光学センサ1010は、マイクロフルイディック装置501の後側面に沿って動き、装置501上の各キャビティのためのメンブレンの変形量を測定する。スペクトルメータ又は分光計1020が光ファイバリンク1012を介して光学センサ1010からの信号を受け取る。スペクトルメータの結果がコンピュータシステム1030に送られ、かくして、装置501のキャビティの場所におけるチャネル内の圧力の記録が提供される。コンピュータシステム1030は、1つ又は2つ以上のプロセッサ、記憶システム1032(これは、コンピュータ可読媒体を受け入れる1つ又は2つ以上の取り外し可能な記憶装置を含む)、ディスプレイ1036及び1つ又は2つ以上のヒューマン入力装置1034、例えばキーボード及び/又はマウスを含む。コンピュータシステム1030は、スペクトルメータ1020からのデータを収集するデータ収集システムを更に含む。
【0029】
カメラ1060からの映像は、例えば米国のイーピーアイエックス・インコーポレイテッド(EPIX, Inc.)から入手できる映像収集プログラムを用いてコンピュータシステム1030上に記憶される。幾つかの実施形態によれば、マイクロチャネルの全画像の映像は、約300個のコマ(フレーム)で作られる。幾つかの実施形態によれば、ポンプ1054のコントローラ、圧力計1056、段1014及び光学センサ1012は、全て、コンピュータシステム1030に装置全てを制御すると共に測定値を記録するコンピュータシステム1030上の制御アプリケーション、例えばナショナル・インストラメンツ・コーポレイション(National Instruments Corporation)から入手できるLabVIEWプログラムと連絡状態にある。
【0030】
図11は、幾つかの実施形態に従ってマイクロフルイディック装置を通って流れる流体からの撮像映像の1コマの一例を示している。測定値は、流れに加えて光学センサを用いてマイクロフルイディック装置の互いに異なるキャビティのところで測定された圧力値の1つ又は2つ以上の映像で構成されている。コマ1102は、流れの撮像映像からの1コマであり、コマ1104は、二値画像又は白黒画像へのその変換から得られる画像である。本明細書で用いられる「二値画像」又は「2レベル画像」という用語は、各画素について2つの取り得る値しか持たないディジタル画像を意味している。入力直後の第1のセグメントのところでは(コマの左側の近くのところでは)、圧力は依然として高く、液体から出たガスの量は多くない。しかしながら、更に下流側では(コマの右側では)、圧力が減少していくので、ますます多くのガスが液体から出る。
【0031】
コンピュータシステム1030上で動作する画像処理ルーチン、例えば、Matlabでプログラムされた画像処理ルーチンは、例えば符号1102で示されている元のグレースケール画像を例えば符号1104で示されている二値画像に変換する。このプロセスには、幾つかの画像処理パラメータの懸命な選択が含まれる。次に、二値画像それ自体を例えばこれ又マットラボ下でプログラムされたコンピュータ計算ルーチンにより分析する。コンピュータ計算の出力は、マイクロチャネルを構成するセグメントの各々中の液体の比率である。次に、この液体の比率を撮像映像のコマ全てについて平均し、かくして、より正確な測定値及び標準偏差の値が得られる。かくして、このプロセスは、チャネルに沿って液体の比率の変化状況を提供する。
【0032】
図12Aは、幾つかの実施形態によるC
1及びC
10についてのマイクロチャネル内の圧力降下とチャネル長さの関係を示すプロット又はグラフ図である。
図12Bは、幾つかの実施形態によるC
1とC
10の混合物についての相体積分布状態と圧力の関係を示すプロット又はグラフ図である。
図12A及び
図12Bは、
図5に示されたマイクロフルイディック装置及び
図10に示されたセットアップ中における実際の流体に対して行なわれた測定結果を示している。流体は、500psigで飽和したメタンとデカンの混合物である。曲線1210の圧力測定値は、装置内の線形圧力降下を示している。圧力測定値とチャネル内の相体積分布状態を組み合わせることにより、
