特許第5689013号(P5689013)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本電産サンキョーシーエムアイ株式会社の特許一覧

<>
  • 特許5689013-複合接点 図000004
  • 特許5689013-複合接点 図000005
  • 特許5689013-複合接点 図000006
  • 特許5689013-複合接点 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5689013
(24)【登録日】2015年2月6日
(45)【発行日】2015年3月25日
(54)【発明の名称】複合接点
(51)【国際特許分類】
   H01H 1/00 20060101AFI20150305BHJP
   H01H 1/023 20060101ALI20150305BHJP
   H01H 1/025 20060101ALI20150305BHJP
   C22C 9/00 20060101ALI20150305BHJP
   C22F 1/08 20060101ALI20150305BHJP
   H01H 11/04 20060101ALN20150305BHJP
   C22F 1/00 20060101ALN20150305BHJP
【FI】
   H01H1/00 E
   H01H1/023 A
   H01H1/025
   C22C9/00
   C22F1/08 Q
   !H01H11/04 B
   !C22F1/00 602
   !C22F1/00 627
   !C22F1/00 630A
   !C22F1/00 630C
   !C22F1/00 630M
   !C22F1/00 650A
   !C22F1/00 661A
   !C22F1/00 691B
   !C22F1/00 691C
【請求項の数】4
【全頁数】9
(21)【出願番号】特願2011-83988(P2011-83988)
(22)【出願日】2011年4月5日
(65)【公開番号】特開2012-221631(P2012-221631A)
(43)【公開日】2012年11月12日
【審査請求日】2014年1月14日
(73)【特許権者】
【識別番号】594111292
【氏名又は名称】日本電産サンキョーシーエムアイ株式会社
(74)【代理人】
【識別番号】100101465
【弁理士】
【氏名又は名称】青山 正和
(72)【発明者】
【氏名】喜多 晃一
(72)【発明者】
【氏名】村橋 紀昭
【審査官】 塚本 英隆
(56)【参考文献】
【文献】 特開昭60−007016(JP,A)
【文献】 特開2010−106331(JP,A)
【文献】 特開平11−229057(JP,A)
【文献】 特開昭63−170819(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01H 1/00
C22C 9/00
C22F 1/08
H01H 1/023
H01H 1/025
C22F 1/00
H01H 11/04
(57)【特許請求の範囲】
【請求項1】
小径の基部の一端部に大径の鍔部が形成されるとともに、該鍔部の上面部を構成する銀合金からなる接点部と、該接点部の背面と接合した状態で前記鍔部の下面部を構成する大径部と前記小径の基部とを一体に形成した銅合金からなる足部とを有し、これら接点部及び足部の接合前の材料として、前記足部のビッカース硬さが125HV〜185HVで、前記銀合金に対して120%〜150%の硬さを有していることを特徴とする複合接点。
【請求項2】
前記銅合金は析出硬化型銅合金であることを特徴とする請求項1記載の複合接点。
【請求項3】
前記銅合金は、Cu−Co−P−Ni−Sn−Zn系合金、Cu−Cr系合金、Cu−Zr系合金、Cu−Zr−Cr系合金、Cu−Fe−P系合金、Cu−Mg系合金のいずれかであることを特徴とする請求項1記載の複合接点。
【請求項4】
