【実施例】
【0077】
〔参考例〕
ここで、水銀灯(水銀ランプ)を光源として用いる替わりに、紫外線LED、有機EL、無機EL及び紫外線レーザーからなる群より選択される少なくとも1種の光源、具体的には紫外線LEDを光源として用いた場合の効果、即ち、光源として紫外線LEDを用いた場合の効果を、参考例として示す。下記参考例及び比較例において、「部」及び「%」は、特に断りが無い限り、重量基準である。
【0078】
(参考例1)
<塩素化塩化ビニル系樹脂の作製>
図8に示すように、紫外線LED光源装置100として、UV−LED光源ユニット(株式会社センテック製、型番「OX223」)を準備した。紫外線LED光源装置100は、ピーク波長が365nmである紫外線LED素子110(日亜化学工業株式会社製、品番「NC4U133」、順電流500mA、順電圧14.9V)を3個有している。
【0079】
参考例1で用いた紫外線LED素子の発光スペクトルは、
図9に示す通りである。
図9に示すように、紫外線LED素子110が照射する紫外線は、波長範囲が350nmから392nmであり、ピークが一つであり、ピーク波長が365nmであった。ここで、波長範囲は、上述した通り、発光スペクトルにおいて、ピーク波長の相対発光強度に対して2%以上の相対発光強度を有する波長の範囲を意味する。
【0080】
紫外線LED光源装置100を、縦20mm、横20mm、高さ300mmのアルミニウム製の支持体200に配置した後、内径75mm、高さ400mm、厚さ2.5mmの透明なガラス製の円筒状容器300(PYREX(登録商標))中に挿入した。
【0081】
60℃の温水400が入ったウォーターバス500中に、円筒状容器300に入れられた紫外線LED光源装置100と、厚さ3.6mmの透明なガラス製の容器である反応器600(容量3L、PYREX(登録商標))とを配置した。具体的には、ウォーターバス500に配置された紫外線LED光源装置100は、反応器600と対向し、3個の紫外線LED素子110が15mmの等間隔で高さ方向に1列に並べられた状態で配置されている。このとき、反応器600と紫外線LED素子110との距離Aは80mmとした。尚、ウォーターバス500には、温水400を所定の温度に維持するための熱源(図示せず)を設けた。
【0082】
次に、反応器600に、純水1.8kgと、K値が66.7、平均粒子径が170μm、見かけ密度が0.568g/mlである塩化ビニル系樹脂(株式会社カネカ製)0.2kgとを投入し、蓋620で反応器600内を密閉した。尚、塩化ビニル系樹脂のK値はJIS−K7367−2に準拠して求めた値であり、平均粒子径はJIS−K0069に従って求めた値であり、見かけ密度はJIS−K7365に従って求めた値である(以下の値についても同様)。そして、純水と塩化ビニル系樹脂との混合液である塩化ビニル系樹脂の水性懸濁液700を、反応器600のタービン翼610を用いて、回転数340rpmで攪拌した。
【0083】
反応器600内を真空脱気及び窒素置換した。その後、塩素ガスを塩化ビニル系樹脂の水性懸濁液700中に吹き込んだ。同時に、塩化ビニル系樹脂の水性懸濁液700をタービン翼610で攪拌しつつ、紫外線LED素子110から紫外線を塩化ビニル系樹脂の水性懸濁液700に照射して、塩素化反応を開始させた。尚、塩素ガスを吹き込むときは、反応器600内が減圧しないように注意した。塩素化反応中は、ウォーターバス500中の温水400の温度を60℃に維持した。
【0084】
塩素化塩化ビニル系樹脂の塩素含有量が66.3%に達したとき、紫外線LED素子110による紫外線の照射を終了して、塩素化反応を終了させた。塩素化塩化ビニル系樹脂の塩素含有量は、塩素化反応で副生する塩酸の中和滴定値により算出した(以下の値についても同様)。塩素化塩化ビニル系樹脂の塩素含有量が66.3%に達するまでに要する時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、96分間であった。そして、窒素ガスにて塩素化塩化ビニル系樹脂中の未反応の塩素を追い出した後、残存する塩酸を水洗して除去してから塩素化塩化ビニル系樹脂を乾燥させた。これにより、塩素化塩化ビニル系樹脂を得た。
【0085】
(比較例1)
支持体200で支持された1台の紫外線LED光源装置100に替えて、100Wの高圧水銀灯(東芝ライテック株式会社製、電流値1.3A、電圧値100V)を1灯用いた以外は、参考例1と同様にして、塩素化塩化ビニル系樹脂を得た。
【0086】
比較例1において、塩素化塩化ビニル系樹脂の塩素含有量が66.3%に達するまでに要する時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、120分間であった。
【0087】
参考例1及び比較例1で得られた塩素化塩化ビニル系樹脂の加熱成形時の初期着色、熱安定性測定及び評価は、以下の通りに行った。また、以下の通りにビカット軟化点を測定及び評価することにより、耐熱性の測定及び評価を行った。
