(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5678315
(24)【登録日】2015年1月16日
(45)【発行日】2015年3月4日
(54)【発明の名称】宇宙船、および推進システムを再生燃料電池システムに結合する方法
(51)【国際特許分類】
B64G 1/40 20060101AFI20150212BHJP
【FI】
B64G1/40 A
【請求項の数】9
【全頁数】12
(21)【出願番号】特願2010-36082(P2010-36082)
(22)【出願日】2010年2月22日
(65)【公開番号】特開2010-195390(P2010-195390A)
(43)【公開日】2010年9月9日
【審査請求日】2013年2月6日
(31)【優先権主張番号】0900836
(32)【優先日】2009年2月24日
(33)【優先権主張国】FR
(73)【特許権者】
【識別番号】505157485
【氏名又は名称】テールズ
(74)【代理人】
【識別番号】100071054
【弁理士】
【氏名又は名称】木村 高久
(72)【発明者】
【氏名】イザベル、ハン
(72)【発明者】
【氏名】アントワーヌ、イフライ
(72)【発明者】
【氏名】マルタン、ラング
【審査官】
畔津 圭介
(56)【参考文献】
【文献】
特開平04−303100(JP,A)
【文献】
特開平06−008896(JP,A)
【文献】
特開2005−053353(JP,A)
【文献】
国際公開第99/000300(WO,A1)
【文献】
米国特許第05279484(US,A)
【文献】
米国特許第03520137(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
B64G 1/40
(57)【特許請求の範囲】
【請求項1】
再生燃料電池タイプのエネルギー貯蔵システム(20)と、化学推進システム(10)と、推進のために使用される推進剤を加圧するためのシステムとを備える宇宙船であって、前記エネルギー貯蔵システムが、少なくとも3つのタンクを備え、第1のタンク(1)内に燃料を含み、第2のタンク(2)内に酸化剤を含み、第3のタンク(3)内に、前記酸化剤と前記燃料との反応から生じる生成物を含むことができるようにし、前記加圧システムが、第1のタンク(1)および第2のタンク(2)内に含まれる反応物とは異なる加圧気体を含む第4および第5の加圧タンク(4および5)を少なくとも備え、宇宙船が、エネルギー貯蔵システムのタンクを推進剤加圧システムのタンクに結合するための複数の手段を備え、これらの手段が、加圧タンク(4および5)を排気するための手段と、前記推進システム(10)を前記加圧タンクから隔離するための手段と、前記加圧タンク(4および5)を互いに隔離するための手段と、前記加圧タンクが前記加圧気体をもはや含まないときに、前記燃料タンク(1)を前記第4のタンク(4)に接続し、前記酸化剤タンク(2)を前記第5のタンク(5)に接続するための手段とを備える宇宙船。
【請求項2】
前記酸化剤および前記燃料を含む前記エネルギー貯蔵システムの前記タンク(1および2)の寸法が、前記エネルギー貯蔵システムにおいて、所与の圧力で、ミッション段階中の前記宇宙船の電力要件に関して必要な寸法よりも小さく、また、前記加圧タンク(4および5)が、前記ミッション段階中に前記エネルギー貯蔵システム内で機能することができることを特徴とする請求項1に記載の宇宙船。
【請求項3】
前記推進システム(10)と前記エネルギー貯蔵システム(20)との間に弁システムを備え、すなわち、前記加圧タンク(4および5)と前記推進システム(10)との間の第1の弁(33)と、前記第1のタンク(1)と前記第4のタンク(4)との間の第2の弁(31)と、前記第2のタンク(2)と前記第5のタンク(5)との間の第3の弁(36)と、前記加圧タンクを排気するための第4の弁(35、37、および38)とを備える請求項2に記載の宇宙船。
【請求項4】
