(58)【調査した分野】(Int.Cl.,DB名)
前記カチオン性または両性水性高分子(A)および前記カチオン性または両性水性高分子(B)が、水と非混和性の炭化水素を連続相、前記カチオン性または両性水性高分子の水溶液を分散相とする油中水型エマルジョンであることを特徴とする請求項1に記載の凝集処理剤。
前記カチオン性または両性水性高分子(A)および前記カチオン性または両性水性高分子(B)が、前記油中水型エマルジョンを製造後、エマルジョンブレイクすることにより塊状化させ、乾燥後細粒化した粉末状であることを特徴とする請求項1あるいは2に記載の凝集処理剤。
イオン性界面活性剤、HLB価11〜20の非イオン性界面活性剤および親水性基と疎水性基を有する油溶性高分子化合物から選択される一種以上のエマルジョンブレイカーを前記油中水型エマルジョンに添加し、前記エマルジョンブレイクを行うことを特徴とする請求項3に記載の凝集処理剤。
前記カチオン性あるいは両性水性高分子(B)が、前記一般式(2)あるいは前記一般式(3)と前記非イオン性単量体の異なる単量体組成比からなる単量体混合物を重合した二種以上の水性高分子の混合物であり、当該混合物がメタクロイルオキシエチルトリメチルアンモニウムクロリド単独重合物とアクリロイルオキシエチルトリメチルアンモニウムクロリド単独重合物の混合物、あるいはアクリロイルオキシエチルトリメチルアンモニウムクロリドとアクリルアミドの共重合物の混合物であることを特徴とする請求項1に記載の凝集処理剤。
【発明を実施するための最良の形態】
【0013】
本発明のカチオン性あるいは両性水性高分子(A)とカチオン性あるいは両性水性高分子(B)の配合物からなる凝集処理剤は、カチオン性単量体及び架橋性単量体、必要により非イオン性単量体あるいは両性の場合はアニオン性単量体を含有させ、これら単量体混合物を重合し製造することができる。製品形態は、油中水型エマルジョン、粉末、塩水中分散液など特に限定はないが、特に好ましい形態は、油中水型エマルジョンあるいは油中水型エマルジョンをエマルジョンブレイク後、細粒化し乾燥した粉末タイプである。この形態にすることにより架橋性水性高分子の性能が十分に発揮でき、この油中水型エマルジョンを上記の方法で乾燥することにより、油中水型エマルジョンの性能がそのまま保持できる。
【0014】
本発明の水性高分子を製造するために、重合時に構造改質剤、すなわち高分子を構造変性する架橋性単量体を使用する。この架橋性単量体は、単量体総量に対し質量で20〜300ppm、また好ましくは50〜300ppm存在させる。架橋性単量体の例としては、N,N−メチレンビス(メタ)アクリルアミド、トリアリルアミン、ジメタクリル酸エチレングリコール、ジメタクリル酸ジエチレングリコール、ジメタクリル酸トリエチレングリコール、ジメタクリル酸テトラエチレングリコール、ジメタクリル酸―1,3−ブチレングリコール、ジ(メタ)アクリル酸ポリエチレングリコール、N−ビニル(メタ)アクリルアミド、N−メチルアリルアクリルアミド、アクリル酸グリシジル、ポリエチレングリコールジグリシジルエーテル、アクロレイン、グリオキザール、ビニルトリメトキシシランなどがあるが、この場合の架橋剤としては、水溶性ポリビニル化合物がより好ましく、最も好ましいのはN,N−メチレンビス(メタ)アクリルアミドである。またギ酸ナトリウム、イソプロピルアルコール、メタリルスルホン酸ナトリウム等の連鎖移動剤を併用することも架橋性を調節する手法として効果的である。添加量としては、単量体総量に対し質量で0.001〜1.0%、好ましくは0.01〜0.1%存在させる。
【0015】