【0088】
<加熱成形時の初期着色>
塩素化塩化ビニル系樹脂100重量部に対して、メチルメタクリレート・ブタジエン・スチレン(MBS)樹脂(株式会社カネカ製、品番「カネエース(登録商標)B31」)を10重量部、液状の錫系安定剤(日東化成株式会社製、品番「TVS#8831」)を1重量部、粉末状の錫系安定剤(日東化成株式会社製、品番「TVS#8813」)を1重量部、滑剤であるステアリン酸(花王株式会社製、品番「ルナック(登録商標)S−90V」)を1重量部、及びポリエチレンワックス(三井化学株式会社製、品番「Hiwax220MP」)を0.3重量部配合した後、8インチロールにて、195℃で5分間混練し、厚さ0.6mmのシートを作製した。
【0089】
得られたシートを15枚重ね合わせたものを、鋼板にクロームメッキを施して鏡面仕上げしたフェロ板間に挟んだ後、200℃の条件下、圧力を3MPa〜5MPaの範囲に調整して10分間プレスし、厚さ5mmの板を作製した。得られた板のイエローインデックス(以下、「YI」ともいう)を、色差計(日本電色工業株式会社製、品番「ZE−2000」)を使用し、JIS−K7373に準拠して測定した。
【0090】
<熱安定性>
塩素化塩化ビニル系樹脂100重量部に対して、メチルメタクリレート・ブタジエン・スチレン(MBS)樹脂(株式会社カネカ製、品番「カネエース(登録商標)B31」)を10重量部、液状の錫系安定剤(日東化成株式会社製、品番「TVS#8831」)を1重量部、粉末状の錫系安定剤(日東化成株式会社製、品番「TVS#8813」)を1重量部、滑剤であるステアリン酸(花王株式会社製、品番「ルナック(登録商標)S−90V」)を1重量部、及びポリエチレンワックス(三井化学株式会社製、品番「Hiwax220MP」)を0.3重量部配合した後、8インチロールにて、195℃で5分間混練し、厚さ0.6mmのシートを作製した。
【0091】
得られたシートを縦3cm、横5cmに切り取り、200℃のオーブンにて加熱し、シートが黒化するまでの時間を測定した。黒化とは、シートのL値が20以下であることをいう。L値は色差計(日本電色工業株式会社製、品番「ZE−2000」)を使用して測定した。
【0092】
<ビカット軟化点>
塩素化塩化ビニル系樹脂100重量部に対して、メチルメタクリレート・ブタジエン・スチレン(MBS)樹脂(株式会社カネカ製、品番「カネエース(登録商標)B31」)を10重量部、液状の錫系安定剤(日東化成株式会社製、品番「TVS#8831」)を1重量部、粉末状の錫系安定剤(日東化成株式会社製、品番「TVS#8813」)を1重量部、滑剤であるステアリン酸(花王株式会社製、品番「ルナック(登録商標)S−90V」)を1重量部、及びポリエチレンワックス(三井化学株式会社製、品番「Hiwax220MP」)を0.3重量部配合した後、8インチロールにて、195℃で5分間混練し、厚さ0.6mmのシートを作製した。
【0093】
得られたシートを15枚重ね合わせたものを、鋼板にクロームメッキを施して鏡面仕上げしたフェロ板間に挟んだ後、200℃の条件下、圧力を3MPa〜5MPaの範囲に調整して10分間プレスし、厚さ5mmの板を作製した。得られた板を用い、JIS−K7206に従って、塩素化塩化ビニル系樹脂のビカット軟化点(Vicat軟化点)の測定を行った。但し、荷重を5kgとし、昇温速度は50℃/h(B50法)とした。
【0094】
上記測定を行った結果、参考例1で得られた塩素化塩化ビニル系樹脂のYIは136であり、黒化に要した時間は40分間であり、ビカット軟化点は112.3℃であった。これに対して、比較例1で得られた塩素化塩化ビニル系樹脂のYIは142であり、黒化に要した時間は30分間であり、ビカット軟化点は111.6℃であった。これらの結果を下記表1にまとめて示した。
【0095】
【表1】
【0096】
上記表1のデータから分かるように、参考例1で得られた塩素化塩化ビニル系樹脂は、比較例1で得られた塩素化塩化ビニル系樹脂に比べて、YIが低いので加熱成形時の初期着色性が良好であり、黒化に要する時間が長いので熱安定性も良好であった。また、参考例1で得られた塩素化塩化ビニル系樹脂は、比較例1で得られた塩素化塩化ビニル系樹脂に比べて、ビカット軟化点が高いので耐熱性も良好であった。塩素含有量が同程度の塩素化塩化ビニル系樹脂を製造する場合に、紫外線LEDを用いて紫外線の照射を行った参考例1では、水銀灯を用いて紫外線の照射を行った比較例1よりも、塩素化反応に必要な総消費電力量が格段に少なく、省エネの効果があり、コストが低減された。
【0097】
(参考例2)
<塩素化塩化ビニル系樹脂の作製>
図10に示すように、紫外線LED光源装置100aとして、UV−LED光源ユニット(株式会社センテック製、型番「OX224」)を準備した。紫外線LED光源装置100aは、ピーク波長が365nmである紫外線を照射する紫外線LED素子110a(日亜化学工業株式会社製、品番「NC4U133」、順電流500mA、順電圧14.9V)を12個有している。尚、参考例2で用いた紫外線LED素子の発光スペクトルは、
