【実施例】
【0055】
実施例1:界面接合層(BL)および散乱層(SL)が導入された無機酸化物層の準備
チタン(IV)イソプロポキシドとエタノールとの混合溶液を1:10の体積比でスピンコート法により準備した後、混合溶液を、15mm×15mmサイズに切断されたFTOガラス基板(フッ素がドープされた酸化スズ、SnO
2:F、15Ω/sq)上に1500rpmで20秒間、薄く塗布した。次に、これを電気るつぼ内に配置し、温度を室温から500℃に上昇させ、有機化合物を約30分間除去し、室温まで冷却させた。加熱率および冷却率はそれぞれ約5℃/分である。粒子サイズ9nmのコロイド状態の酸化チタンペーストをドクターブレード法により、約10μmの厚さを有するように基板に薄く塗布した後、電気るつぼ内に配置し、温度を室温から500℃に上昇させ、室温まで冷却させた。次に、界面接合層Iを最初の方法と同じように導入することにより、チタン(IV)イソプロポキシドとエタノールとの混合溶液を基板に薄く塗布した後、電気るつぼ内に配置し、温度を室温から500℃に上昇させ、室温まで冷却させた。ドクターブレード法により、粒子サイズ300nmのコロイド状態の酸化チタンペーストを基板に薄く塗布した後、温度を室温から500℃に上昇させ、室温まで冷却させた。粒子サイズ300nm以上のTiO
2層を導入して、光を散乱させることにより光の吸収を増大させる。最後に、チタン(IV)イソプロポキシドとエタノールとの混合溶液を基板に薄く塗布した後、電気るつぼ内に配置し、温度を室温から500℃に上昇させ、室温まで冷却させて、最初の方法と同じように界面接合層IIを導入した。
図3〜
図5は、導入された界面接合層を有する無機酸化物層および無機酸化物層上の光散乱層のSEM図および側面断面図を示す。
【0056】
実施例2:染料の吸収
有機化合物が除去され、酸化チタンのみが塗布された基板を、室温で24時間、染料溶液内に配置して、染料を酸化チタン層に吸収させる。使用される染料は、ソラノニクス(Solaronix)(スイス)から市販されているシス−ビス(イソチオシアナト)ビス(2,2’−ビピリジル−4,4’−ジカルボキシラート)−ルテニウム(II)(ルテニウム535染料)であった。ルテニウム535染料の溶液は、ルテニウム535染料を100mlのエタノールに20mgの濃度で溶かすことにより準備した。酸化チタン基板を24時間浸し、溶液から取り出した後、染料を吸収した酸化チタン基板をエタノールで再び洗浄して、物理的に吸収された染料層を除去し、次に、基板を60℃で再び乾燥させた。
【0057】
染料2を、ポリビニルアルコール繊維を使用する色素増感太陽電池に使用した。使用した染料は、ソラノニクス(Solaronix)(スイス)から市販されているシス−ジイソチオシアナト−ビス(2,2−ビピリジル−4,4−ジカルボキシラート)ルテニウム(II)ビス(テトラブチルアンモニウム)であった。ルテニウム535ビスTBAの溶液は、0.5mmolの濃度で純粋エタノールにルテニウム535ビスTBAを溶かすことにより準備する。酸化チタン基板をルテニウム535ビスTBAの溶液に24時間浸し、溶液から取り出した後、染料を吸収した酸化チタン基板をエタノールで再び洗浄して、物理的に吸収された染料層を除去し、次に、基板を60℃で再び乾燥させた。
【0058】
実施例3:エレクトロスピニング用のPVDF−HFPポリマー溶液の準備
ポリフッ化ビニリデン−ヘキサフルオロプロピレンを、アセトンとN,N−ジメチルアセトアミド(質量比7:3)の混合溶液に溶解させて、PVDF−HFPポリマー溶液を準備した。攪拌器内で24時間攪拌し、超音波処理を30分間行うことにより、完全に溶解させた。
【0059】
実施例4:Ag含有PVDF−HFPポリマー溶液の準備
ポリフッ化ビニリデン−ヘキサフルオロプロピレンを、アセトンとN,N−ジメチルアセトアミド(質量比2:1)の混合溶液に溶解させ、続けて、ポリマーに対して1〜20質量%の量のAgを添加し、PVDF−HFPポリマー溶液を準備した。攪拌器内で24時間攪拌し、超音波処理を30分間行うことにより、完全に溶解させた。
【0060】
実施例5:無機ナノ充填材含有PVDF−HFPポリマー溶液の準備
ポリフッ化ビニリデン−ヘキサフルオロプロピレンおよび無機ナノ充填材として個々に計量されたAl
2O
3およびBaTiO
3を混合して、無機ナノ充填材を含むポリマー溶液を準備した。使用した無機ナノ充填材の量は、使用したポリマーに対して10〜40質量%であった。この混合物をアセトンとN,N−ジメチルアセトアミド(質量比7:3)との混合溶液に溶解させた。攪拌器内で24時間攪拌し、超音波処理を30分間行うことにより、完全に溶解させた。