前記銅合金の電気伝導度は50IACS%以上であることを特徴とする請求項1から3のいずれか一項記載の複合接点。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、少ない銀合金で長期に亘り安定した接点性能を発揮する耐久性に優れた複合接点に関する。
【背景技術】
【0002】
リレー、スイッチ、電磁開閉器、ブレーカ等に用いられる電気接点として、銀合金からなる単体接点に代えて、省銀化のため接点部分のみ銀合金材料を用い、それ以外の部分を銅系材料で代替する複合接点が広く用いられている。この種の複合接点は、小径の基部の一端部に大径の鍔部が形成された全体としてリベット形状をしているとともに、鍔部の上面部を構成する銀合金からなる接点部と、接点部の背面を接合した大径部を基部と一体に形成した銅合金からなる足部とを有している。
【0003】
この場合、銀合金は銀マトリクス中に微細なCdやSn、Inなどの酸化物が分散した材料組織であり、この酸化物を形成する製造プロセスのタイミングから前酸化法と後酸化法に分けられている。前酸化法とは、既に酸化物分散組織となった銀合金を用いて複合接点を成形する方法、後酸化法とは、未酸化の銀合金と足材とを接点形状に成形した後、接点全体を酸化させるプロセスである。
【0004】
特許文献1には後酸化法による複合接点が記載されている。後酸化法の場合、足材に接点材料との接合後に実施する酸化プロセスにおける耐酸化性が必要とされることから、純銅の代わりに純銅に比較して耐酸化性に優れるCu−Cr、Cu−Cr−Zr、Cu−Ni−Be、Cu−Al等の銅合金を使用するのが好ましいとされている。接点部の銀合金としては、Ag−Cd、Ag−Sn、Ag−Cd−Sn、Ag−Sn−In等の合金が挙げられている。
【0005】
一方、前酸化法においては、足材に対して後酸化法のような耐酸化性は必要とされないことから、通常は接合性に優れる純銅を用いるのが一般的である(特許文献2)。その上で、銀合金との接合強度を確保するため、銀合金との強度バランスを考慮して、接点足材にAg−4〜35mass%Cu合金を用いる方法(特許文献3)なども提案されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開平6−073467号公報
【特許文献2】実用新案登録第3098834号公報
【特許文献3】特開昭63−170819号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1記載の後酸化法による場合や、特許文献2記載の純銅の足材を用いる場合、足材としての強度が十分でなく、接点材料として長期間使用すると鍔部の反り上がりが起きてしまう問題がある。特許文献3記載のように足材に銀合金を用いるのでは、複合接点としての省銀化の効果が薄く、また、長期間の使用による鍔部の反り上がりを抑制する効果も十分でない。
【0008】
本発明は、このような事情に鑑みてなされたもので、少ない銀合金で長期に亘り安定した接点性能を発揮する耐久性に優れた複合接点を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者は、複合接点の耐久性につき鋭意研究した結果、以下の知見を得た。
特許文献1記載の方法の場合、接合後に高温での酸化工程を経るため、足材の銅合金が焼鈍されてしまい、最終製品となった際の銅合金強度が低下し、その結果、鍔部の強度が十分でなくなる、あるいは接合強度が低下し、接点材料として長期間使用すると接合部の剥離や鍔部の反り上がりが起きてしまう。
また、後酸化工程を経ない特許文献2や特許文献3記載の場合では、鍔部を形成する銅もしくはAg−4〜35mass%Cu合金の強度が十分でないことから、長期間に亘り使用していると、接合部の剥離が起き易く、また、鍔部が反り上がるように変形し、それが対向接点面と接触することで溶着不良を起こす問題が生じる。
【0010】