図9に示す通りである。
【0098】
図10に示すように、紫外線LED光源装置100aを、支持体200aに支持して配置した後、内径74mm、高さ600mm、厚さ7mmの透明なガラス製の円筒状容器300a(PYREX(登録商標))中に挿入した。
【0099】
図11,
図12に示すように、円筒状容器300aに入れられた紫外線LED光源装置100aをジャケット付き反応器600a(容量100L)中に1台配置した。具体的には、紫外線LED光源装置100aは、上面視において円筒状の反応器600aの中心と円筒状容器300aの中心との距離、即ち、
図12において一点鎖線で表されるBの長さが210mmとなるように配置した。このとき、12個の紫外線LED素子110aは、15mmの等間隔で高さ方向に1列に並べられた状態である。また、最も低い位置に配置された紫外線LED素子110aは、反応器600aの底面からの距離が132mmの位置にあった。そして、紫外線LED素子110aを、紫外線の照射方向が攪拌の流れ方向(
図12の矢印Cの方向)と対向する向きに配置した。
【0100】
次に、反応器600aに、純水45kgと、K値が57.1であり、平均粒子径が125μmであり、見かけ密度が0.496g/mlである塩化ビニル系樹脂(株式会社カネカ製)5kgとを投入し、蓋620aをして反応器600a内を密閉した。そして、純水と塩化ビニル系樹脂との混合液である塩化ビニル系樹脂の水性懸濁液700aを、反応器600aのタービン翼610a(直径180mm)を用いて、回転数590rpmで攪拌した。
【0101】
反応器600a内を真空脱気及び窒素置換した後、再度真空脱気した。次いで、塩素ガスを塩化ビニル系樹脂の水性懸濁液700a中に吹き込んだ。同時に、タービン翼610aで塩化ビニル系樹脂の水性懸濁液700aを攪拌しつつ、紫外線LED素子110aから紫外線を塩化ビニル系樹脂の水性懸濁液700aに照射させて塩素化反応を開始した。反応器600a内の温度は、窒素置換の開始後25分間で50℃まで昇温させ、塩素化反応開始(紫外線照射開始)から15分間で40℃まで冷却して、その後の塩素化反応中(紫外線照射中)は40℃に維持した。
【0102】
塩素化塩化ビニル系樹脂の塩素含有量が64.4%に達したとき、紫外線LED素子110aによる紫外線の照射を終了して、塩素化反応を終了させた。塩素化塩化ビニル系樹脂の塩素含有量が64.4%に達するまでに要した時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、147分間であった。そして、窒素ガスにて塩素化塩化ビニル系樹脂中の未反応の塩素を追い出した後、残存する塩酸を水洗にて除去して塩素化塩化ビニル系樹脂を乾燥させた。これにより、塩素化塩化ビニル系樹脂を得た。
【0103】
(比較例2)
支持体200aに支持された1台の紫外線LED光源装置100aに代えて、100Wの高圧水銀灯(サンエナジー株式会社製、品番「SEH1002J01」、順電流1.1±0.1A、順電圧110±10V)を1灯用いた以外は、参考例2と同様にして、塩素化塩化ビニル系樹脂を得た。
【0104】
比較例2において、塩素化塩化ビニル系樹脂の塩素含有量が64.4%に達するまでに要した時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、234分間であった。
【0105】
参考例2及び比較例2で得られた塩素化塩化ビニル系樹脂の加熱成形時の初期着色、熱安定性、耐熱性(ビカット軟化点)の測定及び評価は、以下の通りに行った。
【0106】
<加熱成形時の初期着色>
塩素化塩化ビニル系樹脂100重量部に対して、メチルメタクリレート・ブタジエン・スチレン(MBS)樹脂(株式会社カネカ製、品番「カネエース(登録商標)B11A」)を5重量部、液状の錫系安定剤(日東化成株式会社製、品番「N2000C」)を3重量部、PMMA樹脂(株式会社カネカ製、品番「カネエース(登録商標)PA−20」)を1重量部、複合滑剤(川研ファインケミカル株式会社製、品番「VLTN―4」)を1重量部配合して、8インチロールにて、180℃で3分間混練し、厚さ0.6mmのシートを作製した。
【0107】
得られたシートを15枚重ね合わせたものを、鋼板にクロームメッキを施して鏡面仕上げされたフェロ板間に挟んだ後、190℃の条件で、圧力を3MPa〜5MPaの範囲に調整して10分間プレスし、厚さ5mmの板を作製した。得られた板を、色差計(日本電色工業株式会社製、品番「ZE−2000」)を使用し、JIS−K7373に準拠して、YIを測定した。
【0108】
<熱安定性>