図12Bに示されているように互いに異なる圧力での流体の相体積分布状態が得られる。
図12Bでは、白抜きの円、例えば点1212は、
図10に示されたセットアップ中のマイクロフルイディック装置を用いた測定結果を示し、黒塗りの正方形、例えば点1214は、従来型PVT装置により行なわれた測定結果を示している。
【0033】
図13Aは、幾つかの実施形態による多成分ガスとC
10の混合物についてのマイクロチャネル内の圧力降下とチャネル長さの関係を示すプロット又はグラフ図である。
図13Bは、幾つかの実施形態による多成分ガスとC
10についての相体積分布状態と圧力の関係を示すプロット又はグラフ図である。
図13A及び
図13Bは、600psigでデカンと再結合された多成分ガスに対する測定結果を示している。
図13Aでは、曲線1310の圧力測定値は、装置内の線形圧力降下を示している。
図13Bでは、白抜きの円、例えば点1312は、
図10に示されたセットアップ中のマイクロフルイディック装置を用いた測定結果を示し、黒塗りの正方形、例えば点1314は、従来型PVT装置により行なわれた測定結果を示している。
【0034】
図14Aは、幾つかの実施形態についての軽油とC
1の混合物についてのマイクロチャネル内の圧力降下とチャネル長さの関係を示すプロット又はグラフ図である。
図14Bは、幾つかの実施形態についての軽油及びC
1についての相体積分布状態と圧力の関係を示すプロット又はグラフ図である。
図14A及び
図14Bは、500psig飽和圧力でメタンと再結合された軽油に対する測定結果を示している。
図14Aでは、曲線1410の圧力測定値は、装置内における線形圧力降下を示している。
図14Bでは、白抜きの円、例えば点1412は、
図10に示されたセットアップ中のマイクロフルイディック装置を用いた測定結果を示し、黒塗りの正方形、例えば点1414は、従来型PVT装置により行なわれた測定結果を示している。
図12B、
図13B及び
図14Bから理解できるように、マイクロフルイディック装置及び従来型PVTによる測定結果相互間には良好な一致がある。
【0035】
図15は、幾つかの他の実施形態による、マイクロフルイディック装置で流体の比率を測定する線走査方法(line-scan method)の一例を示す。カメラ、例えば
図10のカメラ1060は、チャネルの画像中の選択された線のみを撮像するよう構成されるのがよい。一手法では、カメラは、バーコードリーダと同様な仕方で動作する。斜線で示した長方形で強調表示された各コマは、本質的に、蛇行状マイクロチャネルの全てのセグメント内の同一位置で相状態を再び1つにまとめた線である。所与のセグメントに関し、コマ撮り位置は、本質的に一点であり、相状態は、液体(この場合、線中のセグメントに対応した点が明るい(1の値が割り当てられている))であっても良く、或いは、気体(この場合、同一の点は、暗い(0の値が割り当てられている))であっても良い。単一のコマから得られる割り当てられた値の単純化された例が、二値列1510として示されている。
【0036】
各測定線は、最初がグレースケール値であり、次に、
図11を参照して上述したのと同一の画像処理を受ける。次に、同様なコンピュータ計算により、処理されたコマ中の各セグメントに関し線位置に相状態(0又は1)が得られる。最後に、この二値は、映像コマ全てについて平均され、それにより、チャネルに沿って液体の比率が得られる。この線走査技術により、約20,000コマ(フレーム)の撮像が可能であり、かくして、ビデオフレームの平均が向上し、誤差が減少する。変形実施形態によれば、フォトダイオードのアレイに接続された光ファイバのアレイが従来型カメラに代えて用いられる。アレイ中の各光ファイバは、蛇行状マイクロチャネル505の単一垂直セグメントに差し向けられる。
【0037】
図16は、幾つかの実施形態による相状態のマトリックスの一例を示している。二値画像に変換された後の
