【0016】
<製造方法>
本発明の熱蛍光体の製造方法の一例を以下に説明する。
本発明の熱蛍光体の製造は、一般的なセラミックスの製造方法などを用いて行うことができる。また、市販のセラミックス材料を用いることもできる。
具体的には、本発明の熱蛍光体の製造は、上記金属酸化物及び上記発光中心成分の原料を、粉砕および混合した後、焼結することなどにより実施することができる。
上記原料としては、上記金属酸化物においては、上記金属酸化物そのものを原料とすることができ、例えば、上述の「ZrO
2又はZrSiO
4と、xMgO・yAl
2O
3・zSiO
2との混合物」の一つであるZrO
2・SiO
2−2MgO・2Al
2O
3・5SiO
2(ジルコン−コージライト)を製造する場合は、金属酸化物のZrO
2・SiO
2(ジルコン)及び、MgO・Al
2O
3・SiO
2(コージライト)出発材料として用いることができる。
また、上記金属酸化物の他の原料として、後に続く焼結処理により酸化物を形成する原料、例えば、上記金属酸化物を構成する金属元素の炭酸塩;水酸化物などを用いることもできる。
また、上記発光中心成分の原料については、上記発光中心成分を構成する元素を含有する炭酸塩、水酸化物などを用いることができ、例えば、上記発光中心成分がDyの場合は、炭酸ディスプロシウム二水和物などの炭酸塩、三水酸化ディスプロシウムなどの水酸化物を用いることができる。
上記粉砕および混合は、一般的なセラミックスの製造において用いられる方法により行うことができる。
具体的には、原料および溶媒としての水などを、ボールミルなどの装置に投入し、粉砕および混合を行う。
これにより、原料の粉砕混合物を得ることができる。
混合の後、得られた粉砕混合物を、焼結処理を行うなどして、本発明の熱蛍光体を得ることができる。
上記焼結処理の条件は、原料の組成などの条件により適宜決定される。
上記の例の場合、具体的には、上記主たる金属酸化物の融点の温度の0.8倍の温度程度の温度条件で他の金属酸化物や上記発光中心成分を混合しドープする等することができる。
また、上述した以外にも趣旨を逸脱しない範囲で、他の処理も行うことができる。
そのような例としては、成形処理などが挙げられ、焼結処理の前または後に、公知の方法で行うことができる。
上記成形は、本発明の熱蛍光体の用途に応じて適宜決定される任意のものであるが、乾式成形などの公知の成形方法を用いて行うことができ、板状、四角形状、円形状、線状、曲線状などの任意の形状を用いることができる。
【実施例】
【0020】
以下、本発明について実施例及び比較例を示してさらに具体的に説明するが本発明はこれらに何ら制限されるものではない。
【0021】
〔実施例1〕
(熱蛍光体、熱蛍光放射線検出デバイス)
実施例1〜3における本発明の熱蛍光体は、表1に示す金属酸化物の組成及び含有量、並びに、発光中心成分及び含有量であるセラミックス材料を常法に従って製造し、得られたセラミックスを8cm×8cm×0.1cmの板状体に成形し、本発明の熱蛍光体を製造した。
なお、表1に示す割合は、合計量で100重量%となる割有である。実施例1においてはAl
2O
3、SiO
2 、MgOの合計量が100重量%未満99重量%以上であり、発光中心成分が1重量%未満含有されており、実施例3においてはその他の成分3.20重量%中に1重量%未満のDyが含有されていることを意味する。
また、得られた本発明の熱蛍光体を、本発明の熱蛍光放射線検出デバイスとして下記の各測定を行った。
【表1】
【0022】
〔試験例1〕熱蛍光スペクトル
本発明の熱蛍光体の特性を調べるため、熱蛍光スペクトルを調べた。
熱蛍光スペクトルは、本発明の熱蛍光体に、放射線を照射した後、加熱した際に発する光のスペクトルを測定することにより調べた。