塩素化塩化ビニル系樹脂100重量部に対して、メチルメタクリレート・ブタジエン・スチレン(MBS)樹脂(株式会社カネカ製、品番「カネエース(登録商標)B11A」)を5重量部、液状の錫系安定剤(日東化成株式会社製、品番「N2000C」)を3重量部、PMMA樹脂(株式会社カネカ製、品番「カネエース(登録商標)PA−20」)を1重量部、複合滑剤(川研ファインケミカル株式会社製、品番「VLTN―4」)を1重量部配合して、8インチロールにて、180℃で3分間混練し、厚さ0.6mmのシートを作製した。得られたシートを縦3cm、横3.5cmに切り取り、200℃のオーブンにて加熱し、シートが黒化するまでの時間を測定した。黒化とは、シートのL値が20以下であることをいう。L値は色差計(日本電色工業株式会社製、品番「ZE−2000」)を使用して測定した。
【0109】
<ビカット軟化点>
塩素化塩化ビニル系樹脂100重量部に対して、メチルメタクリレート・ブタジエン・スチレン(MBS)樹脂(株式会社カネカ製、品番「カネエース(登録商標)B11A」)を5重量部、液状の錫系安定剤(日東化成株式会社製、品番「N2000C」)を3重量部、PMMA樹脂(株式会社カネカ製、品番「カネエース(登録商標)PA−20」)を1重量部、複合滑剤(川研ファインケミカル株式会社製、品番「VLTN―4」)を1重量部配合して、8インチロールにて、180℃で3分間混練し、厚さ0.6mmのシートを作製した。得られたシートを15枚重ね合わせたものを、鋼板にクロームメッキを施して鏡面仕上げされたフェロ板間に挟んだ後、200℃の条件で、圧力を3MPa〜5MPaの範囲に調整して10分間プレスし、厚さ5mmの板を作製した。得られた板を用い、JIS−K7206に従って、塩素化塩化ビニル系樹脂のビカット軟化点の測定を行った。但し、荷重を5kgとし、昇温速度は50℃/h(B50法)とした。
【0110】
上記の測定を行った結果、参考例2で得られた塩素化塩化ビニル系樹脂のYIは77.6であり、黒化に要した時間は80分間であり、ビカット軟化点は98.6℃であった。比較例2で得られた塩素化塩化ビニル系樹脂のYIは87.1であり、黒化に要した時間は70分間であり、ビカット軟化点は97.2℃であった。これらの結果を下記表2にまとめて示した。
【0111】
【表2】
【0112】
上記表2のデータから分かるように、参考例2で得られた塩素化塩化ビニル系樹脂は、比較例2で得られた塩素化塩化ビニル系樹脂に比べ、YIが低いので加熱成形時の初期着色性が良好であり、黒化に要した時間が長いので熱安定性も良好であった。また、参考例2で得られた塩素化塩化ビニル系樹脂は、比較例2で得られた塩素化塩化ビニル系樹脂に比べ、ビカット軟化点が高いので耐熱性も良好であった。塩素含有量が同程度の塩素化塩化ビニル系樹脂を製造するに際し、紫外線LEDを用いて紫外線照射を行った参考例2では、水銀灯を用いて紫外線照射を行った比較例2よりも塩素化反応に必要な総消費電力量が格段に少なく、省エネの効果があり、コストが低減された。
【0113】
(参考例3)
<塩素化塩化ビニル系樹脂の作製>
図13に示すように、紫外線LED光源装置100bとして、UV−LED光源ユニット(株式会社センテック製、型番「OX558」)を準備した。紫外線LED光源装置100bは、ピーク波長が365nmである紫外線LED素子110b(日亜化学工業株式会社製、品番「NC4U133A」、順電流500mA、順電圧14.9V)を3個有している。
【0114】
参考例3で用いた紫外線LED素子の発光スペクトルは、
図9に示す通りである。
図9に示すように、紫外線LED素子110bが照射する紫外線は、波長範囲が350nmから392nmであり、ピークが一つであり、ピーク波長が365nmであった。
【0115】
紫外線LED光源装置100bを内径25mm、高さ360mm、厚さ2.5mmの透明なガラス製の円筒状容器300b(PYREX(登録商標))中に挿入した。
【0116】
図14に示すように、25℃の温水400aが入ったウォーターバス500a中に、透明なガラス製の容器である反応器600b(容量10L、PYREX(登録商標))を配置し、円筒状容器300bに入れられた紫外線LED光源装置100bを反応器600b中に一台配置した。このとき、3個の紫外線LED素子110bは、15mmの等間隔で高さ方向に1列に並べられた状態であった。また、最も低い位置に配置された紫外線LED素子110bは、反応器600bの底面から90mmの位置にあった。そして、紫外線LED素子110bを、紫外線の照射方向が攪拌の流れ方向と対向する向きに配置した。尚、ウォーターバス500aには、温水400aを所定の温度に維持するための熱源(図示せず)を設けた。
【0117】
次に、反応器600bに、純水5.4kgと、K値が66.7、平均粒子径が170μm、見かけ密度が0.568g/mlである塩化ビニル系樹脂(株式会社カネカ製)0.6kgとを投入し、蓋620bをして反応器600b内を密閉した。そして、純水と塩化ビニル系樹脂との混合液である塩化ビニル系樹脂の水性懸濁液700bを、反応器600bのタービン翼610を用いて、回転数800rpmで攪拌した。
【0118】