【0061】
実施例6:エレクトロスピニング用のPVAポリマー溶液の準備
蒸留水に対して10質量%の量でポリビニルアルコール(PVA)を蒸留水に溶解させて、PVAポリマー溶液を準備した。この溶液を攪拌器内で80℃で6時間攪拌し、より低い温度である室温でさらに24時間攪拌し、蒸留水中に完全に溶解させ、次に、超音波処理を1時間行った。
【0062】
実施例7:Ag含有PVAポリマー溶液の準備
蒸留水に対して10質量%の量でポリビニルアルコール(PVA)を蒸留水に溶解させてから、Agを添加して、Agを含有するPVAポリマー溶液を準備した。この溶液を攪拌器内で80℃で6時間攪拌し、温度を室温まで下げて、ポリビニルアルコールを蒸留水に完全に溶解させた。硝酸の希釈液を2、3滴、溶液に添加して、Agをポリマーに対して0.01質量%の量で添加することにより形成されたポリマー溶液の攪拌中でのAgの低減を回避した。この溶液を攪拌器内でさらに24時間攪拌してよく混ぜ、超音波処理を1時間行った。
【0063】
実施例8:エレクトロスピニング用のポリマー混合溶液の準備
ポリスチレン、ポリメタクリル酸メチルのそれぞれをポリフッ化ビニリデン−ヘキサフルオロプロピレンに添加することにより、ポリマー混合溶液を準備した。使用した溶媒は、PVDF−HFPおよびPSが混合される場合はDMFであるが、PVDF−HFPおよびPMMAが混合される場合にはアセトンとN,N−ジメチルアセトアミド(質量比7:3)の混合溶液に溶解させた。この溶液を攪拌器内で24時間攪拌し、超音波処理を30分間行い、完全に溶解させた。
【0064】
実施例9:エレクトロスピニングによるPVDF−HFPポリマーナノ繊維の準備
ポリマーの質量%、供給電圧、および紡糸間隔を変更することにより、エレクトロスピニングを実行して、ナノ規模の様々な直径を得た。溶媒に溶解したポリマーを、溶液トランスポータ内で定率でエレクトロスピナに導入した。実験では、出力率は2ml/hであった。ポリマーが溶媒に溶解する場合、ポリマーの量を溶液に対して11質量%〜17質量%の間で変更することにより、ポリマーナノ繊維を製造した。ポリマーの量は、本発明の構造内で触れたように、適した範囲である。電圧供給源からの電圧を8kV〜14kVの間で変更することにより、エレクトロスピニングを実行した。紡糸距離を13cm〜19cmの間で変更することにより、エレクトロスピニングを実行した。エレクトスピニングポリマーナノ繊維は、15質量%、14kV、および15cmという最適な条件で製造された。
【0065】
実施例10:エレクトロスピニングによるAg含有PVDF−HFPポリマーナノ繊維の準備
ポリマーの質量%、供給電圧、および紡糸間隔を変更することにより、エレクトロスピニングを実行して、Agを含有する様々な直径のPVDF−HFPナノ繊維を得た。さらに、1質量%〜20質量%のAgを導入することで条件を変更することにより、ポリマーナノ繊維を製造した。実験では、溶液トランスポータからの出力率は0.2ml/h〜2.0ml/hであった。電圧供給源からの電圧を8kV〜20kVの間で変更することにより、エレクトロスピニングを実行した。紡糸距離を13cm〜21cmの間で変更することにより、エレクトロスピニングナノ繊維を製造した。
【0066】
実施例11:エレクトロスピニングによる無機ナノ充填材含有PVDF−HFPポリマーナノ繊維の準備
ポリマーの質量%、供給電圧、および紡糸間隔を変更することにより、エレクトロスピニングを実行して、ナノ規模の無機ナノ充填材を含有する様々な直径のPVDF−HFPナノ繊維を得た。さらに、10質量%〜40質量%の無機ナノ充填材(Al
2O
3、BaTiO
3)を導入することで条件を変更することにより、ポリマーナノ繊維を製造した。実験では、溶液トランスポータからの出力率は1.5ml/hであった。電圧供給源からの電圧を12kV〜15kVの間で変更することにより、エレクトロスピニングを実行した。紡糸距離を15cm〜18cmの間で変更することにより、エレクトロスピニングナノ繊維を製造した。
【0067】
実施例12:PVAエレクトロスピニングによるポリマーナノ繊維の準備