前記加圧タンク(4および5)を排気するための前記手段が、前記加圧タンク(4および5)の出口に、推進効果を及ぼさずに宇宙船の外部に流体を放出するための手段(6)を含むことを特徴とする請求項3に記載の宇宙船。
【請求項5】
前記エネルギー貯蔵システムが、電気分解を行うための電力を発生するためのシステムによって電力供給されることを特徴とする請求項4に記載の宇宙船。
【請求項6】
請求項1〜5のいずれか一項に記載の衛星タイプの宇宙機。
【請求項7】
再生燃料電池タイプのエネルギー貯蔵システムのタンクを、宇宙船の化学推進システムの推進剤を加圧するためのタンクに結合するための方法であって、前記エネルギー貯蔵システムが、少なくとも3つのタンクを備え、第1のタンク内に燃料を含み、第2のタンク内に酸化剤を含み、第3のタンク内に、前記酸化剤と前記燃料との反応から生じる生成物を含み、加圧システムが、第1のタンク(1)および第2のタンク(2)内に含まれる反応物とは異なる加圧気体を含む第4および第5の加圧タンクを少なくとも備える方法であって、以下の連続するステップを含み、すなわち、
−第1のステップ(41)で、前記燃料が、前記第1のタンク(1)内のみに含まれ、前記酸化剤が、前記第2のタンク(2)内のみに含まれ、
−第2のステップ(42)で、前記推進システム(10)が、前記加圧タンク(4および5)から隔離され、
−第3のステップ(43)で、前記加圧タンク(4および5)が排気され、
−第4のステップ(44)で、前記加圧タンクが互いに隔離され、
−第5のステップ(45)で、前記加圧タンクが、前記エネルギー貯蔵システムの前記第1および第2のタンクに接続され、
−第6のステップ(46)で、前記第4のタンクが、前記燃料の一部を含み、前記第5のタンクが、前記酸化剤の一部を含み、他の部分が、前記エネルギー貯蔵システムの前記第1および第2のタンク内に含まれる、方法。
【請求項8】
前記第1のステップで、前記酸化剤および前記燃料を含む前記タンク(1および2)の寸法が、所与の圧力で、ミッション段階中の前記宇宙船の電力要件に関して必要な寸法よりも小さいことを特徴とする請求項7に記載の方法。
【請求項9】
前記宇宙船が、対地静止軌道内に位置決めされるように意図された宇宙機であり、軌道内への前記位置決めに先立って、宇宙船打上げ段階と、それに続く、前記宇宙船が前記対地静止軌道位置に遷移される段階とがある方法であって、前記宇宙船遷移段階後に、前記第2のステップ(42)が引き起こされることを特徴とする請求項8に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の分野は、再生燃料電池タイプのエネルギー貯蔵システムと推進システムとを備える宇宙船、より詳細には、衛星タイプの宇宙機に関する。
【背景技術】
【0002】
現時点で、例えば、地上通信ネットワークに専ら関わる1つまたは複数の観測ミッションを実現するためのいくつかの電子システムが衛星に搭載される。それらは、顕著には、地上との通信するためのモジュール、衛星を制御および誘導するためのモジュール、観測ミッション用のオプトエレクトロニクス・モジュール、および/または通信インフラストラクチャ機能を実現するためのモジュールを含む。全ての電子システムを動作させるために、現行の衛星は、蓄電池タイプのエネルギー貯蔵システムを有する。また、それらの衛星は、太陽エネルギー発電機を有し、太陽エネルギー発電機により、それが日光に曝されたときに衛星の電子システムに電力を供給できるようになり、また蓄電池を充電できるようになる。太陽が地球によって隠される位置に衛星が位置されるとき、電子システムは、蓄電池のみによって電力供給される。
【0003】
燃料電池の分野で成し遂げられた進歩により、そのようなエネルギー貯蔵システムを衛星に搭載して装備することを考えることができるようになった。再生燃料電池システム(RFCS)が、電力送達に関する効果的な自立型の解決策を提供し、特に、公称動作のために高電力を必要とする遠隔通信衛星クラスに適している。従来技術では、燃料電池タイプのエネルギー貯蔵システムを備える宇宙機が知られている。例えば、「PEM Fuel Cell Status and Remaining Challenges for Manned Space−Flight Applications」というタイトルの文献に、そのようなシステムが記載されている。この文献は、有人宇宙機を説明し、衛星設計で見られるほどには、空間および小型化の問題による制約が課されていない。