反応器600b内を真空脱気及び窒素置換した後、塩素ガスを塩化ビニル系樹脂の水性懸濁液700b中に吹き込んだ。同時に、塩化ビニル系樹脂の水性懸濁液700bをタービン翼610で攪拌しつつ、紫外線LED素子110bから紫外線を水性懸濁液700bに照射させて、塩素化反応を開始した。尚、塩素ガスを吹き込むときは、反応器600b内が減圧にならないように注意した。塩素化反応中は、ウォーターバス500a中の温水400aを70℃に維持した。
【0119】
塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達したとき、紫外線LED素子110bによる紫外線の照射を終了して、塩素化反応を終了させた。塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、120分間であった。そして、窒素ガスにて塩素化塩化ビニル系樹脂中の未反応の塩素を追い出した後、残存する塩酸を水洗にて除去してから塩素化塩化ビニル系樹脂を乾燥させた。これにより、塩素化塩化ビニル系樹脂を得た。
【0120】
(参考例4)
紫外線LED光源装置100bに代えて、紫外線LED光源装置としてUV−LED光源ユニット(株式会社センテック製、型番「OX559」)を1灯用いた以外は、参考例3と同様にして、塩素化塩化ビニル系樹脂を得た。紫外線LED光源装置は、ピーク波長が385nmである紫外線LED素子(日亜化学工業株式会社製、品番「NC4U134A」、順電流500mA、順電圧14.8V)を3個有している。
【0121】
参考例4で用いた紫外線LEDの発光スペクトルは、
図15に示す通りである。
図15に示すように、紫外線LED素子が照射する紫外線は、波長範囲が355nmから415nmであり、ピークが一つであり、ピーク波長が385nmであった。ここで、波長範囲は、上述した通り、発光スペクトルにおいて、ピーク波長の相対発光強度に対して2%以上の相対発光強度を有する波長の範囲を意味する。
【0122】
参考例4において、塩素化塩化ビニル系樹脂の塩素含有量が67.2%に達するまでに要した時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、135分間であった。
【0123】
(比較例3)
紫外線LED光源装置100bに代えて、100Wの高圧水銀灯(東芝ライテック株式会社製、順電流1.3A、順電圧100V)を1灯用いた以外は、参考例3と同様にして、塩素化塩化ビニル系樹脂を得た。
【0124】
比較例3において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、93分間であった。
【0125】
参考例3、参考例4及び比較例3で得られた塩素化塩化ビニル系樹脂について、参考例1と同様にして、塩素化塩化ビニル系樹脂の加熱成形時の初期着色、熱安定性、ビカット軟化点の測定及び評価を行った。
【0126】
その結果、参考例3で得られた塩素化塩化ビニル系樹脂のYIは91.1であり、黒化に要した時間は60分間であり、ビカット軟化点は117.8℃であった。参考例4で得られた塩素化塩化ビニル系樹脂のYIは93.3であり、黒化に要した時間は50分間であり、ビカット軟化点は115.2℃であった。比較例3で得られた塩素化塩化ビニル系樹脂のYIは132.3であり、黒化に要した時間は20分間であり、ビカット軟化点は114.3℃であった。これらの結果を下記表3にまとめて示した。
【0127】
また、参考例3、参考例4及び比較例3における総光量を、以下のように測定・算出した。光量測定器(TOPCON社製、品番「UVR−2」)にセンサー(TOPCON社製、品番「UD−36」)を装着し、塩素化反応を行うときに反応器内に存在する塩化ビニル系樹脂と光源との距離が最も近くなる位置で、光源から照射された紫外線の単位面積当たりの光量を測定した。また、塩素化反応を行うときに反応器内に存在する塩化ビニル系樹脂と光源との距離が最も近くなる位置で、光源から照射された紫外線が塩素化ビニル系樹脂に当たる照射面積を測定した。上記測定で得られる照射面積の値に単位面積当たりの光量の値を乗じた値を総光量とした。尚、上記測定において、単位面積当たりの光量と照射面積の測定は、空気雰囲気下、かつ反応器内が空の状態で行った。その結果を下記表3に示した。
【0128】
【表3】
【0129】
上記表3のデータから分かるように、参考例3、参考例4で得られた塩素化塩化ビニル系樹脂は、比較例3で得られた塩素化塩化ビニル系樹脂に比べ、YI値が低いので加熱成形時の初期着色性が良好であり、黒化に要した時間が長いので熱安定性も良好であった。また、参考例3、参考例4で得られた塩素化塩化ビニル系樹脂は、比較例3で得られた塩素化塩化ビニル系樹脂に比べ、ビカット軟化点が高いので耐熱性も良好であった。塩素含有量が同程度の塩素化塩化ビニル系樹脂を製造するに際し、紫外線LEDを用いて紫外線照射を行った参考例3、参考例4では、水銀灯を用いて紫外線照射を行った比較例3よりも塩素化反応に必要な総消費電力量が格段に少なく、省エネの効果があり、コストが低減された。
【0130】
