【実施例1】
【0027】
<グラフェン前駆体として用いられる黒鉛系炭素素材の製造について>
図3に示されるジェットミルとプラズマとを用いた製造装置Aにより、グラフェン前駆体として用いられる黒鉛系炭素素材を得る方法について説明する。製造装置Aは、電波的力による処理としてプラズマを施し、また、物理的力による処理としてジェットミルを用いた場合を例にしている。
【0028】
図3において、符号1は5mm以下の粒子の天然黒鉛材料(日本黒鉛工業製 鱗片状黒鉛ACB-50)、2は天然黒鉛材料1を収容するホッパー、3はホッパー2から天然黒鉛材料1を噴射するベンチュリーノズル、4はコンプレッサ5から8箇所に分けて圧送された空気を噴射させて天然黒鉛材料をジェット噴流によりチャンバ内に衝突させるジェットミル、7はタンク6から酸素、アルゴン、窒素、水素などのガス9をノズル8から噴射させるとともに、ノズル8の外周に巻回されたコイル11に高圧電源10から電圧を付与し、ジェットミル4のチャンバ内でプラズマを発生させるプラズマ発生装置であり、チャンバ内に4カ所に設けてある。13はジェットミル4と集塵器14とを接続する配管、14は集塵器、15は収集容器、16は黒鉛系炭素素材(グラフェン前駆体)、17はブロアである。
【0029】
次に製造方法について説明する。ジェットミル及びプラズマの条件は次のとおりである。
ジェットミルの条件は次のとおりである。
圧力 : 0.5MPa
風量 : 2.8m3/min
ノズル内直径 :12mm
流速 : 約410m/s
プラズマの条件は次のとおりである。
出力 : 15W
電圧 : 8kV
ガス種 : Ar(純度99.999Vol%)
ガス流量:5L/min
【0030】
ベンチュリーノズル3よりジェットミル4のチャンバ内に投入された天然黒鉛材料1は、チャンバ内で音速以上に加速され、天然黒鉛材料1同士や壁にぶつかる衝撃で粉砕されると同時に、プラズマ12が天然黒鉛材料1に対して放電や励起することで、原子(電子)に直接作用し、結晶の歪みを増し粉砕を促すと考えられる。天然黒鉛材料1はある程度の粒径(1〜10μm程度)まで微粉になると、質量が減り、遠心力が弱まることで、チャンバの中心に接続された配管13から吸い出される。
【0031】
配管13から集塵器14のチャンバの円筒容器に流入された黒鉛系炭素素材(グラフェン前駆体)が混在した気体は旋回流となって、容器内壁に衝突した黒鉛系炭素素材16を下方の収集容器15に落下させるとともに、チャンバの下方のテーパ容器部によってチャンバの中心に上昇気流が発生し気体はブロワ17から排気される(所謂サイクロン作用)。本実施例における製造装置Aによれば、原料となる1kgの天然黒鉛材料1から約800gのグラフェン前駆体として用いられる 黒鉛系炭素素材(グラフェン前駆体)16を得た(回収効率:8割程度)。
【0032】
次に、
図4に示されるボールミルとマイクロ波とを用いた製造装置Bにより、グラフェン前駆体として用いられる黒鉛系炭素素材を得る方法について説明する。製造装置Bは、電波的力による処理としてマイクロ波を施し、また、物理的力による処理としてボールミルを用いた場合を例にしている。
【0033】
図4(a)及び(b)において、符号20はボールミル、21はマイクロ波発生装置(マグネトロン)、22は導波管、23はマイクロ波流入口、24はメディア、25は5mm以下の粒子の天然黒鉛材料(日本黒鉛工業製 鱗片状黒鉛 ACB-50)、26は収集容器、27はフィルタ、28は黒鉛系炭素素材(グラフェン前駆体)である。
【0034】
次に製造方法について説明する。ボールミル及びマイクロ波の条件は次のとおりである。
ボールミルの条件は次のとおりである。
回転数 : 30rpm
メディアサイズ: φ5mm
メディア種 : ジルコニアボール
粉砕時間 :3時間