【0004】
また、自動車分野においても燃料電池を使用することが知られている。しかし、自動車分野に比べ、宇宙分野では、電子システムに対して、顕著にはシステムにエネルギーを供給する機能に対して、特定の動作制約が課される。例えば、特に温度に関する電子システムの過酷な動作環境を挙げることができ、さらに、電子システムの信頼性の制約を挙げることができ、電子システムは、極端に低い故障率を有さなければならず、かつ太陽が隠される位置に衛星があるか否かに依存して電力供給モードの変更が常に行われなければならず、さらに、当然、衛星がエネルギー自給できるという制約を挙げることができ、この制約は、宇宙での長期のミッションを実現するために解決されなければならない。
【0005】
宇宙分野で、より特定的には衛星に関して提起される問題をより良く理解できるように、ここで、遠隔通信衛星の動作モードを簡単に説明する。衛星は、打ち上げられた後、遷移段階後に対地静止軌道内に配置され、遷移段階中、衛星は、一連の楕円軌道を描いて、最終的に動作軌道に達する。したがって、第1の打上げ段階と、第2の遷移段階と、第3の対地静止軌道段階とが区別される。打上げ段階中、および遷移段階中の太陽発電機配備前には、衛星の動作システムは、蓄電池タイプであっても再生燃料電池タイプであってもよい搭載型のエネルギー貯蔵システムによって電力供給される。再生燃料電池または蓄電池の場合、打上げ段階中および太陽発電機配備前に電子システムに所要の電力を提供するために、システムは、打上げ前に十分なエネルギー貯蔵レベルを有さなければならない。遷移段階および軌道段階中、衛星は、太陽発電システムにより、太陽発電システムが正しく太陽に向けられたときにエネルギーを回復することができる。したがって、電子システムは、衛星が太陽に曝されるときには太陽発電システムによって電力供給され、衛星食位置では、再生燃料電池または蓄電池によって電力供給される。また、発電システムの機能は、二次エネルギー源(電解装置モードでの蓄電池または再生燃料電池)を充電することである。
【0006】
燃料電池の原理は、太陽エネルギーを使用して電気分解を行い、生成物から燃料と酸化剤とを生成し、これら2つの成分が個別のタンク内に貯蔵され、燃料電池によって、これら2つの成分の電気化学的反応からエネルギーが発生されるというものである。実際、燃料電池は、エネルギー貯蔵手段ではなく、エネルギー変換手段であり、この特定の場合には、太陽エネルギーを電気化学的エネルギーに変換する手段である。
【0007】
したがって、燃料電池システムは、燃料と、酸化剤と、燃料電池反応から生じる生成物とを貯蔵するためのタンクの使用を必要とする。例えば、最も一般的に使用されているH
2/O
2タイプの燃料電池解決策の場合には、反応物は、気体状態で維持される。これは、補助タンクを設置しなければならないことを意味する。貯蔵圧力と衛星電力とによっては、タンクが非常に嵩張ることがある。したがって、この制約は、複雑な電子回路に既に大きな制約が課されているシステムに関して、衛星の全体サイズおよび質量を増加させる。エネルギー貯蔵システムの電気的性能は、Wh/kg単位で測定され、したがって、質量が増加すると、衛星性能が低下する。
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明の1つの目的は、遠隔通信衛星の電気的性能を改善して、そのような宇宙機において燃料電池タイプのエネルギー貯蔵システムを採用するための実行可能な解決策を提供することである。
【課題を解決するための手段】
【0009】