表3のデータから分かるように、ピーク波長が385nmの紫外線を照射する紫外線LEDを用いた参考例4に対し、ピーク波長が365nmの紫外線を照射する紫外線LEDを用いた参考例3の方が、加熱成形時の初期着色性及び熱安定性がより向上した塩素化塩化ビニル系樹脂が得られた。また、塩素含有量が同程度の塩素化塩化ビニル系樹脂を製造する際に、ピーク波長が385nmの紫外線を照射する紫外線LEDを用いた参考例4に対し、ピーク波長が365nmの紫外線を照射する紫外線LEDを用いた参考例3の方が、必要な総光量が少ない上、反応時間も短く、反応効率が高いことが分かった。
【0131】
(参考例5)
<塩素化塩化ビニル系樹脂の作製>
参考例3と同様に、紫外線LED光源装置100bを用いた。
【0132】
図16に示すように、紫外線LED光源装置100bを内径75mm、高さ400mm、厚さ2.5mmの透明なガラス製の円筒状容器300(PYREX(登録商標))中に挿入した。図示しないが、集光を目的としてLED光源装置100bの周りをアルミホイルで囲み、紫外線LED素子110bの正面を縦50mm、横50mmに切り抜き、その部分以外からは光が漏れないようにした。
【0133】
図16に示すように、25℃の温水400aが入ったウォーターバス500a中に、円筒状容器300に入れられた紫外線LED光源装置100bと、透明なガラス製の容器である反応器600b(容量10L、PYREX(登録商標))とを配置した。具体的に、ウォーターバス500aに配置された紫外線LED光源装置100bは、反応器600bと対向し、3個の紫外線LED素子110bが15mmの等間隔で高さ方向に1列に並べられた状態で配置された。このとき、反応器600bと紫外線LED素子110bとの距離Aは60mmとした。尚、ウォーターバス500aには、温水400aを所定の温度に維持するための熱源(図示せず)を設けた。
【0134】
次に、反応器600bに、純水5.4kgと、K値が66.7、平均粒子径が170μm、見かけ密度が0.568g/mlである塩化ビニル系樹脂(株式会社カネカ製)0.6kgとを投入し、蓋620bをして反応器600b内を密閉した。そして、純水と塩化ビニル系樹脂との混合液である塩化ビニル系樹脂の水性懸濁液700bを、反応器600bのタービン翼610を用いて、回転数800rpmで攪拌した。
【0135】
反応器600b内を真空脱気及び窒素置換した後、塩素ガスを塩化ビニル系樹脂の水性懸濁液700b中に吹き込んだ。同時に、塩化ビニル系樹脂の水性懸濁液700bをタービン翼610で攪拌しつつ、紫外線LED素子110bから紫外線を水性懸濁液700bに照射して、塩素化反応を開始した。尚、塩素ガスを吹き込むときは、反応器600b内が減圧にならないように注意した。塩素化反応中は、ウォーターバス500a中の温水400aを70℃に維持した。
【0136】
塩素化塩化ビニル系樹脂の塩素含有量が67.2%に達したとき、紫外線LED素子110bによる紫外線の照射を終了して、塩素化反応を終了させた。塩素化塩化ビニル系樹脂の塩素含有量が67.2%に達するまでに要した時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、309分間であった。そして、窒素ガスにて塩素化塩化ビニル系樹脂中の未反応の塩素を追い出した後、残存する塩酸を水洗にて除去してから塩素化塩化ビニル系樹脂を乾燥させた。これにより、塩素化塩化ビニル系樹脂を得た。
【0137】
(参考例6)
紫外線LED光源装置として、参考例4と同様の紫外線LED光源装置を1灯用いた以外は、参考例5と同様にして、塩素化塩化ビニル系樹脂を得た。
【0138】
参考例6において、塩素化塩化ビニル系樹脂の塩素含有量が67.2%に達するまでに要した時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、300分間であった。
【0139】
参考例5及び参考例6で得られた塩素化塩化ビニル系樹脂について、参考例1と同様にして、塩素化塩化ビニル系樹脂の加熱成形時の初期着色、熱安定性、ビカット軟化点の測定及び評価を行った。
【0140】
その結果、参考例5で得られた塩素化塩化ビニル系樹脂のYIは91.9であり、黒化に要した時間は90分間であり、ビカット軟化点は117.1℃であった。参考例6で得られた塩素化塩化ビニル系樹脂のYIは93.8であり、黒化に要した時間は90分間であり、ビカット軟化点は117.1℃であった。これらの結果を下記表4にまとめて示した。
【0141】
また、参考例3と同様にして、参考例5及び参考例6における総光量を測定・算出した。その結果を下記表4に示した。
【0142】
【表4】
【0143】