これは、接点通電時の抵抗発熱や接点開閉の際に発生するアーク放電によって接点が高温になり、その熱により銅合金の強度が低下するとともに、繰り返しの熱サイクルによって熱応力が発生し、これらが長期的に複合して作用することが、接合部の剥離や鍔部の反り上がり発生の原因となっていると考えられる。そして、この接点開閉に伴う熱の影響により接合部の剥離や鍔部の反り上がりを回避するには、鍔部の基材となる銅合金の硬度、並びに銅合金と銀合金との硬度バランスが重要であることを見出した。なお、これらの合金においては、硬度は機械的強度と正の相関があることが知られており、硬度が高ければ強度も高いものと考えて差し支えない。
そこで、本発明は以下の解決手段とした。
【0011】
本発明の複合接点は、小径の基部の一端部に大径の鍔部が形成されるとともに、該鍔部の上面部を構成する銀合金からなる接点部と、該接点部の背面と接合した状態で前記鍔部の下面部を構成する大径部と前記小径の基部とを一体に形成した銅合金からなる足部とを有し、これら接点部及び足部の接合前の材料として、前記足部のビッカース硬さが125HV〜185HVで、前記銀合金に対して120%〜150%の硬さを有していることを特徴とする。
【0012】
銅合金のビッカース硬さが125HVより小さい場合には鍔部の強度が不足するため、長期間の使用で鍔部の反り上がりが起きやすくなる。一方、ビッカース硬さが185HVより大きい銅合金材料では、接点部の銀合金に対して銅合金からなる足部の硬度が大きすぎることから、接合時に銀合金が優先的に変形してしまい、銅合金が十分な変形ができないため、両者の接合強度が低くなってしまい、長期間の使用においては銀合金からなる接点部の剥離が起きてしまう。よって、銅合金のビッカース硬さとしては125HV〜185HVが望ましい。より望ましくは135HV〜175HVの銅合金を用いるのが良い。
【0013】
また、銀合金に対する銅合金のビッカース硬さの比が100%より小さい場合、接合時に銅合金の変形量が大きい。すなわち銀合金の変形量が相対的に小さくなる結果として、接点部の中央部における銀合金層の厚みが増加する一方で、鍔部の外周部にまで銀合金層が広がらず、その結果、鍔部の外周部における十分な銀合金層(接点部)厚みが確保できず、剥離や消耗による溶着を起こしやすい。一方、銀合金に対する銅合金のビッカース硬さ比が160%より大きい場合、銅合金の変形量が相対的に小さくなり、十分に鍔部を保持可能な強度に達せず、結果として鍔部の強度が低下し、耐久性が低下する。よって、銀合金に対する銅合金のビッカース硬さ比が100〜160%、望ましくは120〜150%の銅合金を用いるのが良い。
【0014】
本発明の複合接点において、前記銅合金は析出硬化型銅合金であるとよい。
析出硬化型銅合金は、析出硬化元素を母相中に過飽和に固溶させた後、固溶度曲線より低い温度に一定時間保持すると、飽和固溶体の結晶に金属間化合物の微粒子が析出し、これにより析出硬化を図ることができる銅合金をいう。この析出硬化型銅合金は、析出硬化後は、熱処理を加えても硬度が低下しにくい。このため、長期間使用した場合、接点開閉に伴う発熱の繰り返しによる強度低下が小さく、長期間の使用に伴う熱応力による鍔部の反り上がりが抑制される。
また、前記銅合金の電気伝導度は50IACS%以上が好ましい。
足部の電気伝導度が低いと接点全体の電気抵抗が上昇し、発熱が顕著となり、ひいては接点寿命の低下に繋がるため電気伝導度はIACS50%以上が好ましい。また、これは省エネルギー化の観点からも好ましい。
【0015】
具体的には、銅合金は、Cu−Co−P−Ni−Sn系合金、Cu−Zr系合金、Cu−Zr−Cr系合金、Cu−Cr系合金、Cu−Fe−P系合金などが好ましく用いられる。これらの銅合金は、いずれも銀合金に対して相対的に変形抵抗が高く、かつ、電気伝導性に優れる(電気伝導度が50IACS%以上)析出硬化型銅合金である。また、長期間に亘る組織安定性に優れた一部の固溶強化型銅合金、例えば、Cu−Mg系合金なども使用条件によっては用いることが可能である。
【発明の効果】
【0016】