マイクロ波発生装置(マグネトロン)の条件は次のとおりである。
出力 : 300W
周波数 : 2.45GHz
照射方法 :断続的
【0035】
ボールミル20のチャンバ内に1kgの天然黒鉛系炭素原料25と、800gのメディア24を投入し、チャンバを閉じ30rpmの回転数で3時間処理する。この処理中にチャンバにマイクロ波を断続的(10分おきに20秒)に照射する。このマイクロ波の照射により、原料の原子(電子)に直接作用し、結晶の歪みを増やすと考えられる。処理後、フィルタ27でメディア24を取り除くことで、10μm程度の粉体の黒鉛系炭素素材(前駆体)28を収集容器26に収集することができる。
【0036】
<黒鉛系炭素素材(前駆体)のX線回折プロファイルについて>
図5−
図7を参照して、製造装置A、Bにより製造された黒鉛系天然材料(試料6、試料5)及び製造装置Bのボールミルのみを用いて得た10μm程度の粉体の黒鉛系天然材料(試料1:比較例)のX線回折プロファイルと結晶構造について説明する。各試料は、X線回折法(リガク社製試料水平型多目的X線回折装置 Ultima IV)によれば、それぞれ六方晶2Hの面(100)、面(002)、面(101)、及び菱面体晶3Rの面(101)にピーク強度P1,P2,P3,P4を示すことからこれらについて説明する。
【0037】
ボールミルによる処理とマイクロ波処理を施す製造装置Bにより製造された試料5は、
図5及び表1に示されるように、ピーク強度P3やピーク強度P1の強度の割合が高く、P3のP3とP4の和に対する割合を示す(式1)で定義されるRate(3R)が46%であった。また、強度比P1/P2は0.012であった。
Rate(3R)=P3/(P3+P4)×100・・・・(式1)
ここで、
P1は六方晶系黒鉛層(2H)のX線回折法による(100)面のピーク強度
P2は六方晶系黒鉛層(2H)のX線回折法による(002)面のピーク強度
P3は菱面晶系黒鉛層(3R)のX線回折法による(101)面のピーク強度
P4は六方晶系黒鉛層(2H)のX線回折法による(101)面のピーク強度
である。
【0038】
【表1】
【0039】
同様に、ジェットミルによる処理とプラズマによる処理を施す製造装置Aにより製造された試料6は、
図6及び表2に示されるように、ピーク強度P3やピーク強度P1の強度の割合が高く、Rate(3R)が51%であった。また、強度比P1/P2は0.014であった。
【0040】
【表2】
【0041】
また、ボールミルのみにより製造された比較例を示す試料1は、
図7及び表3に示されるように、ピーク強度P3は試料5、6に比較してその割合が小さく、Rate(3R)は23%であった。また、強度比P1/P2は0.008であった。
【0042】
【表3】
【0043】
このように、実施例1の製造装置Bにより製造された試料5、実施例1の製造装置Aにより製造された試料6では、Rate(3R)が、46%、51%となり、
図2に示す天然黒鉛や、比較例を示す試料1に比較して、40%以上または50%以上となることが示された。
次に、上述で製造されたグラフェン前駆体を用いて、グラフェン分散液を作成し、グラフェンの剥離し易さを比較した。
【0044】
<グラフェン分散液について>
グラフェン分散液の作成方法について
図8を参照して説明する。
図8においては、グラフェン分散液の作成する際に、液中にて超音波処理とマイクロ波処理とを併用する場合を例にしている。
(1)ビーカー40にグラフェン前駆体として用いられる黒鉛系炭素素材0.2gと分散液であるN−メチルピロリドン(NMP)200mlを入れる。
(2)ビーカー40をマイクロ波発生装置43のチャンバ42に入れ、上方から超音波ホーン44の超音波の振動子44Aを分散液41に挿入する。