ポリビニルアルコール(PVA)繊維を準備する場合、ポリマーの質量%、供給電圧、および紡糸間隔を変更することにより、エレクトロスピニングを実行して、上述したようにナノ規模の直径を得た。実験では、溶液トランスポータからの出力率は0.6ml/hであった。ポリマーを溶媒に溶解させる場合、ポリマーの量を溶液に対して8質量%〜10質量%の間で変更することにより、ポリマーナノ繊維を製造した。電圧供給源からの電圧を15kV〜20kVの間で変更することにより、繊維を製造した。紡糸距離を15cm〜22cmの間で変更することにより、エレクトロスピニングを実行した。ポリマーナノ繊維は、9質量%、20kV、および20cmという最適な条件で製造された。
【0068】
実施例13:Ag含有PVAのエレクトロスピニングを使用してのポリマーナノ繊維の準備
Ag含有ポリビニルアルコール繊維が準備される場合、実施例7と同じ条件でエレクトロスピニングを実行した。グラファイトで作られたアダプタを使用して、エレクトロスピニング中のAgの低減を回避したが、エレクトロスピニングを実行する場合、ステンレス鋼で作られたアダプタが通常、先端とノズルとを接続するために使用される。最後に、Ag含有繊維を紡糸した後、熱板上に15分間押し付けて、Agを低減させた。
【0069】
実施例14:混合ポリマーのエレクトロスピニングを使用してのポリマーナノ繊維の準備
PVDF−HFPとポリスチレンを混合した後、実験では、溶液トランスポータからの出力率0.5ml/hで、電圧供給源からの電圧を13kV〜20kVの間で変更してエレクトロスピニングを実行した。紡糸距離を15cm〜23cmの間で変更することにより、エレクトロスピニングポリマーナノ繊維を製造した。ポリマーナノ繊維は、15質量%、20kV、および23cmという最適な条件で製造された。
【0070】
実施例15:走査型電子顕微鏡法を使用してのPVDF−HFPポリマーナノ繊維の表面およびナノ繊維の分布の解析
図6Aおよび
図6Bは、15質量%のポリマーを有するポリマー繊維の表面画像および直径の分布図である。供給電圧14kV、紡糸距離15cm、溶液供給率2ml/hで、ポリマーの質量%を変更することにより、ポリマーナノ繊維を製造した。
図6Aおよび
図6Bに示されるように、得られたナノ繊維は、直径800nm〜1000nmで最も均一な分布を有することが明らかになった。
【0071】
実施例16:走査型電子顕微鏡法を使用してのAg含有PVDF−HFPポリマーナノ繊維の表面およびナノ繊維の分布の解析
図7A〜
図7Lは、ポリマーに含有されるAgの量を0.3質量%〜10質量%の間で変更することによるポリマー繊維の表面画像である。供給電圧15kV〜20kV、紡糸間隔15cm〜20cm、および溶液供給率0.3ml/h〜2ml/hで、ポリマーに含有されるAgの質量%を変更することにより、ポリマーナノ繊維を製造した。
図7A〜
図7Lに示されるように、得られたナノ繊維は、直径200nm〜500nmで最も均一な分布を有することが明らかになった。
【0072】
実施例17:走査型電子顕微鏡法を使用しての無機ナノ充填材含有PVDF−HFPポリマーナノ繊維の表面およびナノ繊維の分布の解析
図8A〜
図8Lは、無機ナノ充填材としてのAl
2O
3の量を10質量%〜40質量%の間で変更することによるポリマー繊維の表面画像である。供給電圧12kV、紡糸間隔15cm、および溶液供給率1.5ml/hで、無機ナノ充填材の質量%を変更することにより、ポリマーナノ繊維を製造した。
図8A〜
図8Lに示されるように、得られたナノ繊維は、40質量%のAl
2O
3を添加した場合に最良の繊維形態を有した。
【0073】
図9A〜
図9Lは、無機ナノ充填材としてのBaTiO
3の量を10質量%〜40質量%の間で変更することによるポリマー繊維の表面画像である。供給電圧12kV、紡糸間隔15cm、および溶液供給率1.5ml/hで、無機ナノ充填材の質量%を変更することにより、ポリマーナノ繊維を製造した。
図9A〜
図9Lに示されるように、得られたナノ繊維は、凝集形を有し、直径500nm〜1000nmの直径で最も均一な分布を有することが示された。
【0074】
実施例18:走査型電子顕微鏡法を使用してのPVAポリマーナノ繊維の表面およびナノ繊維の分布の解析
図10Aおよび
図10Bは、PVAポリマー繊維の直径の表面画像および分布図である。画像のポリマー繊維をエレクトロスピニングした際、供給電圧は20kV、紡糸間隔は20cm、溶液供給率は0.6ml/hであった。
図10Bに示されるように、得られたナノ繊維は、直径180nm〜200nmで最も均一な分布を有することが示された。
【0075】
実施例19:走査型電子顕微鏡法を使用してのAg含有PVAポリマーナノ繊維の表面およびナノ繊維の分布の解析