より厳密には、本発明は、再生燃料電池タイプのエネルギー貯蔵システムと、化学推進システムと、推進のために使用される推進剤を加圧するためのシステムとを備える宇宙船であって、エネルギー貯蔵システムが、少なくとも3つのタンクを備え、第1のタンク内に燃料を含み、第2のタンク内に酸化剤を含み、第3のタンク内に、酸化剤と燃料と反応から生じる生成物を含むことができるようにし、加圧システムが、加圧気体を含む第4および第5の加圧タンクを少なくとも備える宇宙船である。
【0010】
有利には、宇宙船はまた、エネルギー貯蔵システムのタンクを推進剤加圧システムのタンクに結合するための複数の手段を備え、これらの手段は、加圧タンクを排気するための手段と、推進システムを加圧タンクから隔離するための手段と、加圧タンクを互いに隔離するための手段と、加圧タンクが加圧気体をもはや含まないときに、燃料タンクを第4のタンクに接続し、酸化剤タンクを第5のタンクに接続するための手段とを備える。実際、加圧タンクが不要となった後、これらのタンクを、燃料および酸化剤を貯蔵するために転用することができる。
【0011】
有利には、酸化剤および燃料を含むエネルギー貯蔵システムのタンクの寸法は、所与の圧力で、ミッション段階中の宇宙船の電力要件に関して必要な寸法よりも小さく、また、加圧タンクが、ミッション段階中にエネルギー貯蔵システム内で機能することができる。タンクは、必要よりも小さい寸法を有する。これは、加圧システムが、この所与の圧力で燃料および酸化剤をそれら当該のタンク内に貯蔵するための圧縮機を含まないからであり、タンクの体積は、それら自体、ミッション段階中の所要の燃料および酸化剤を貯蔵するには十分でない。ミッション段階は、宇宙船に搭載された全ての電子システムが動作状態であって電力を消費する段階に対応する。動作段階前には、衛星システムは電力をあまり消費しない。有利には、宇宙船は、推進システムとエネルギー貯蔵システムとの間に弁システムを備え、すなわち、加圧タンクと推進システムとの間の第1の弁と、第1のタンクと第4のタンクとの間の第2の弁と、第2のタンクと第5のタンクとの間の第3の弁と、加圧タンクを排気するための第4の弁とを備える。
【0012】
有利には、加圧タンクを排気するための手段は、加圧タンクの出口に、推進効果を及ぼさずに宇宙船の外部に流体を放出するための手段を含む。
【0013】
有利には、エネルギー貯蔵システムは、電気分解を行うための電力を発生するためのシステムによって電力供給される。
【0014】
有利には、本発明は、上述した実施形態の任意の1つによる衛星タイプの宇宙機に適合する。
【0015】
また、本発明の主題は、再生燃料電池タイプのエネルギー貯蔵システムのタンクを、上述した実施形態の任意のものによる宇宙船の主要推進システムの推進剤を加圧するためのタンクに結合するための方法である。有利には、方法は、以下の連続するステップを含み、すなわち、
−第1のステップで、燃料が、第1のタンク内のみに含まれ、酸化剤が、第2のタンク内のみに含まれ、
−第2のステップで、推進システムが、加圧タンクから隔離され、
−第3のステップで、加圧タンクが排気され、
−第4のステップで、加圧タンクが互いに隔離され、
−第5のステップで、加圧タンクが、エネルギー貯蔵システムの第1および第2のタンクに接続され、
−第6のステップで、第4のタンクが、燃料の一部を含み、第5のタンクが、酸化剤の一部を含み、他の部分が、エネルギー貯蔵システムの第1および第2のタンク内に含まれる。
【0016】
有利には、第1のステップで、酸化剤および燃料を含むタンクの寸法は、所与の圧力で、ミッション段階での宇宙船の電力要件に関して必要な寸法よりも小さい。電力要件は、遠隔通信衛星のミッション段階中、すなわち対地静止段階中に最大である。動作状態になる前、電力要件はより小さく、より小さな酸化剤タンクおよび燃料タンクを使用することができる。本発明は、遷移段階に比べて、衛星のミッションを行うのに必要となる追加の燃料および酸化剤を含むために推進剤加圧タンクを使用することができるようにし、ここで、加圧タンクは、ミッション段階中には不要になる。
【0017】