(3)超音波ホーン44を作動させ20kHz(100W)の超音波を連続的に3時間付与する。
(4)上記超音波ホーン44を作動させている間に、マイクロ波発生装置43を作動させマイクロ波2.45GHz(300W)を断続的(5分おきに10秒照射)に付与する。
【0045】
図9は上述のようにして作成されたグラフェン分散液が24時間経過した様子である。
製造装置Bにより製造された試料5を用いたグラフェン分散液30は一部沈殿しているものの全体が黒色を呈するものが確認された。これは、グラフェン前駆体として用いた黒鉛系炭素素材の多くがグラフェンに剥離した状態で分散していると考えられる。
比較例を示す試料1を用いた分散液31は黒鉛系炭素素材のほとんどが沈殿しており、一部が上澄み液として浮いていることが確認された。このことから、ごく一部がグラフェンに剥離し、上澄みとして浮いていると考えられる。
【0046】
また、上述のようにして作成されたグラフェン分散液を資料台(TEMグリッド)の上に観察可能な濃度に希釈・塗布し、乾燥させて、透過型電子顕微鏡(TEM)の
図10に示すような撮像画からグラフェンのサイズと層数を観察した。なお、試料1については上澄みを希釈・塗布したものを用いた。例えば、
図10の場合、
図10(a)からサイズはフレーク33の最大の長さLであり約600nm、
図10(b)から層数はフレーク33の端面を観察しグラフェン層の重なりをカウントし6層(符号34が指す領域。)として求めた。このように各フレーク(フレーク数をNとする)のサイズと層数を測定して、
図11、
図12に示すグラフェン層数と大きさを求めた。
【0047】
図11(a)を参照し、実施例1の製造装置Bにより製造された試料5(Rate(R3)が46%)のグラフェン分散液に含まれた薄片状のフレークの粒度分布(サイズの分布)は、0.5μmをピークとする分布であった。また、
図11(b)において、層数は、3層をピークとし、10層以下のグラフェンが68%となる分布であった。
図12を参照して、比較例の試料1(Rate(R3)が23%)の分散液に含まれた薄片状のフレークの粒度分布(サイズの分布)は、0.9μmをピークとする分布であった。また、層数は、30層以上のものが大部分を占め、10層以下のグラフェンが10%となる分布であった。
この結果から、製造装置Bにより製造された試料5のものは、グラフェン前駆体として用いた場合に、10層以下のグラフェンが多く、グラフェンの分散性に優れ、かつ、高濃度のグ
ラフェン分散液を得られることが分った。
【0048】
次に、
図13を参照して、グラフェン前駆体の割合Rate(3R)とグラフェン分散液における層数の関係について説明する。
図13における、試料1、5、6は上述したものである。試料2、3、4は、ボールミルによる処理とマイクロ波処理とを施す製造装置Bで製造したものであり、試料5よりもマイクロ波の照射時間を短くして製造したグラフェン前駆体を用いてグ
ラフェン分散液を作成したものである。また、試料7はジェットミルによる処理とプラズマ処理とを施す製造装置Aで製造したものであり、試料6よりも高出力のプラズマを与えて製造したグラフェン前駆体を用いてグ
ラフェン分散液を作成したものである。
【0049】
図13から、Rate(3R)が40%以上の試料4−7は、層数の分布の形状が数層(薄いグラフェン)の部分にピークを有する所謂対数正規分布の形状である。一方、Rate(3R)が40%未満の試料1−3は、層数が30層以上の部分にピークを有する形状(試料1を用いた分散液)や正規分布に近い形状(試料2、3を用いた分散液)である。すなわち、Rate(3R)が40%以上となると、層数の分布の形状が40%未満とは明らかに異なる傾向となることが分かる。また、10層以下のグラフェンの割合は、試料3を用いた分散液のRate(3R)が38%であるのに対し、試料4を用いた分散液のRate(3R)が62%であり、Rate(3R)が40%以上となると、10層以下のグラフェンの割合が急増していることが分かる。