図15について説明した線走査映像のコマは、マトリックス1610を形成するよう垂直シーケンスに置かれるのが良い。得られたマトリックス1610は、映像の全ての時点におけるセグメント全て中の相状態を表示している。Y軸は、時間であり、前方下方に動き、コマの周期は、2本の線を互いに分離している。X軸は、セグメントが全画像に入っているときのセグメントの数である。マイクロチャネル入力は、左側に位置し、出力は、右側に位置している。この表示は、チャネル内の流れに特有の一種の「指紋」を構成し、マトリックス中に観察することができる頻度としてこれに関する貴重な情報を提供する。
【0038】
図17A及び
図17Bは、幾つかの実施形態による線走査映像の結果を示すプロット又はグラフ図である。線走査技術は、全画像映像で得られた液体の比率測定値に極めて近い液体の比率測定値を提供する。この場合もまた、液体の比率は、チャネル内の圧力分布に対してプロットされ、得られた曲線は、従来の測定結果ともう一度一致する。
図17Aでは、500psigで飽和したメタン−デカン混合物に対する線走査測定結果が、黒塗りの正方形、例えば点1710で示され、従来通り測定されたデータは、白抜きの三角形、例えば点1712で示されている。
図17bでは、600psigでデカンで飽和された多成分ガスに対する線走査測定結果は、白抜きの円、例えば点1720で示され、従来通り測定されたデータは、黒塗りの正方形、例えば点1722で示されている。
【0039】
図18A及び
図18Bは、変形実施形態としてのマイクロチャネルを示している。本明細書における議論の大部分は、マイクロチャネル、従来型シリコンエッチング法により製作されたものとしてのマイクロチャネルに関するが、他形式のマイクロチャネルを本明細書において説明したマイクロフルイディック装置及び関連技術に使用できる。例えば、マイクロチャネル1805は、蛇行形状に形成されたガラス管から作られる。
図18Bは、ガラス管マイクロチャネルの断面を示しており、この断面は、丸形である。さらに、蛇行パターン以外のマイクロチャネルのレイアウトパターンをマイクロフルイディック装置において用いることができる。
図19は、変形実施形態としての螺旋マイクロチャネルレイアウトパターンの一例を示している。マイクロチャネル1905を従来型シリコンエッチング法で作製でき又は他の技術を用いて形成でき、例えば、マイクロチャネル1905は、
図18A及び
図18Bに示されているガラス管であってもよい。
【0040】
本明細書において多くの実施形態を貯留層流体の分析について説明したが、本発明は、多くの他の種類の流体の分析にも利用できる。幾つかの実施形態によれば、1種類又は2種類以上の生物医学的流体の分析が提供され、かかる生物医学的流体としては、体液、例えば血液、尿、血漿、粘液及び唾液が挙げられる。他の実施形態によれば、1種類又は2種類以上の流体の分析が環境モニタリングに関して提供され、かかる環境モニタリングとしては、水の純度、水質及び廃水処理及び飲料水及び/又は海水処理及び/又は分析が挙げられる。さらに別の実施形態によれば、他の流体化学組成物の分析が提供される。
【0041】
本発明の多くの変更例及び改造例は、疑いもなく、上述の説明を読んだ後に当業者には明らかになろうが、例示により図示すると共に説明した特定の実施形態は、本発明を限定するものとみなされてはならないことは理解されるべきである。さらに、本発明を特定の好ましい実施形態を参照して説明したが、本発明の精神及び範囲に属する変形例が当業者には想到されよう。上述の例は、説明の目的で提供されているに過ぎず、本発明の限定として解されてはならないことが注目される。本発明の観点におけるその範囲及び精神から逸脱することなく、現時点において記載され、そして補正される特許請求の範囲に記載される本発明の範囲内で変更を行なうことができる。本明細書において本発明を特定の手段、材料及び実施形態に関して説明したが、本発明は、本明細書において開示した細部に限定されるものではなく、本発明は、例えば特許請求の範囲に記載された本発明の範囲に含まれるあらゆる機能的に均等な構造、方法及び使用に及ぶ。