本発明による方法は、特に、対地静止軌道内に位置決めされるように意図された宇宙機に適合する。軌道位置決め段階に先立って、宇宙船打上げ段階と、それに続く遷移段階とがあり、最終的に、衛星が対地静止軌道内に位置決めされ、有利には、宇宙船遷移段階後に、方法の第2のステップが引き起こされる。
【0018】
宇宙船において本発明を実施することによって、様々なタンクの結合により宇宙船の質量を低減することができ、再生燃料電池の燃料タンクおよび酸化剤タンクを小型にすることができるようになり、実際、この結合なしでは、これらのタンクはかなり嵩張る。そのような結合は、宇宙機の場合に特に有利であり、これは、宇宙機を宇宙空間内で推進しなければならず、質量面で最適に設計しなければならないからである。また、質量の節減は、Wh/kg単位で測定されるエネルギー貯蔵システムの性能に影響を及ぼす。衛星タンクは、打上げ段階中および太陽発電機配備前の電子システムの要件に対処するのに十分なエネルギーを電子システムに送達することができるように設計される。
【0019】
本発明の1つの利点は、搭載される反応物の体積を、質量に小さな影響しか及ぼさずに、有利には約15kW〜25kWの電力レベルを得られるように増加させることができることである。この状況は、蓄電池システムが現在満たすことができるピークよりも大きい、有用な負荷によるピーク要求を満たすことができるようにし、したがって太陽発電機を小型化できるようにする。
【0020】
また、本発明は、衛星に搭載される再生燃料電池エネルギー貯蔵システムを最適化することができるようにし、その結果、依然として発展途上中のこれらのシステムを、より早く採用することができるようにする。これは、そのようなシステムが、15kWよりも大きい公称動作電力を有する衛星の場合に魅力的であるからである。それらは、現在使用されている蓄電池システムよりも効果的なエネルギー送達およびピーク消費応答特性を提供する。
【0021】
非限定的な例として与えられる以下の説明を読み、添付図面を見れば、本発明がより良く理解され、他の利点が明らかになる。
【図面の簡単な説明】
【0022】
【
図1】燃料電池のエネルギー貯蔵システムと衛星の化学推進システムとの結合を示す図である(衛星の他の機能システムは図示せず)。
【
図2】燃料電池のエネルギー貯蔵システムと化学推進システムとの結合の方法を示す図である。
【
図3a】方法の第1のステップ中に衛星の機能システム用のエネルギーを発生するための放電モードにあるときの再生燃料電池の動作を例示する図である。
【
図3b】方法の第1のステップ中に充電モードにあるときの再生燃料電池の動作を例示する図である。
【
図4a】方法の最終ステップにおいて衛星の機能システム用のエネルギーを発生するための放電モードにあるときの再生燃料電池の動作を例示する図であって、化学推進システムの加圧タンクが、エネルギー貯蔵システムのタンクに接続されている図である。
【
図4b】方法の最終ステップにおいて充電モードにあるときの再生燃料電池の動作を例示する図であって、化学推進システムの加圧気体タンクが、エネルギー発生システムのタンクに接続されている図である。
【発明を実施するための形態】
【0023】
図1に、衛星の2つの機能システム、すなわち、エネルギー貯蔵用の第1のRFCSシステムと、第2の化学推進システムとの簡略図を示す。
【0024】
RFCSシステム20の機能は、衛星が日光に曝されなくなったときに電子システムに所要のエネルギーを送達することである。これを行うために、RFCSシステムは、3つの流体タンクに接続された燃料電池を備える。非限定的な例として、燃料電池は、H
2/O
2PEM(プロトン交換膜)タイプのものである。第1のタンク1は、気体状態で水素ベースの燃料を含む。第2のタンク2は、やはり気体状態で、結合性酸素ベースの酸化剤を含み、第3のタンク3は、燃料電池における反応により生じた生成物を含み、この生成物は、この特定の場合の燃料電池では水である。本発明は、このタイプの再生燃料電池に限定されず、任意の他のタイプの電池にも適合させることができ、各タイプの電池での特定の発展形態は、本発明の範囲を限定しない。第1の実施形態では、再生燃料電池システムのタンクは、個別の、専用のものであってよい。電解装置は、衛星食モードでの所要の電力に関して設計される。有用な負荷によって要求される1つまたは複数の電力ピークにより生じる水の電気分解が、公称充電期間外に行われる。