【0050】
これらのことから、Rate(3R)が40%以上の場合に10層以下のグラフェンに剥離しやすくなり、さらに
、Rate(3R)が50%、60%と多くなるにつれ、10層以下のグラフェンにさらに剥離し易くなり、逆に40%未満では10層以下のグラフェンに剥離しにくいと考えられる。また、強度比P1/P2について着目すると、試料2−試料7は、比較的狭い0.012〜0.016の範囲内の値となっており、結晶構造にゆがみが
生じグラフェンに剥離しやすいと考えられる0.01を超えるからいずれも好ましい。
【0051】
さらにRate(3R)と10層以下のグラフェンが含まれる割合との対比を行った結果を
図14に示す。
図14を参照すると、Rate(3R)は、25%以上となると10層以下のグラフェンが増加し始め(右肩上がりの傾きとなり)、また40%前後において、10層以下のグラフェンが急増し(10層以下のグラフェンの割合は、試料3を用いた分散液のRate(3R)が38%であるのに対し、試料4を用いた分散液のRate(3R)が62%であり、Rate(3R)が4%増えることにより10層以下のグラフェンの割合は24%増えるように急増し)かつ全体に占める10層以下のグラフェンが50%以上となることが判明した。なお、
図14中の黒四角の点は各々異なる試料であり、上述した試料1−7と、それ以外の他の試料も含まれている。
【0052】
このことから、Rate(3R)が40%以上の試料をグラフェン前駆体として用いてグラフェン分散液を作成すると、10層以下のグラフェンが50%以上生成される。すなわち、グラフェンが高濃度かつ高分散のグラフェン分散液を得ることができる。また、上述したように、この分散液に含まれる黒鉛系炭素素材(前駆体)はほとんど沈殿しないから、簡単に濃いグラフェン分散液を得ることができる。この方法により、濃縮することなしに、グラフェンの濃度が10%を超えるグラフェン分散液を作成することもできた。なお、10層以下のグラフェンが分散する割合は50%未満と少ないものの、Rate(3R)が25%以上40%未満のものは、10層以下のグラフェンが分散される割合が増えるという観点から好ましい。
【0053】
また、Rate(3R)の上限は40%以上で特に規定する必要はないと考えるが、強度比R1/R2が0.01以上を同時に満たすようにすることが、分散液等を作成する場合にグラフェンに分離しやすいことから好ましい。なお、製造装置A、Bを用いた製造方法の場合には、グラフェン前駆体を製造がし易いという観点からは、上限は70%程度である。また、製造装置Aのジェットミルによる処理とプラズマ処理とを併用する方法の方が、Rate(3R)が高いものを容易に得ることからより好ましい。なお、物理的力による処理と電波的力による処理を併用して、Rate(3R)が40%以上となっていれば
よい。
【実施例4】
【0056】
実施例4では樹脂に混練する例について説明する。
グラフェンを分散した樹脂シートを作成する際に、ガラス繊維を添加したものの引張強度が非常に良好であったためその要因を調べたところ、ガラス繊維と同時に添加する相溶化剤が、前駆体がグラフェン化することに寄与していることが知見として得られた。そこで、分散剤と相溶化剤とを樹脂に混ぜたものについて検討した。
実施例1の試料5(Rate(3R)=46%)を前駆体としてLLDPE(ポリエチレン)に1wt%直接添加し、ニーダーや2軸混練機(エクストルーダー)等でシェア(せん段力)をかけながら混練した。