本発明の複合接点は、足部に純銅(タフピッチ銅、無酸素銅)と比較して高硬度(高強度)の銅合金を用いることにより、銀合金との優れた接合界面強度を得ることができるとともに、接点開閉に伴うサイクル熱応力による鍔部の変形や接合部の剥離が抑制され、その結果、長期間の使用における接点の耐久性が向上し、リレー等の接点装置全体の耐久性向上に寄与する。
【図面の簡単な説明】
【0017】
図1】本発明に係る複合接点の一実施形態を示す縦断面図である。
図2】複合接点の鍔部に反り上がりが生じた例を示す縦断面図である。
図3】銅合金の硬度が大き過ぎる場合の例を示す縦断面図である。
図4】銀合金に対する銅合金のビッカース硬さ比が100%より小さい場合の例を示す縦断面図である。
【発明を実施するための形態】
【0018】
以下、本発明に係る複合接点の一実施形態を図面を参照しながら説明する。
本実施形態の複合接点1は、図1に示すように、小径の基部2の一端部に大径の鍔部3が形成された全体としてリベット形状をしているとともに、鍔部3の上面部を構成する銀合金からなる接点部4と、接点部4の背面に位置し、それと接合された鍔部3の下面部を構成する大径部5と基部2と一体に形成した銅合金からなる足部6とを有している。
これら接点部4と足部6とは、これら銀合金からなる線材と銅合金からなる線材とを突き合わせて冷間でヘッダ加工することにより圧接される。圧接後に300℃〜400℃の熱処理が施される。そして、鎖線で示すように、銅又は銅合金等からなる台金板7の孔8内に足部6の基部2を挿入した状態にかしめられる。
【0019】
このような複合接点1において、接点部4を構成する銀合金としては、純Ag系合金、Ag−Cu系合金、Ag−CuO系合金、Ag−Ni系合金、Ag−ZnO系合金、Ag−Pd系合金、Ag−SnO系合金、Ag−CdO合金、Ag−SnO−In系合金等を用いることができる。これらのビッカース硬さ(HV)は、加工条件により様々に変化するが、例えば、純Ag系合金が約90HV、Ag−Cu系合金が約130HV、Ag−CuO系合金が約90HV、Ag−Ni系合金が約95HV、Ag−ZnO系合金が約110HV、Ag−Pd系合金が約95HV、Ag−SnO系合金が約130HV、Ag−CdO合金が約90HV、Ag−SnO−In系合金が約115HVである。
また、足部6を構成する銅合金としては、Cu−Co−P−Ni−Sn−Zn系合金、、Cu−Zr系合金、Cu−Zr−Cr系合金、Cu−Cr系合金、Cu−Fe−P系合金などの析出強化型銅合金やCu−Mg系合金などの固溶強化型銅合金を用いることができる。これら銅合金は、いずれもビッカース硬さが、125HV〜185HVで、接点部4を構成する銀合金に対して100%〜160%の硬さを有している。
【0020】
銅合金のビッカース硬さが125HVより小さい場合には、銅合金からなる鍔部下面部5の強度が不足するため、長期間の使用で図2に示すように鍔部3の反り上がりが起き易くなる。図2には便宜上、実施形態と共通部分に同一符号を付している(以下、図3及び図4においても同様)。
一方、ビッカース硬さが185HVより大きい銅合金材料では、接点部4の銀合金に対して銅合金からなる足部6の強度が高すぎることから、図3に示したように接合時に銅合金が十分な変形ができないため接合強度が低くなってしまい、特に、鍔部3の周縁部の接合強度が弱くなり、長期間の使用においては図3に鎖線で示したように銀合金からなる接点部4の周縁部で剥離が起きてしまう。
よって、銅合金のビッカース硬さは125HV〜185HVが望ましい。より望ましくは135HV〜175HVの銅合金を用いるのが良い。
【0021】
また、銀合金に対する銅合金のビッカース硬さの比が100%より小さい場合、接合時に相対的に銅合金の変形量が大きく、銀合金の変形量が小さくなる結果として、図4に示すように接点部4の中央部における銀合金層の厚みが増加する一方で、外周部にまで銀合金層が広がらず、その結果、鍔部3の外周部において十分な銀合金層の厚みが確保できず、接点開閉に伴う銀合金の消耗や剥離により、銅合金が対向接点と接触して溶着を起こしたり、導通不良を起こし易くなる。