図11は、Ag含有PVAポリマー繊維の表面画像である。画像のポリマー繊維をエレクトロスピニングした際、供給電圧は20kV、紡糸間隔は20cm、溶液供給率は0.6ml/hであった。Ag含有PVAポリマー繊維は、Agを含有しないポリマーと同様の範囲の直径を有した。AgはPVA繊維に含有されたが、元々の形態は変わらないことが明らかになった。
【0076】
実施例20:走査型電子顕微鏡法を使用しての混合ポリマーナノ繊維の表面およびナノ繊維の分布の解析
図12A〜
図12Cは、PVDF−HFPおよびポリスチレンの混合ポリマーナノ繊維の表面画像を示す。画像のポリマー繊維をエレクトロスピニングした際、供給電圧は20kV、紡糸間隔は21cm、溶液供給率は5.0ml/hであった。PVDF−HFPおよびポリスチレンの混合ポリマーナノ繊維の直径は、非混合PVDF−HFPナノ繊維よりも厚い約1000nmであり、ストランドの形状はでこぼこであった。
【0077】
図13A〜
図13Cは、PVDF−HFPおよびPMMAの混合ポリマーナノ繊維の表面画像を示す。画像のポリマー繊維をエレクトロスピニングした際、供給電圧は20kV、紡糸間隔は21cm、溶液供給率は4.0ml/hであった。PVDF−HFPおよびPMMAの混合ポリマーナノ繊維の直径は、非混合PVDF−HFPナノ繊維と同様の範囲の直径約600nmを有し、両方のストランドの形状は略同様であった。
【0078】
実施例21:電解質溶液の準備
テトラブチルアンモニウムヨウ化物0.2molと、ヨウ素0.05molと、1−プロピル−3−メチルイミダゾリウムヨウ化物0.3molとをエチレンカーボネート、ポリプロピレンカーボネート、およびアセトニトリル(体積比8:2:5)の溶媒内で混合することにより、電解質溶液を準備し、次に、24時間攪拌した。
【0079】
ポリビニルアルコール繊維を利用することにより準備した色素増感太陽電池の実施例では、テトラブチルアンモニウムヨウ化物0.02molと、ヨウ素0.08molと、1−プロピル−3−メチルイミダゾリウムヨウ化物0.03molとを、エチレンカーボネート、ポリプロピレンカーボネート、およびアセトニトリル(体積比8:2:5)の溶媒内で混合することにより、電解質溶液を準備し、次に、24時間攪拌した。
【0080】
実施例22:ポリマーナノ繊維を使用しての電解質層の作成
実施例6〜実施例8に従って製造したポリマーナノ繊維を、実施例2の染料を吸収した酸化チタンの基板上に配置し、次に、微量ピペットを使用することにより、0.035molの電解質溶液を基板の上部に滴下した。その後、オーブン内で40℃〜50℃で2時間〜3時間乾燥させて、溶媒を蒸発させた。
【0081】
実施例23:Pt電極の作成
Pt前駆体を含有するペーストを使用して、透明色素増感太陽電池を作成した。Pt前駆体を含有するペーストは、ソラノニクス(Solaronix)(スイス)から市販されている。
【0082】
室温から400℃の温度に上昇させたPt前駆体を含有するペーストを使用することにより、実施例1の酸化チタン層と同じようにして15mm×10mmサイズに切断されたFTOガラス基板上にPtを塗布した。アルファステップを使用することにより、得られたPt電極を測定した結果、厚さは約100nmと特定された。
【0083】
実施例24:固体型色素増感太陽電池素子の作成
実施例22に従った染料を吸収した酸化チタン層上に塗布されたポリマー繊維および電解質を含む電極基板と、実施例23に従って作成したPt電極基板との素子接合により、色素増感太陽電池素子を作成した。
【0084】
実施例25:色素増感太陽電池素子の電気光学性質の測定
実施例24に従って製造された色素増感太陽電池の電気光学性質。実施例22によるポリマー繊維を含有する電解質を有する色素増感太陽電池の電圧−電流密度を標準条件(AM1.5、100mW/cm
2、25℃)で、太陽シミュレータ(PEC−L11、PECCELL)を使用することにより測定した。150Wキセノンランプおよびキースレイ(Keithley)を取り付け、標準シリコン電池を使用することにより、太陽シミュレータを変更した。
【0085】
電気光学性質の結果
色素増感太陽電池素子の電気光学性質の測定結果による電流および電圧グラフのそれぞれを
図14〜
図19に示す。
図14は、実施例9に従って製造したナノ規模の直径を有するPVDF−HFP繊維を使用しての100mW/cm
2の照明状態での色素増感太陽電池素子の電圧−電流密度を示すグラフである。
図14によれば、電流密度は、界面接合層および散乱層を導入した場合に増大した。