表4のデータから分かるように、ピーク波長が385nmの紫外線を照射する紫外線LEDを用いた参考例6に対し、ピーク波長が365nmの紫外線を照射する紫外線LEDを用いた参考例5の方が、加熱成形時の初期着色性がより良好な塩素化塩化ビニル系樹脂が得られた。また、塩素含有量が同程度の塩素化塩化ビニル系樹脂を製造する際に、ピーク波長が385nmの紫外線を照射する紫外線LEDを用いた参考例6に対し、ピーク波長が365nmの紫外線を照射する紫外線LEDを用いた参考例5の方が、反応時間はほぼ同様であるが、必要な総光量がほぼ半分であり、反応効率が高いことが分かった。総消費電力量では参考例5と参考例6とに差異はなかった。
<塩素化塩化ビニル系樹脂の作製>
(実施例1)
図17に示すように、ジャケット付き反応器600cの底部に設けた水性懸濁液出口に水性懸濁液循環用PVC製配管800aを接続し、800aの先には透明ガラス管810を配置した。また、透明ガラス管810の前には、減圧弁4が設けられており、透明ガラス管810に入る前に、スラリーが減圧される。さらにその先には水性懸濁液循環用PVC製配管800b、水性懸濁液循環用ポンプ900、さらに水性懸濁液循環用PVC製配管800cの順で接続し、水性懸濁液循環用PVC製配管800cの出口部分を、ジャケット付き反応器600c気相部へ接続した。なお、ジャケット付き反応器600cには、蓋620cが設けられている。
【0144】
図18に、
図17の装置のうち、透明ガラス管810及び紫外線を照射するための光源の部分を拡大した図を示す。
図18に示すように、透明ガラス管810の表面から15mmの位置に、紫外線を照射するための光源としてUV−LED光源ユニット(株式会社センテック製)100cを配置した(以下、「紫外線LED光源装置100c」と称する)。紫外線LED光源装置100cは、ピーク波長が365nmである紫外線LED素子110c(日亜化学工業株式会社製、品番「NC4U133A」、順電流500mA、順電圧14.9V)を縦方向に15mm間隔で12個備えており、
図18に示すように、紫外光が透明ガラス配管810中を流れる水性懸濁液に対して照射されるよう配置した。なお、
図18中、紫外線LED光源装置100cの紫外線LED素子110cは、スペースの関係上、3つのみ記載した。
【0145】
実施例1で用いた紫外線LED素子110cの発光スペクトルは、
図9に示す通りである。
図9に示すように、紫外線LED素子110cが照射する紫外線は、波長範囲が350nmから392nmであり、ピークが一つであり、ピーク波長が365nmであった。ここで、波長範囲は、上述した通り、発光スペクトルにおいて、ピーク波長の相対発光強度に対して2%以上の相対発光強度を有する波長の範囲を意味する。
【0146】
次に、ジャケット付き反応器600cに、純水35kgと、K値が66.4であり、平均粒子径が200μmであり、見かけ密度が0.557g/mlである塩化ビニル系樹脂(株式会社カネカ製)15kgとを投入した後、蓋620cを設置して、ジャケット付き反応器600c内を密閉した。純水と塩化ビニル系樹脂との混合液である塩化ビニル系樹脂の水性懸濁液700cを、反応器600cのタービン翼610c(直径180mm)を用いて、回転数590rpmで攪拌した。同時に水性懸濁液循環用ポンプ900を用いて、水性懸濁液700cを装置内に循環させた。
【0147】
ジャケット付き反応器600c内を真空脱気及び窒素置換した後、再度真空脱気した。次いで、不図示の塩素導入部により、塩素ガスを塩化ビニル系樹脂の水性懸濁液700c中に吹き込んだ。同時に、タービン翼610cで塩化ビニル系樹脂の水性懸濁液700cを攪拌しつつ、紫外線LED素子110cから紫外線を照射した。紫外線は、透明ガラス配管810越しに塩化ビニル系樹脂の水性懸濁液700cに照射され、塩素化反応が開始される。塩素化反応開始(紫外線照射開始)からジャケット付き反応器600c内部を塩素ガスの導入によって0.02MPaまで加圧し、その後、塩素化反応中(紫外線照射中)は0.06MPaに維持した。反応器600c内の温度は、窒素置換の開始後25分間で50℃まで昇温させ、塩素化反応開始(紫外線照射開始)から100分間で85℃まで加温して、その後の塩素化反応中(紫外線照射中)は85℃に維持した。
【0148】
塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達したとき、紫外線LED素子110cによる紫外線の照射を終了して、塩素化反応を終了させた。塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間を塩素化反応の反応時間とした。この時間は、すなわち紫外線の照射開始から照射終了までの時間であり、137分間であった。そして、窒素ガスにて塩素化塩化ビニル系樹脂中の未反応の塩素を追い出した後、残存する塩酸を水洗にて除去して塩素化塩化ビニル系樹脂を乾燥させた。これにより、塩素化塩化ビニル系樹脂を得た。
【0149】
(実施例2)
塩素化反応中のジャケット付き反応器600c内部の圧力を0.1MPaとした以外は、実施例1と同様にして、塩素化塩化ビニル系樹脂を得た。本実施例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間(塩素化反応の反応時間、すなわち紫外線の照射開始から照射終了までの時間、以下同じ。)は、128分間であった。