一方、銀合金に対する銅合金のビッカース硬さ比が160%より大きい場合、銅合金の変形量が相対的に小さくなりすぎ、十分に接点部4を保持可能な接合強度が得られず、結果として鍔部3の強度が低下し、耐久性が低下する。
よって、銀合金に対する銅合金のビッカース硬さ比が100〜160%、望ましくは120〜150%の銅合金を用いるのが良い。
【0022】
また、特に好適に用いることができる銅合金の多くは、析出硬化型銅合金であり、これらの合金においては溶体化処理により析出硬化元素を過飽和に固溶させた後、固溶度曲線より低い温度に一定時間保持する時効処理により、飽和固溶体の結晶に金属間化合物の微粒子が析出して強度が増加する。例えば、Cu−0.1mass%Zr合金やCu−0.3mass%Cr−0.1mass%Zr合金、Cu−2.3mass%Fe−0.12mass%Zn−0.03mass%P合金などの場合には、850℃以上の高温での溶体化処理後、400〜500℃の温度で1〜3時間ほど時効処理することにより、微粒子が析出して強度が増加する。
【0023】
これら析出硬化型銅合金は、一旦、時効処理を行った後は、時効処理温度より低い温度で熱処理を加えても硬度(強度)が低下しにくい。前述したように銅合金線材と銀合金線材とをヘッダ加工してリベット形状に圧接成形した後に、銀合金と銅合金の接合界面を安定化し、接合強度を高めることを主目的として300〜400℃の温度で熱処理が施される。この熱処理により、硬度は実質的に低下しない一方で、リベットの変形抵抗が小さくなり、リベットの端子材へのかしめ加工が容易になる。また、合金組織の熱的安定性が高いため、端子材にかしめた後、接点として長期間使用した場合でも、接点部4での発熱の繰り返しによる強度低下が小さく、また、接合安定化のための熱処理後でも優れた強度を保持していることから、熱応力による鍔部3の反り上がりが抑制され、かつ、銀合金と銅合金が十分な接合強度を有するので接点部4外周部における剥離も抑制される。また、長期間に亘る組織安定性に優れた一部の固溶強化型銅合金、例えば、Cu−Mg系合金などについても、析出硬化型銅合金とは強度維持メカニズムは異なるものの同様に好適に用いられる。
【0024】
以上のように、この複合接点1は、足部6のビッカース硬さを125HV〜185HVの範囲に設定したことにより、長期間の接点開閉に伴うサイクル熱応力が発生しても、鍔部3の反り上がりや接合部の剥離を抑制して、耐久性を向上させることができる。また、足部6と接点部4とのビッカース硬さのバランスにより、少ない銀量でありながら、銅合金との接合界面全域で均質な銀合金厚さで優れた接合強度が得られることから、長期間の使用によっても銀合金と銅合金との界面での剥離も抑制される。
【実施例】
【0025】
複合接点の材料として、市販の純Ag系合金、Ag−SnO2系合金、Ag−SnO−In系合金、Ag−ZnO系合金、Ag−Ni系合金からなる直径1.5mmの銀合金線材と、市販のタフピッチ銅(CDA番号:C11000)、Cu−Cr系合金(CDA番号:C18200)、Cu−Cr−Zr系合金(三菱伸銅株式会社 商品名:MZC1)、Cu−P−Co−Ni−Sn―Zn系合金(三菱伸銅株式会社 商品名:HRSC)、Cu−Fe−P系合金(三菱伸銅株式会社 商品名:TAMAC194)、Cu−Mg系合金(三菱伸銅株式会社 商品名:MSP1)からなる直径1.9mmの銅合金線材を用いた。これら銀合金線材と銅合金線材とを表1に示される発明接点1~10および表2に示される比較接点1~4の組み合わせでヘッダマシンにセットし、二つの合金線を所定長さに切断して突き合わせた状態で冷間鍛造を行い、その後に380℃で30分の熱処理を施すことにより、接点部の直径が3.5mm、鍔部の厚みが0.5mm(接点部の厚みが0.15mm、銅合金の大径部の厚みが0.35mm)、足部の直径が2.0mm、足部の長さが2.0mmのリベット形状の複合接点を作製した。