図15は、実施例9に従って製造したナノ規模の直径を有するPVDF−HFP繊維を使用する暗状態での色素増感太陽電池素子の電圧−電流密度を示すグラフである。界面接合層および散乱層が導入された場合、これら2つの層がTiO
2層および電極層の再結合を阻止するため、電圧が増大することが明らかになった。
【0086】
表1は、供給電圧が14kV、紡糸間隔が15cm、溶液供給速度が2ml/h、ポリマーの質量%を変更させた条件で製造したPVDF−HFPポリマー繊維を追加することにより作成した色素増感太陽電池素子の性質を示す。界面接合層および散乱層を導入する場合に、電流密度が大幅に増大する一方で、開路電圧および曲線因子はあまり変動しないことが明らかになった。したがって、総合的なエネルギー変換効率は60%向上し、8.58%という高い効率を有する色素増感太陽電池を製造することができた。
【0087】
[表1]
界面接合層および散乱層が導入された無機酸化物層内にPVDF−HFPポリマーナノ繊維を使用する色素増感太陽電池素子の光起電性能の比較
【0088】
表2は、供給電圧が8kV〜20kV、紡糸間隔が13cm〜21cm、要求供給速度が0.2ml/h〜2ml/h、ポリマーに対するAgの質量%を変更させた条件で製造したAg含有PVDF−HFPポリマー繊維を追加することにより作成された色素増感太陽電池素子の性質を示す。1/100質量%のAgを添加した場合、電流密度が大幅に増大することが明らかになった。
【0089】
[表2]
Ag含有PVDF−HFPポリマーナノ繊維を使用する色素増感太陽電池素子の光起電性能の比較
【0090】
図16は、実施例11に従って製造したナノ規模の直径を有するPVDF−HFP繊維を使用する100mW/cm
2の照明状態での色素増感太陽電池素子の電圧−電流密度を示すグラフであり、PVDF−HFPは、無機ナノ充填材としてAl
2O
3を含有する。
【0091】
表3は、供給電圧が12kV〜15kV、紡糸間隔が15cm〜18cm、溶液供給速度が1.5ml/h、無機ナノ充填材としてのAl
2O
3のポリマーに対する質量%を変更させた条件で、製造された無機ナノ充填材含有PVDF−HFPポリマーナノ繊維を追加することにより作成した色素増感太陽電池素子の性質を示す。
図16および表3によれば、短絡回路電流は、PVDF−HFPに添加されたAl
2O
3の含有が、20質量%〜30質量%である場合に最大値を有し、エネルギー変換効率は30質量%の場合に最大値を有する。
【0092】
図17は、実施例11に従って製造したナノ規模の直径を有するPVDF−HFP繊維を使用する、100mW/cm
2の照明状態での色素増感太陽電池素子の電圧−電流密度を示すグラフであり、PVDF−HFPは無機ナノ充填材としてBaTiO
3を含有する。
【0093】
[表3]
無機ナノ充填材としてAl
2O
3を含有するPVDF−HFPポリマーナノ繊維を使用する色素増感太陽電池素子の光起電性能の比較
【0094】
表4は、Al
2O
3に代えてBaTiO
3を使用した場合の表3と同じ条件で作成した色素増感太陽電池素子の性質を示す。
図17および表4によれば、電流密度およびエネルギー変換効率は、PVDF−HFPに添加されるBaTiO
3の含有量が20質量%である場合に最大値を有する。
【0095】
[表4]
無機ナノ充填材としてBaTiO
3を含有するPVDF−HFPポリマーナノ繊維を使用する色素増感太陽電池素子の光起電性能の比較
【0096】
表2〜表4によれば、電流密度およびエネルギー変換効率は、無機ナノ充填材としてAg、Al
2O
3、またはBaTiO
3を含有する繊維を色素増感太陽電池に挿入し、電解質内で溶融させた場合、それら構成要素を含まない繊維を有する色素増感太陽電池と比較してより大きく向上した。
【0097】
図18は、実施例12に従って製造したナノ規模の直径を有するPVA繊維を使用する、100mW/cm
2の照明状態での色素増感太陽電池の電圧−電流密度を示すグラフである。
図18によれば、界面接合層および散乱層が導入された場合に電圧が増大することも明らかにすることができた。
図19は、実施例12に従って製造したナノ規模の直径を有するPVA繊維を使用する、暗状態での色素増感太陽電池素子の電圧−電流密度を示すグラフである。界面接合層および散乱層を導入した場合、これら2つの層がTiO
2層と電極層との再結合を阻止するため、電圧が増大することが明らかになった。
【0098】