【0025】
衛星の発電システムおよび電子システムは、
図1の図には示されていない。これは、本発明が、1種類の衛星に限定されず、また1種類の宇宙船にも限定されないからである。本発明は、動作中の所与の瞬間に未使用の貯蓄を必要とすることがある任意の宇宙船に適合する。
【0026】
化学推進システムは、主として、推進手段10と、主要な推進手段のための主要な推進剤を加圧するためのタンク4および5とを備える。衛星には2つ以上の加圧タンクが存在することがある。推進システムは、衛星がその発射台から打ち上げられた後に遷移段階中に使用されて、衛星を動作状態で対地静止軌道内に配置する。衛星が対地静止軌道内に位置決めされた後、加圧タンクは、使用停止され、全ての気体を使い尽くすことによって、またはタンク排気処置を行うことによって空にされることがある。これを行うために、衛星は、衛星のタンク4および5から加圧気体を排出するための排気デバイス6を含む。好ましくは、このデバイスは、衛星に対する任意の外乱を抑制するために、推進力をもたない流体排出デバイスである。
【0027】
推進システムのタンク4および5内に含まれる成分は、再生燃料電池システムのタンク1および2内に含まれる反応物とは異なる。衛星実用モードでは、推進システムからの流体と再生燃料電池システムからの流体とが混合されてはならない。
【0028】
本発明は、再生燃料電池システムの電気分解中に生成された反応物を貯蔵するための気体タンク貯蔵体積について利益を得られるように、再生燃料電池システムのタンクを宇宙船推進システムの加圧タンクに結合することからなる。これを行うために、衛星は、推進システムの加圧タンクを排気するための手段と、推進システムをその加圧タンクから隔離するための手段と、加圧タンクを互いに隔離するための手段と、加圧タンクが空になったときに、燃料タンクを第4のタンクに接続し、酸化剤タンクを第5のタンクに接続するための手段とを備える。
【0029】
1つの実施形態では、宇宙船は、推進システムとRFCSエネルギー貯蔵システムとの間にパイロ弁31〜36のシステムを含む。パイロ弁システムは、推進システムの推進剤を加圧するための加圧タンク4および5と推進システム10との間にパイロ弁32、33、34、35を備え、これらのパイロ弁は、加圧タンクを推進手段から隔離し、かつ加圧タンクを互いに隔離するように機能する。また、パイロ弁システムは、第1のタンク1と第4のタンク4との間にパイロ弁31を含み、第2のタンク2と第5のタンク5との間にパイロ弁36とを含み、推進システムのタンクが空になったときに、燃料タンク1を第4のタンク4に接続し、酸化剤タンク2を第5のタンク5に接続することができるようにする。燃料タンクと酸化剤タンクとが当該の加圧タンクに結合される前に、これらのタンクの間に、無視できない圧力差が生じていることがある。そのため、宇宙船は、互いに接続すべきタンクの間に圧力制御手段を含む。これらの制御手段は、タンクを接続するために弁が開かれた後に流速を制限するために使用される。また、パイロ弁システムは、加圧タンク4および5を排気するためのパイロ弁37および38を含む。上述して図示した弁は、単一の弁であっても、液圧システムの信頼性および地上での安全性を保証するように冗長性の弁であってもよい。当然、推進手段と燃料電池システムとの流体システムは、例えばパイロ弁、圧力調整機、温度調整機、圧縮機など、そのようなシステムを実施するのに必要な当業者に知られている全ての要素を備える。
【0030】
また、本発明の主題は、
図2に例示されるように、RFCSエネルギー貯蔵システムのタンクを衛星推進システムの加圧タンクに結合する方法である。有利には、この方法は、以下の連続するステップを実施し、すなわち、
−第1のステップ41で、燃料が、第1のタンク1内のみに含まれ、酸化剤が、第2のタンク2内のみに含まれ、