具体的には、実施例1〜3の本発明の熱蛍光体に放射線(X線)を5Gy照射した後、測定装置(装置名:「PHOTONIC MULTI−CHANNEL ANALYZER PMA−12」浜松ホトニクス社製)で、330℃に加熱し、スペクトル測定を行った。
なお、比較試料としてのCaSO
4:Dy(硫酸カルシウムのモル数に対して0.1mol%)についても、同様に試験を行った。
得られた結果を
図1に示す。
【0023】
〔試験例2〕グロー曲線
本発明の熱蛍光体における熱蛍光体のグロー曲線を調べた。
グロー曲線は、本発明の熱蛍光体に、放射線を照射した後、徐々に加熱した際に発する光の強度を測定することにより調べた。
具体的には、実施例1〜3の本発明の熱蛍光体に放射線(X線)を5Gy照射した後、グロー曲線測定装置で、室温〜330℃までの温度において7.5℃/分の速度で徐々に加熱し、発光する光の強度を測定した。
なお、比較試料としてのCaSO
4:Tm(型名:UD110S、松下電器社製)についても、同様に試験を行った。
得られた結果を
図2に示す。
【0024】
〔試験例3〕放射線照射強度と熱蛍光強度
本発明の熱蛍光体における放射線照射強度と熱蛍光強度との特性を調べた。
放射線照射強度と熱蛍光強度との特性は、本発明の熱蛍光体に、放射線を照射した後、加熱した際に発する光の強度を測定することにより調べた。
具体的には、実施例1及び3の本発明の熱蛍光体に放射線(6MVのX線照射装置、Varian社製「CLINAC−21EX Linear Accelarator)を1,10,50,100Gyそれぞれ照射した後、グロー曲線測定装置で、330℃に加熱し、全熱蛍光量を積算した。
なお、比較試料としてのCaSO
4:Tm(通常の紛体型熱ルミネッセンス線量計型名:UD110S、松下電器社製)についても、同様に試験を行った。
得られた結果を
図3に示す。
図3に示す結果から明らかなように、成形体であるにも関わらず、本発明の熱蛍光体は紛体型の熱ルミネッセンス線量計と同等の感度を有するものであることが判る。
【0025】
〔試験例4〕放射線の2次元計測試験
本発明の熱蛍光体の上に物体を載せて放射線を照射することにより、放射線の2次元計測試験を行い、画像提供物としての特性を調べた。
具体的には、実施例1で得られた本発明の熱蛍光体の上にUSBメモリー及び1円玉、並びに、魚類のシシャモを載せ、放射線照射装置(商品名:MS−80Labo、メディエックステックジャパン社製)で放射線(X線)を5Gy照射し、放射線照射後の上記熱蛍光体を、熱蛍光画像取得装置により330℃、2分の条件で加熱し、上記熱蛍光体を発光させ画像を取得し、得られた画像の解像度を解析した。
条件:
フィルター:赤外カットフィルターのみを使用
得られた画像を
図4(USBメモリー及び1円玉)、及び
図5(魚)に示す。
【0026】
〔試験例5〕サイバーナイフの照射位置調整及び治療計画における適性試験
本発明の熱蛍光体のサイバーナイフの照射位置の測定、及び治療計画の作製における適性試験を行った。
(サイバーナイフの照射位置の測定に対する適性試験)
サイバーナイフの照射位置の測定に対する適性試験は、下記のように行った。
実施例1で得られた本発明の熱蛍光体を放射線照射部分に開閉部を有するファントムにファントムの蓋を開けて設置した。設置した本発明の熱蛍光体に、油性インクを用いて点状の印をつけ、サイバーナイフ「サイバーナイフラジオサーチェリーシステム(日本アキュレイ社製)の放射線の照射中心にレーザーがドット照射されるように設けられているレーザーポインタを該印に当てて、レーザーを照射した。
レーザーの照射後、ファントムの蓋を閉じ、サイバーナイフで、放射線(X線)を下記条件で照射した。放射線の照射の後、ファントムから本発明の熱蛍光体を取出し、熱蛍光画像取得装置により330℃、2分の条件で加熱し、熱蛍光体を発光させて画像を取得し、得られた画像を解析した。