表5は、供給電圧が20kV、紡糸間隔が20cm、溶液供給速度が0.6ml/h、ポリマーの質量%を変更させた条件で製造されたPVAポリマー繊維を追加することにより作成した色素増感太陽電池素子の性質を示す。表5によれば、界面接合層および散乱層が導入された場合、電流密度は大幅に増大し、その一方で、開路電圧および曲線因子はあまり変動しなかった。したがって、総合的なエネルギー変換効率を特定した場合、7.36%という高い効率を有する色素増感太陽電池を製造することができる。
【0099】
[表5]
界面接合層および散乱層が導入された無機酸化物層内にPVAポリマーナノ繊維を
使用する色素増感太陽電池素子の光起電性能の比較
【0100】
図20は、実施例13に従って製造したナノ規模の直径を有するPVA繊維を使用する、100mW/cm
2の照明状態での色素増感太陽電池素子の電圧−電流密度を示すグラフであり、PVAはAgを含有する。
【0101】
表6は、PVAの製造と同じ条件で製造したAg−PVA繊維を追加することにより作成した色素増感太陽電池素子の性質を示す。表6によれば、エネルギー変換効率は、AgをPVA繊維に添加することにより8.12%に向上した。
【0102】
[表6]
界面接合層および散乱層が導入された無機酸化物層内にポリマーナノ繊維(Ag−PVA)を使用する色素増感太陽電池素子の光起電性能の比較
【0103】
PVA繊維を使用する実験では、電流密度は、Ag含有繊維を色素増感太陽電池に挿入し、電解質内で溶融させた場合(表6)場合、Agを含有しない繊維を有する色素増感太陽電池(表5)と比較してより大きく向上した。これは、Agが、電解質内のイオンの移動を助ける媒体として機能し、それにより、TiO
2、電解質、およびPt電極間のイオン伝導性が増大した結果である。
【0104】
表7は、供給電圧が20kV、紡糸間隔が21cm、溶液供給速度が5.0ml/hという条件で製造したPVDF−HFPとポリスチレンの混合ポリマー繊維を追加することにより作成した色素増感太陽電池素子および供給電圧が20kV、紡糸間隔が20cm、溶液供給速度が4.0ml/hという条件で製造したPVDF−HFPとPMMAとの混合ポリマー繊維を追加することにより作成した色素増感太陽電池素子の性質を示す。
【0105】
[表7]
ポリスチレンおよびPMMAのそれぞれとの混合ポリマーPVDF−HFPを使用する色素増感太陽電池素子の光起電性能の比較
【0106】
実施例26:色素増感太陽電池素子のインピーダンスの測定
実施例15に従って製造した色素増感太陽電池素子のインピーダンスを測定することにより、各界面での抵抗を測定した。
図21〜
図27は、イーケムアナリスト(Echem Analyst)(ガムリー(GAMRY))を使用して値を測定、Z−MANソフトウェアにフィッティングすることから得られるインピーダンスのデータを示すグラフである。
【0107】
図21は、無機酸化物層に導入された界面接合層および光散乱層を有する色素増感太陽電池素子およびこれら2層を有さない素子のインピーダンスのボーデ線図である。図のピークは低周波数に近い位置にあるため、電荷はより高速に移動し、電子の寿命はより長い。界面接合層および光散乱層が導入された場合、図のピークが低周波数近くによりシフトされるため、電荷の高速移動は、界高い電流密度およびエネルギー変換効率が提供されるように、面接合層および光散乱層を導入することにより誘発される。
【0108】
表8および表9は、界面接合層および光散乱層を無機酸化物層に導入した後、エレクトロスピニング法によりPVDF−HFPナノ繊維およびPVAナノ繊維を使用して作成した色素増感太陽電池素子およびスピンコート法によるポリマー薄膜を使用して作成した色素増感太陽電池素子の抵抗を測定した結果を示す。Rsは太陽電池素子の直列抵抗であり、R1
CTは、界面接合層I(1004)を含む無機酸化物層(1003)と光散乱層(1005)との間の抵抗であり、R2
CTは、界面接合層II(1006)を含む光散乱層(1005)とポリマー電解質層(1008)との間の抵抗であり、R3
CTは、ポリマー電解質層(1008)と第2の電極(1009)との間の抵抗である。R
1CT、R2
CT、およびR3
CTの間に大きな差はないが、R2
CTの値によれば、ポリマーナノ繊維を使用して作成した色素増感太陽電池素子の抵抗がより低かった。したがって、光散乱層と電解質層との間の抵抗が低いことにより、光起電性能として高い電流密度が得られる。
【0109】
図22および
図24はインピーダンスのボーデ線図であり、
図23および