−第2のステップ42で、推進システム10が、加圧タンク4および5から隔離され、
−第3のステップ43で、加圧タンク4および5が排気され、
−第4のステップで、加圧タンク4および5が互いに隔離され、
−第5のステップで、加圧タンク4および5が、エネルギー貯蔵システムのタンク1および2に接続され、
−第6のステップで、第4のタンク4が、燃料の一部を含み、第5のタンク5が、酸化剤の一部を含み、他の部分が、第1のタンク1および第2のタンク2内に含まれる。
【0031】
第1のステップ41で、エネルギー貯蔵システムのタンクは、
図3aおよび3bによって例示される構成である。燃料が、第1のタンク1内に含まれ、酸化剤が、第2のタンク2内に含まれ、燃料電池システム20からの水が、タンク3内に含まれる。酸化剤および燃料を含むタンクは、軌道での要件のために小型にされる。第1のタンクは、第1の圧力で体積V1を有し、第2のタンクは、この同じ圧力で体積V2を有し、第3のタンクは、体積V3を有する。再生燃料電池システムは、第2の圧力で体積V3内に含まれる量Q3の生成物を電気分解することによって、量Q1の酸化剤と量Q2の燃料とを発生することができ、第1の圧力は、体積V1およびV2を最小にするための最適値(すなわち最大値)と考えられる。酸化剤タンクの体積V1は、同じ第1の圧力で量Q1を含むのに必要な体積よりも小さく、燃料タンクの体積V2は、同じ第1の圧力で量Q2を含むのに必要な体積よりも小さく、酸化剤タンクおよび燃料タンクの体積V1およびV2と、加圧タンクの体積との和は、第1の圧力未満の圧力でQ1およびQ2を含むのに必要な体積に少なくとも等しい。電解装置は、量Q3の生成物の電気分解によって、酸化剤体積V4と燃料体積V5とを発生することができる。第1のタンク1および第2のタンク2は、所与の最大圧力に応じて、かつ打上げおよび遷移段階中の電力要件に応じてサイズ設定される。電気分解動作モードが、
図3bによって示される。本発明は、同じ圧力で、酸化剤タンク1の体積V1を体積V4よりも小さくできるようにし、燃料タンク2の体積V2を体積V5よりも小さくできるようにする。これは、タンク1および2が、衛星が動作状態になるまでに打上げ段階および遷移段階のためにエネルギー貯蔵システムが必要とする二水素気体体積および二酸素気体体積を含むようにサイズ設定されるからである。したがって、燃料タンクおよび酸化剤タンクの寸法を低減させることにより、衛星のサイズおよび質量を低減できるようになる。
【0032】
図3aは、衛星の電子システム用のエネルギー発生または放電モードにおける再生燃料電池システムを示す。タンク1および2が充満され、タンク3は、反応物の体積V1とV2との反応から生じる水の体積を含むのに十分な体積が残るような量だけ生成物を含む。リザーバ体積間の比率は、概略的なものであり、再生燃料電池システムに必要な反応物と生成物との実際の比率を表さない。酸化モードでは、電池内で二水素気体と二酸素気体とが反応して、タンク3内に水を生成し、この動作モードにおいて電池がエネルギーを発生することができる。
【0033】
図3bは、電気分解または充電モードでのエネルギー貯蔵システムを示す。衛星の太陽電池パネルが電力を発生し、その電力が、電気分解反応を行うために再生燃料電池システム20に送達される。タンク3内に含まれる水が二水素および二酸素に変換され、これら2つの反応物がタンク1および2内に含まれる。
【0034】
打上げ段階および遷移段階中、衛星のエネルギー貯蔵システムは、上述したシステム構成に従って動作する。化学推進システムを使用した一連の操作によって衛星が対地静止軌道内に位置決めされると、推進剤加圧タンクはもはや使用されない。
【0035】