樹脂中で黒鉛系炭素素材がグラフェン化し、高分散すると、引張強度が増加することは公知であることから、樹脂の引張強度を測定することによりグラフェン化と分散の度合いを相対的に推察することができる。引張強度は、島津製作所社製の卓上型精密万能試験機( AUTOGRAPH AGS−J)で試験速度500mm/minの条件で測定した。
【0057】
また、添加剤の有無による、グラフェン化と分散性を比較するため、下記(a),(b),(c)3種類の比較を行った。
(a)添加剤無
(b)一般的分散剤(ステアリン酸亜鉛)
(c)相溶化剤 (グラフト変性ポリマー)
【0058】
測定結果を示す
図17を参照して結果について説明する。なお、
図17中、丸印は比較例の試料1を用いた樹脂材料、四角印は実施例1の試料5を用いた樹脂材料である。
(a)の添加剤を加えない場合は、引っ張り強さの差は小さかった。
(b)の分散剤を添加した場合は、試料5のグラフェン前駆体はグラフェン化がある程度促進されることがわかる。
(c)の相溶化剤を添加した場合は、試料5のグラフェン前駆体はグラフェン化がかなり促進されることがわかる。これは、相溶化剤は、グラフェン分散させる効果の他に、グラフェン層結合体と樹脂を結合させ、その状態でシェアを加えると、グラフェン層結合体を引きはがすように作用すると考えられるからである。
【0059】
分散剤としてステアリン酸亜鉛を例に説明したが、化合物に合った性質のものを選択するとよい。例えば、分散剤としては、陰イオン(アニオン)界面活性剤、陽イオン(カチオン)界面活性剤、両性イオン界面活性剤、非イオン(ノニオン)界面活性剤が挙げられる。特にグラフェンに対しては、陰イオン界面活性剤と非イオン界面活性剤が好ましい。より好ましくは、非イオン界面活性剤である。非イオン界面活性剤は、オキシエチレン基や水酸基、グルコシドなどの糖鎖など、イオンには解離せず、水との水素結合によって親水性を呈する界面活性剤であるため、イオン性界面活性剤ほどの親水性の強さは無いが、非極性溶媒中での使用が可能であるメリットがある。そして、その親水基鎖長を変化させることで、その性質を親油性から親水性まで自由に変化させることができるからである。陰イオン界面活性剤としては、X酸塩(X酸は例えばコール酸、デオキシコール酸)、例えばSDC:デオキシコール酸ナトリウム、リン酸エステルなどが好ましい。また、非イオン界面活性剤としては、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、脂肪アルコールエトキシレート、ポリオキシエチレンアルキルフェニルエーテル、アルキルグリコシドなどが好ましい。
【0060】
上述した実施例1−4では、グラフェン前駆体を製造する製造装置として、ジェットミルとプラズマを用いる製造装置Aと、ボールミルとマイクロ波を用いる製造装置Bについて説明したが、マイクロ波、ミリ波、プラズマ、電磁誘導加熱(IH)、磁場などの電波的力による処理と、ボールミル、ジェットミル、遠心力、超臨界などの物理的力による処理とを併用すると、割合Rate(R3)が高い前駆体を得ることができるから好ましい。
なお、物理的力による処理と電波的力による処理を併用して、物理的力による処理と電波的力による処理の個別の処理の種類は問わない。特に、製造装置A及びBのように、電波的力と物理的力とによる作用を同時に作用させることが好ましいが、電波的力と物理的力とを交互に所定間隔毎に作用させるようにしてもよい。さらに、電波的力について、例えば、マイクロ波とプラズマとによる処理など、異なる電波的力を、交互に施し、それと並行して1または2以上の物理的力による処理を施してもよい。また、物理的力についても、例えば、ジェットミルと超臨界による処理など、異なる物理的力を、交互に施し、それと並行して1または2以上の電波的力による処理を施してもよい。
【0061】