図25はナイキスト線図である。ボーデ線図のピークは、低周波数領域内の同じ周波数にあるため、電荷の移動に大きな差はない。図のより大きく高い半円は、電子とドープされた正孔との多くの再結合があることを意味する。ポリマー薄膜がスピンコート法により使用される場合、高周波数領域での図の半円はより大きく、それにより、より多くの再結合が行われる。したがって、光起電性能として高低の抵抗が得られる。
【0110】
図26は、実施例によるナノ規模の直径を有するAg含有PVA繊維を使用して作成された色素増感太陽電池素子のインピーダンスのボーデ線図の比較である。2つの図のピークは同じ周波数にあるため、電荷の移動に大きな差はない。
図27は、実施例によるナノ規模の直径を有するAg含有PVA繊維を使用して作成した色素増感太陽電池素子のインピーダンスのナイキスト線図の比較である。しかし、2つの図の曲線を同様のパターンを示したため、PVAの界面抵抗は、Ag−PVAよりも小さく、一般に、低い抵抗を示した。
【0111】
[表8]
エレクトロスピニング法によりPVDF−HFPナノ繊維を使用して作成した色素増感太陽電池素子およびスピンコート法によりPVDF−HFPポリマー薄膜を使用して作成した色素増感太陽電池素子のインピーダンスの測定からの抵抗レベル
【0112】
[表9]
エレクトロスピニング法によりPVAナノ繊維を使用して作成した色素増感太陽電池素子およびスピンコート法によりPVAポリマー薄膜を使用して作成した色素増感太陽電池素子のインピーダンスの測定からの抵抗レベル
【0113】
上述したように、Ag含有繊維を利用することにより作成した色素増感太陽電池は、界面間のイオンの伝導性の増大により、増大した電流密度を有した。これは、インピーダンスの解析から確認することができる。太陽電池素子の一連の抵抗間に大きな差はないが、Ag含有ナノ繊維を使用して作成した太陽電池のR1
CT、R2
CT、およびR3
CTの値は、低下した。したがって、Ag含有ナノ繊維を使用して作成した太陽電池の界面間の抵抗が低下したことが分かった。
【0114】
図28は、実施例によりナノ規模の直径を有するPVDF繊維を使用して作成した色素増感太陽電池素子のインピーダンスのボーデ線図の比較であり、PVDFは無機ナノ充填材としてAl
2O
3を含有する。2つの図のピークは同様の周波数にあるため、電荷の移動に大きな差はない。
図29は、実施例によりナノ規模の直径を有するPVDF繊維を使用して作成した色素増感太陽電池素子のインピーダンスのナイキスト線図の比較であり、PVDFは無機ナノ充填材としてAl
2O
3を含有する。無機ナノ充填材Al
2O
3を含むPVDF−HFP繊維の図は、無機ナノ充填材Al
2O
3を含まない繊維よりも小さな半円を有し、それにより、無機ナノ充填材Al
2O
3の導入は、再結合を阻止することが明らかになった。
【0115】
[表10]
無機ナノ充填材としてAl
2O
3を含む、エレクトロスピニング法によるPVDF−HFPナノ繊維を使用して作成した色素増感太陽電池のインピーダンスの測定からの抵抗レベル
【0116】
実施例27:エレクトロスピニング法により作成したPVDF−HFPポリマーナノ繊維の電解質耐久性テスト
PVDF−HFPをエレクトロスピニングすることにより、ポリマー繊維を準備し、次に、生成されたポリマー繊維をガラス基板の間に導入し、電解質も導入する。耐久性テストを行った。
図30の(A)は、ポリマー繊維を導入せずにガラス基板が接合され、次に、電解質のみが導入された後の画像である。
図30の(A−1)は、繊維が導入され、ガラス基板が接合され、次に、電解質が導入された後の画像である。ガラス基板を通して直径1mmの穴を開けた後、その穴を通して電解質を導入し、穴を充填せずに48時間観察した。
図30の(B)は、ガラス基板を接合し、次に、電解質のみを導入してから12時間後の画像である。
図30の(B−1)は、繊維が導入され、ガラス基板が接合され、次に、電解質が導入されてから12時間後の画像である。
図30の(C)は、ガラス基板を接合し、次に、電解質のみを導入してから36時間後の画像である。
図30の(C−1)は、繊維が導入され、ガラス基板が接合され、次に、電解質が導入されてから36時間後の画像である。
図30の(D)は、ガラス基板を接合し、次に、電解質のみを導入してから48時間後の画像である。
図30の(D−1)は、繊維が導入され、ガラス基板が接合され、次に、電解質が導入されてから48時間後の画像である。48時間後の画像を比較すると、電解質のみが導入された