この段階中、第2のステップ42で、推進手段10が加圧タンク4および5から隔離され、パイロ弁33が閉じられる。第3のステップ43で、気体タンク4および5が排気される。パイロ弁35および37が開かれ、排気システム6が、衛星から流体を追い出す。パイロ弁38を閉じることによって、排気が完了される。第4のステップ44で、パイロ弁32および34を閉じることによって、加圧タンク4および5が互いに隔離される。第5のステップ45で、パイロ弁31を開くことによって、燃料タンクが、事前に排気された推進手段の第4のタンクに接続され、パイロ弁36を開くことによって、酸化剤タンクが、事前に排気された推進手段の第5のタンクに接続される。したがって、再生燃料電池での電気分解反応から生じた生成物は、当初は加圧気体のために提供されたタンクの追加の体積を利用する。圧力制御手段は、パイロ弁36とパイロ弁35との間、およびパイロ弁31と加圧タンク4との間に存在する。
【0036】
図4aおよび4bは、当初は推進手段を加圧するために提供されたタンク4および5が再生燃料電池システムのタンク1および2に接続された後の、燃料電池システムの燃料貯蔵手段と酸化剤貯蔵手段とを構成するタンク1、2、4、および5の構成を例示する。この構成は、衛星が対地静止軌道段階にあるときに確立される。タンク1の体積V1とタンク4の体積V4との和によって構成される体積は、体積V3のタンク3内に含まれる水を全て電気分解した後に発生しうる燃料の体積を貯蔵するのに必要な仮想タンクの体積に少なくとも等しく、これら両方のタンクで圧力が同じであることが分かる。タンク2の体積V2とタンク5の体積V5との和によって構成される体積は、体積V3のタンク3内に含まれる水を全て電気分解した後に発生しうる酸化剤の体積を貯蔵するのに必要な仮想タンクの体積に少なくとも等しく、これら両方のタンク内で圧力が同じであることが分かる。
図4aおよび4bに示される燃料、酸化剤、および水の体積は、図示の目的で与えられ、燃料電池システムの反応に関する実際の量を表さない。
【0037】
図4aは、水タンクが実質上その最低水位にあるときのエネルギー発生モードでの再生燃料電池システム20を示す。燃料と酸化剤との反応により、電池が、衛星の電子システムのための電気エネルギーを発生できるようになる。
【0038】
図4bは、水タンクが実質上その最高水位にあるときのエネルギー充電モードでの再生燃料電池システム20を示す。この動作モードでは、電気分解に必要とされる電力が、太陽発電機システムによって送達される。反応によって生成される燃料は、衛星が打上げ段階および遷移段階にあるときにはタンク1内に貯蔵することができ、衛星が動作状態にあるときにはタンク1および4内に貯蔵することができる。反応によって生成される酸化剤は、衛星が打上げ段階および遷移段階にあるときにはタンク2内に貯蔵することができ、衛星が動作状態にあるときにはタンク2および5内に貯蔵することができる。推進手段の加圧タンクを使用することによって体積を増加させることにより、燃料電池システムは、電気分解段階中に、タンク1および2を用いた場合よりも多量の燃料および酸化剤を発生できるようになる。その結果、タンク1とタンク2とのより小さい総体積に関して、燃料電池システムから得られるエネルギー貯蓄がより大きくなる。さらなるタンクを追加せず、タンク1および2をタンク4および5に結合することにより、再生燃料電池システムの性能(Wh/kg単位で測定される)が高まる。
【0039】
本発明は、特に遠隔通信衛星に適合するが、このタイプの宇宙機に限定されない。本発明は、任意の他の宇宙船にも有益であり、電力要求がより低い段階の後、転用可能なタンクを利用することができる。衛星は、その初動時、衛星のミッションに専ら携わるシステムがまだ動作状態になっていないので、高い電力を必要としない。したがって、燃料電池エネルギー貯蔵システムのために、より小さいタンクを使用することができる。電力要求がより大きくなるとき、衛星は対地静止段階であり、推進剤加圧タンクを転用可能である。
【符号の説明】
【0040】
1 第1のタンク
2 第2のタンク
3 第3のタンク
4 第4のタンク
5 第5のタンク
6 排気デバイス
10 化学推進システム
20 エネルギー貯蔵システム
31〜38 パイロ弁
41 第1のステップ
42 第2のステップ
43 第3のステップ
44 第4のステップ
45 第5のステップ
46 第6のステップ
Q1〜Q3 量
V1〜V5 体積