放射線照射条件:
線種:X線
線量:10Gy
線束:6MV
得られた熱蛍光画像を
図6のA、熱蛍光画像を2値化した画像を
図6のBに示す。
【0027】
(サイバーナイフの治療計画の作製に対する適性試験)
本発明の熱蛍光体のサイバーナイフの治療計画の作製に対する適性試験は、上記サイバーナイフの照射位置の測定と同様にして、本発明の熱蛍光体を設置し、放射線の照射条件を下記条件に変えて、放射線(X線)の照射を行い、熱蛍光画像取得装置で熱蛍光体を発光させ画像を取得し、得られた画像を解析することにより行った。試験は、放射線の照射条件を変えて二度行った。
また、比較試験として、本発明の熱蛍光体の代わりに、ラジオクロミックフィルムとしてのガフクロミックフィルム(商品名)を用いた試験を同時に行った。なお、ガフクロミックフィルムを用いた試験においては、ダイナミックレンジが狭いため、放射線量を減らして行った。
得られた結果を
図7(放射線照射条件1、A:治療計画、B:本発明の熱蛍光体による実測)に示す。なお、計測は300℃、2分で計測した。
放射線照射条件1:
線種:X線
線量:中心20Gy
【0028】
以下、得られた結果及び考察を説明する。
(熱蛍光スペクトル)
本発明の熱蛍光体の特性を調べるため、熱蛍光スペクトルを調べた。
図1に示すように、実施例1及び2の本発明の熱蛍光体は、発光中心成分としてのCrに起因するCr
3+の発光準位である693nmに鋭いピークを有する高強度の熱蛍光スペクトルが観察された。
また、実施例3の本発明の熱蛍光体は、発光中心成分としてのDyに起因するDy
3+の発光準位である483nm及び570nmの2つの鋭いピーク、並びに300〜480nmのなだらかな390nmを中心とするピークを有する高強度の熱蛍光スペクトルが観察された。
また、対象として用いたDyを含有するCaSO
4においては、483nm及び570nmの2つの鋭いピークを有する熱蛍光スペクトルが観察された。
以上の結果から、本発明の熱蛍光体は、高強度の熱蛍光を発するものであることがわかる。
【0029】
(グロー曲線)
本発明の熱蛍光体における熱蛍光体のグロー曲線を調べた。
図2に示すように、実施例1の本発明の熱蛍光体は、110〜230℃において170℃に高強度のピーク、及び、250〜350℃において300℃に高強度のピークを有するグロー曲線であった。
また、実施例2の本発明の熱蛍光体は、110〜190℃において150℃に高強度のピーク、及び、250〜350℃において300℃に高強度のピークを有するグロー曲線であった。
また、実施例3の本発明の熱蛍光体は、40〜140℃において90℃に高強度のピークを有するグロー曲線であった。
また、対象として用いたTmを含有するCaSO
4においては、60〜140℃において100℃のピーク、及び、150〜350℃において240℃にピークを有するグロー曲線であった。
以上の結果から、本発明の熱蛍光体は、室温より高い温度に、高強度の熱蛍光のピークを有するものであることがわかり、操作しやすいものであることがわかる。また、グロー曲線から、実施例1及び2は酸化アルミニウム(Al
2O
3)を主成分とするものであるが、形成成分や結晶構造などを変えることにより放射線捕捉特性を制御することが可能なことがわかる。
また、これらの実施例の実施中でも実施例2のように酸化アルミニウムの純度が高い場合には、焼成温度が高くなり、また原料が高価である。これらの点においては実施例1や3のように、上記構成成分により構成されるセラミックスを用いてなる熱蛍光体の方が、安価に原料を入手でき、かつ純度が低いので焼成温度も低く、結果として生産コストが低くなる点で有利である。さらに実施例1及び3のように上記構成成分により構成されている熱蛍光体の方が、放射線のイメージング特性も高くなる傾向にある。