【0026】
これら複合接点につき、接点部と足部との間の剥離強度、接点としての耐久性を評価した。
剥離強度は、各複合接点をせん断応力試験機(APTEC製 TM2102D−IT )にセットし、接点部と足部との界面に平行に荷重を加えてせん断応力を測定し、剥離強度を測定した。
耐久性評価は、作製した複合接点を2個一組としてそれぞれ厚み1mmの銅製の台金板にかしめ固定し、これをASTM接点開閉試験機に取り付けて繰り返し開閉し、サイクル耐久性の評価を実施した。通電条件は、負荷電圧が直流12V、0.5Ωの抵抗負荷による定常電流24Aとし、接触力、開離力とも196mN(20gf)で、通電1秒+休止4秒(サイクルタイム5秒)で20万回まで繰り返し開閉した。
なお、接点開離タイミングから1秒以上、接点が開かない場合には溶着したと判断し、合計で10回溶着が起きた場合にはサイクル数が20万回に満たない場合でも試験終了とした。
【0027】
所定のサイクル数を終えることなく途中で試験終了したものも含め、耐久試験終了後にサンプル外観を観察するとともに、必要に応じてこれを樹脂に埋め込み断面を研磨して銀合金と銅合金の界面及びかしめ固定した銅板と接点の鍔部との界面を観察し、耐久性が良好な順に○、△、×で判定した。
その判定基準としては、銀合金と銅合金の界面に目立った剥離が起きておらず、かつ、接点の鍔部がかしめ固定された銅板に接触している、もしくはかしめ固定された初期状態から外観上ほとんど変化がない場合には○、銀合金と銅合金の界面での剥離が若干見られる、もしくは鍔部の反り上がりが観察されるものの、所定のサイクル数終了まで溶着停止しなかったものを△、銀合金と銅合金の界面での剥離が見られるか、鍔部の反り上がりが発生しており、所定のサイクル数に達する前に溶着停止を起こしてしまったものを×とした。
【0028】
【表1】
【0029】
【表2】
【0030】
これらの表において、「硬さ比」は、硬さ比(%)=(銅合金のビッカース硬さ/銀合金のビッカース硬さ)×100で求めた。使用した銀合金及び銅合金のビッカース硬さは以下の通りである。
銀合金
純Ag系合金:89HV(表中 銀合金1)
Ag−SnO系合金:131HV(表中 銀合金2)
Ag−SnO−In系合金:114HV(表中 銀合金3)
Ag−ZnO系合金:107HV(表中 銀合金4)
Ag−Ni系合金:96HV(表中 銀合金5)
銅合金
タフピッチ銅:109HV(表中 銅合金1)
Cu−Cr系合金:129HV(表中 銅合金2)
Cu−Cr−Zr系合金:174HV(表中 銅合金3)
Cu−P−Co−Ni−Sn−Zn系合金:158HV(表中 銅合金4)
Cu−Fe−P系合金:148HV(表中 銅合金5)
Cu−Mg系合金:183HV(表中 銅合金6)
【0031】
表1の結果から、発明接点はいずれも優れた剥離強度を有しており、また耐久性にも優れることが確認された。一方、表2の結果から、比較接点1は剥離強度には優れるものの銅合金の強度が不足することから、耐久性試験の最中に鍔部の反りあがりが発生し溶着してしまった。また、他の比較接点については、剥離強度が低いことから、耐久性試験中に銀合金と銅合金の接合面での剥離が発生し、十分な耐久性を発揮することができなかった。
以上の結果から、接点部及び足部の接合前の材料として、足部のビッカース硬さが125HV〜185HVで、接点部を形成する銀合金に対して100%〜160%、特に発明接点1〜3、5〜9の硬さを有する銅合金を用いることにより、長期に亘り安定した接点性能を発揮する耐久性に優れた複合接点が得られることが確認された。
【0032】
なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、一端部にのみ接点部が設けられているものとしたが、基部の端部にも銀合金を設けて、両端部に接点部を形成してもよい。
【符号の説明】
【0033】
1 複合接点
2 基部
3 鍔部
4 接点部
5 大径部
6 足部
7 台金板
8 孔
図1
図2
図3
図4