図30の(D)の電解質の量は、蒸発により少なくなっている一方で、繊維および電解質が導入された
図30の(D)の電解質の蒸発は殆どなく、電解質はガラス基板内に保持されている。ポリマーナノ繊維がガラス基板内に電解質を安定して保持可能なことが示される。
図30の(E)は、48時間後に繊維が電解質内に保持されているか否かをチェックするためにガラス基板が除去された写真である。48時間が経過しても、繊維が溶融または散乱せずに保持されていることが分かる。
【0117】
比較例1:電解質基材としてスピンコートされたPVDF−HFPポリマーを使用する色素増感太陽電池の光起電性能
ポリマーPVDF−HFPを使用してスピンコート法により、ポリマー薄膜を準備し、次に、生成された薄膜を色素増感太陽電池内に導入し、その後、素子の光起電性能を測定する。
【0118】
電解質溶液を準備して、ポリマーナノ繊維の代わりにスピンコート法によるポリマー薄膜を使用すること除き、実施例と同じ進行および条件に従って色素増感太陽電池を作成する。スピンコート法によるポリマー薄膜を含む色素増感太陽電池に関して、実施例25と同じ条件の電圧に従って電流密度を測定した。比較例1による色素増感太陽電池の電圧−電流密度の測定を
図31に示し、表11は、開路電圧、短絡回路電流、曲線因子、エネルギー変換効率を示した。
【0119】
比較例1による色素増感太陽電池では、電極のバンドキャップエネルギー差により特定される開路電圧は、ポリマーナノ繊維が含まれる実施例9と同様である。しかし、典型的なポリマー繊維を含む素子の場合、短絡回路電流の値はより低かった。これは、ポリマーナノ繊維内の多くの孔により、イオン移動度がより高いためであると考えられる。比較例1のエネルギー変換効率も、ポリマーナノ繊維を含む素子と比較して低い傾向を有する。
【0120】
[表11]
電解質基材としてスピンコートされたPVDF−HFPポリマーを使用する色素増感太陽電池の光起電性能
【0121】
比較例2:電解質基材としてスピンコートされたPVAポリマーを使用する色素増感太陽電池の光起電性能
実施例6において使用されるPVAポリマーを使用してスピンコート法により、ポリマー薄膜を準備し、次に、生成された薄膜を色素増感太陽電池に導入し、その後、素子の光起電性能を測定する。
電解質溶液を準備して、ポリマーナノ繊維の代わりにスピンコート法によるポリマー薄膜を使用すること除き、実施例と同じ進行および条件に従って色素増感太陽電池を作成する。スピンコート法によるポリマー薄膜を含む色素増感太陽電池に関して、実施例25と同じ条件の電圧に従って電流密度を測定した。比較例2による色素増感太陽電池の電圧−電流密度の測定を
図32に示し、表12は、開路電圧、短絡回路電流、曲線因子、エネルギー変換効率を示した。
【0122】
比較例2による色素増感太陽電池では、電極のバンドキャップエネルギー差により特定される開路電圧は、ポリマーナノ繊維が含まれる実施例15と同様である。しかし、典型的なポリマー繊維を含む素子の場合、短絡回路電流の値はより低かった。これは、ポリマーナノ繊維内の多くの孔により、イオン移動度がより高いためであると考えられる。比較例2のエネルギー変換効率も、ポリマーナノ繊維を含む素子と比較して低い傾向を有する。
【0123】
[表12]
電解質基材としてスピンコートされたPVAポリマーを使用する色素増感太陽電池の光起電性能
【0124】
比較例3:液体電解質を使用する色素増感太陽電池の光起電性能
ポリマー繊維のない色素増感太陽電池のエネルギー変換効率を見つけて比較するために、液体電解質のみが導入された色素増感太陽電池を準備する。
実施例25と同じ条件で決定される電圧に従って、電流密度を測定する。比較例3による色素増感太陽電池の電圧−電流密度の測定を
図33に示し、表13は、開路電圧、短絡回路電流、曲線因子、エネルギー変換効率を示す。
表14は、比較例3によるインピーダンス値を示す。表14によれば、全体のインピーダンス値が低減する。したがって、ナノ繊維により内部抵抗が増大するため、ナノ繊維なしで電解質のみを使用する場合、全体の抵抗が低減することが分かる。
【0125】
[表13]
液体電解質を使用する色素増感太陽電池の光起電性能
【0126】
[表14]
液体電解質を使用する色素増感太陽電池のインピーダンスの測定
【0127】
例示的にすぎない好ましい実施例について説明し、本発明の様々な変更および変形を実施し得る。しかし、そのような変更および変形が、本発明の添付の特許請求の範囲から逸脱せずに本発明の範囲内に包含されることが明らかである。