更に、板の透過性を高めると感度は高くなるものの、画像のボケを生じやすく、かつ、高純度の材料を使用して時間をかけて結晶化を進めなければならないため生産コストがとても高くなるが、実施例1や3のように上記構成成分により構成されている熱蛍光体では、後述するように鮮明な画像を得ることができる。
【0030】
(放射線照射強度と熱蛍光強度)
本発明の熱蛍光体における放射線照射強度と熱蛍光との特性を調べた。
図3に示すように、実施例1及び3の本発明の熱蛍光体は、放射線(X線)の照射量が1〜100Gyにおいて、放射線の照射線量に依存して直線的に発光量が増加するものであった。一方、対象のUD110Sにおいては、放射線照射量が1Gy、10Gyにおいては放射線の照射線量に依存した直線的な発光量の増加がみられるが、100Gyにおいてその直線的な増加性が失われている。
以上の結果から、本発明の熱蛍光体は、ダイナミックレンジが広く、放射線の定量性にすぐれ、熱蛍光強度が高く感度の高いものであり、放射線の定量に好適に使用できるものであることがわかる。また、放射線治療などで用いられる1〜100Gyの放射線量において好適に使用できるものであることがわかる。
【0031】
(2次元計測試験)
本発明の熱蛍光体(実施例1の熱蛍光体)の2次元計測試験を行い、本発明の熱蛍光体の画像提供物としての特性を調べた。
図4及び5に示すように、X線を透過する量が場所によって異なり、その異なる放射線の量に応じた熱蛍光による画像が得られていることがわかる。
また、画像の解像度は、約80μmであった。
このように、本発明の熱蛍光体は、X線の吸収量及び位置を高い解像度で把握することができるため、放射線の1次元測定だけではなく2次元測定にも有用なものであることがわかる。
【0032】
(サイバーナイフの照射位置の測定における適性試験)
本発明の熱蛍光体(実施例1の熱蛍光体)のサイバーナイフの照射位置の測定における適性試験を行った。
図6のA及びBに示すように、本発明の熱蛍光体を用いて、照射位置が正確に測定されていることがわかる。
また、従来のガフクロミックフィルムを用いた場合は、試験をするたびにレーザーポインターの照射位置をマーキングする操作が必要であるのに対し、本発明の熱蛍光体を用いた本試験では、繰り返し使用することができるため耐熱マジックの使用や金属マーカー等を埋め込むことにより照射位置のマーキング操作は不要であり、簡便に行うことが可能であることがわかる。
以上から、本発明の熱蛍光体は、サイバーナイフの照射位置の測定に好適に用いることが可能であることがわかる。
【0033】
(サイバーナイフの治療計画の作製に対する適性試験)
本発明の熱蛍光体(実施例1の熱蛍光体)のサイバーナイフの治療計画の作製に対する適性試験を行った。
図7に示すように、本発明の熱蛍光体を用いた結果は、治療計画の検証等に有用であることがわかる。
従来のガフクロミックフィルムはダイナミックレンジが狭いため、実際に治療に用いるレベルの放射線量を用いることができず、照射する放射線量を減らして治療計画のための試験を行わなければならないのに対し、本発明の熱蛍光体は、実際に治療に用いるレベルの放射線量を用いて、従来のガフクロミックフィルム以上の結果が得られることがわかる。
また、従来のガフクロミックフィルムは、一度しか使用できないものであるが、本発明の熱蛍光体は熱処理により繰り返し再利用できるものであり、再利用の場合においても同様の結果を得ることができた(図示せず)。
以上から、本発明の熱蛍光体は、サイバーナイフの治療計画の作製に好適に用いることが可能であることがわかる。
【0034】
(熱蛍光放射線検出デバイス)
以上の結果から、本発明の熱蛍光体を用いてなる、本発明の熱蛍光放射線検出デバイスは好適に、放射線イメージングなどの放射線の2次元測定にも用いることができるものであることがわかる。