【0150】
(実施例3)
塩素化反応中のジャケット付き反応器600c内部の圧力を0.12MPaとした以外は、実施例1と同様にして、塩素化塩化ビニル系樹脂を得た。本実施例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間は、123分間であった。
【0151】
(実施例4)
塩素化反応中のジャケット付き反応器600c内部の圧力を0.14MPaとした以外は、実施例1と同様にして、塩素化塩化ビニル系樹脂を得た。本実施例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間は、125分間であった。
【0152】
(実施例5)
塩素化反応中のジャケット付き反応器600c内部の圧力を0.02MPaとした以外は、実施例1と同様にして、塩素化塩化ビニル系樹脂を得た。本実施例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間は、144分間であった。
【0153】
(比較例4)
比較例として、ガラス製の円筒状容器をジャケット付き反応器中に1台配置し、塩素化塩化ビニル系樹脂の製造を試みた。ガラス製の円筒状容器内には、紫外線LED光源装置100cと同様の紫外線光源を設けた。この反応器へ実施例1と同様に水、塩化ビニル系樹脂を仕込み、蓋をして反応器内を密閉した。そして、純水と塩化ビニル系樹脂との混合液である塩化ビニル系樹脂の水性懸濁液を、反応器のタービン翼(直径180mm)を用いて、回転数590rpmで攪拌した。
【0154】
反応器内を塩素にて0.02MPaまで加圧したところ円筒状容器が破損したため、塩素化塩化ビニル系樹脂の製造を行うことができなかった。
【0155】
(比較例5)
塩素化反応中のジャケット付き反応器600c内部の圧力を0.01MPaとした以外は、比較例4と同様にして、塩素化塩化ビニル系樹脂を得た。本比較例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間は、155分間であった。
【0156】
【表5】
【0157】
実施例1〜5に示すように、反応器内部の圧力を高くする(0.02MPa〜0.14MPa)ことにより、塩素化の反応時間が短くなる効果が確認できた。
【0158】
また、比較例4に示すように、紫外線LED光源装置をガラス製の円筒状容器に入れ、反応器に挿入した場合は、光源の円筒状容器が反応器内部の加圧に耐えられず、破損してしまった。また、比較例5に示すように、光源の円筒状容器が耐えられる反応器内部の圧力(0.01MPa)とした場合、塩素化の反応時間が長かった。
【0159】
(実施例6)
用いた原料塩化ビニル系樹脂をK値が58.4であり、平均粒子径が150μmであり、見かけ密度が0.574g/mlである塩化ビニル系樹脂(株式会社カネカ製)に変更したこと、及び塩素化反応中のジャケット付き反応器600c内部の圧力を0.04MPaとしたこと以外は、実施例1と同様にして、塩素化塩化ビニル系樹脂を得た。本実施例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間は、140分間であった。
【0160】
(実施例7)
塩素化反応中のジャケット付き反応器600c内部の圧力を0.06MPaとした以外は、実施例6と同様にして、塩素化塩化ビニル系樹脂を得た。本実施例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間は、135分間であった。
【0161】
(実施例8)
塩素化反応中のジャケット付き反応器600c内部の圧力を0.08MPaとした以外は、実施例6と同様にして、塩素化塩化ビニル系樹脂を得た。本実施例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間は、128分間であった。
【0162】
(実施例9)
塩素化反応中のジャケット付き反応器600c内部の圧力を0.02MPaとした以外は、実施例6と同様にして、塩素化塩化ビニル系樹脂を得た。本実施例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間は、153分間であった。
【0163】
【表6】
【0164】
実施例6〜9に示すように、K値が異なる塩化ビニル系樹脂を用いた場合でも同様に、反応器内部の圧力を高くする(0.02MPa〜0.08MPa)ことにより、塩素化の反応時間が短くなる効果が確認できた。
【0165】
なお、参考例の反応時間と本願実施例の反応時間とは、使用した材料の塩化ビニル系樹脂が異なり、加えて塩素化含有量の到達度が異なる(参考例では塩素含有量の到達度が低い)ため、一概には比較できない。このため、本願発明の効果は、材料及び塩素化含有量の到達度といった条件をそろえた実施例1〜5と比較例4,5とを比較することにより理解できることを念のため付言する。