また、上述した実施例では、前駆体を用いてグラフェン分散液を得る作成装置として、マイクロ波と超音波を用いる作成装置について説明したが、マイクロ波、ミリ波、プラズマ、電磁誘導加熱(IH)、磁場などの電波的力による処理と超音波、ボールミル、ジェットミル、遠心力、超臨界などの物理的力による処理とを併用すると、グラフェンの濃度の高いグラフェン分散液が得られるから好ましい。特に、作成装置のように、電波的力と物理的力とによる作用が同時に作用させることが好ましいが、電波的力と物理的力とを交互に所定間隔毎に作用させるようにしてもよい。
【0062】
また、上述した実施例では、前駆体を用いた用途として、グラフェン分散液、導電インク及び樹脂成形品について説明したが、母材として、モノマー、ポリマー、他の炭素素材、セラミックス、木材、セメント、金属等の複合体母材中に前駆体を混ぜることによりグラフェン複合体を得るものであってもよい。すなわち、本明細書において、グ
ラフェン複合体は、上述したグラフェン分散液、導電インク及び樹脂成形品を包含するものを意味する。また、グラフェン分散液は粘度が高いペースト状のもの
を包含する。
【0063】
例えば、前駆体を分散させる液体や母材としては次のものが挙げられる。
樹脂として、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリ塩化ビニル(PVC)、ABS樹脂(ABS)、アクリル樹脂(PMMA)、ポリアミド/ナイロン(PA)、ポリアセタール(POM)、ポリカーボネート(PC)、ポリエチレンテレフタラート(PET)、環状ポリオレフィン(COP)、ポリフェニレンスルファイド(PPS)、ポリテトラフロロエチレン(PTFE)、ポリサルフォン(PSF)、ポリアミドイミド(PAI)、熱可塑性ポリイミド(PI)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)が挙げられる。また、合成樹脂のうち熱硬化性樹脂として、エポキシ樹脂(EP)、フェノール樹脂(PF)、メラミン樹脂(MF)、ポリウレタン(PUR)、不飽和ポリエステル樹脂(UP)などの熱可塑性樹脂、繊維状のナイロン、ポリエステル、アクリル、ビニロン、ポリオレフィン、ポリウレタン、レーヨンなどの繊維、エラストマーとしてイソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、クロロプレンゴム(CR)、ニトリルゴム(NBR)、ポリイソブチレンゴム/ブチルゴム(IIR)、エチレンプロピレンゴム(EPM/EPDM)、クロロスルホン化ポリエチレン(CSM)、アクリルゴム(ACM)、エピクロルヒドリンゴム(CO/ECO)など、熱硬化性樹脂系エラストマーとして、一部のウレタンゴム(U)、シリコーンゴム(Q)、フッ素ゴム(FKM)など、熱可塑性エラストマーとしてスチレン系、オレフィン系、塩ビ系、ウレタン系、アミド系のエラストマーが挙げられる。
【0064】
また、鉱油として、潤滑油、グリース、またゴム用配合油として、パラフィン系鉱油、ナフテン系鉱油、芳香族系鉱油などが挙げられる。
さらにとして、無極性のもととして、ヘキサン、ベンゼン、トルエン、クロロホルム、酢酸エチルなど、極性非プロトン性のもとして、アセトン、N,N−ジメチルホルムアミド(DMF)、N−メチルピロリドン(NMP)、アセトニトリルなど、極性プロトン性のもとして、酢酸、エタノール、メタノール、水、1−ブタノール、2−プロパノール、ギ酸などが挙げられる。
【0065】
また、グラフェン前駆体として用いられる黒鉛系炭素素材を、製造するための天然黒鉛として、5mm以下の粒子の天然黒鉛材料(日本黒鉛工業製 鱗片状黒鉛 ACB−50)を例に説明したが、天然黒鉛は、鱗片状黒鉛であって、5mm以下に粉砕されているもので、Rate(3R)が25%未満かつ強度比P1/P2が0.01未満のものが入手しやすいという観点から好ましい。