本発明で使用するカチオン性単量体は、以下の様なものがある。すなわち、カチオン性あるいは両性水性高分子(A)を重合する場合は、(メタ)アクリル酸ジメチルアミノエチルやジメチルアミノプロピル(メタ)アクリルアミドを塩化ベンジルあるいは炭素数7〜20のアルキル基あるいはアリール基を有するハロゲン化物による四級化物である。その例として一般式(1)であらわされる単量体は、(メタ)アクリロイルオキシエチルベンジルジメチルアンモニウム塩化物、(メタ)アクリロイルオキシ−2−ヒドロキシプロピルベンジルジメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルベンジルジメチルアンモニウム塩化物などである。またカチオン性あるいは両性水性高分子(B)を重合する場合、使用するカチオン性単量体は、(メタ)アクリル酸ジメチルアミノエチルやジメチルアミノプロピル(メタ)アクリルアミド、メチルジアリルアミン等の塩化メチルや塩化エチルなど低級アルキル基のハロゲン化物による四級化物である。その例として一般式(2)であらわされる単量体は、(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシ−2−ヒドロキシプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルトリメチルアンモニウム塩化物、一般式(3)であらわされる単量体は、ジアリルメチルアンモニウム塩化物あるいはジアリルジメチルアンモニウム塩化物などがある。
【0016】
両性の油中水型エマルジョンからなる水溶性高分子を製造する場合は、上記ビニル系カチオン性単量体の他、ビニル系アニオン性単量体を併用する。その例としてはビニルスルホン酸、ビニルベンゼンスルホン酸あるいは2−アクリルアミド−2−メチルプロパンスルホン酸、メタクリル酸、アクリル酸、イタコン酸、マレイン酸、フタル酸あるいはp−カルボキシスチレン酸等が挙げられる。
【0017】
また非イオン性単量体を共重合する場合は、(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、アクリロニトリル、(メタ)アクリル酸−2−ヒドロキシエチル、ジアセトンアクリルアミド、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド、アクリロイルモルホリン等が挙げられる。
【0018】
カチオン性あるいは両性水性高分子の共重合比率は、以下のようである。カチオン性単量体80〜100モル%、アニオン性単量体0〜20モル%、非イオン性単量体0〜20モル%である。しかし本発明では汚泥脱水剤として使用するため、カチオン性はある程度高いことが必要であるため好ましくは、カチオン性単量体90〜100モル%、アニオン性単量体0〜10モル%、非イオン性単量体0〜10モル%である。
【0019】
本発明の汚泥脱水剤は、重量平均分子量で100万〜1000万が好ましく、より好ましくは100万〜800万、さらに好ましくは300万〜600万である。汚泥脱水剤は、親水性コロイドの表面電荷の中和が大きな役割としてあり、この作用には必ずしも超巨大な高分子量の水性高分子は必要なく、カチオン当量値が重要な役割を示す。しかし同時に架橋吸着による凝集作用によって締まった強固なフロックを形成させることも必要であり、一定以上の分子量が必要である。そのため重量平均分子量は、上記の範囲となる。これは現在市販されているポリアミジン系高分子からなる凝集剤の分子量が300万〜500万であることと関連していると考えられる。
【0020】
油中水型エマルジョンを製造する場合の分散媒として使用する炭化水素からなる油状物質の例としては、パラフィン類あるいは灯油、軽油、中油等の鉱油、あるいはこれらと実質的に同じ範囲の沸点や粘度等の特性を有する炭化水素系合成油、あるいはこれらの混合物があげられる。含有量としては、油中水型エマルジョン全量に対して20質量%〜50質量%の範囲であり、好ましくは20質量%〜35質量%の範囲である。
【0021】
油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤の例としては、HLB3〜11のノニオン性界面活性剤であり、その具体例としては、ソルビタンモノオレート、ソルビタンモノステアレート、ソルビタンモノパルミテート、ポリオキシエチレンノニルフェニルエーテル等が挙げられる。これら界面活性剤の添加量としては、油中水型エマルジョン全量に対して0.5〜10質量%であり、好ましくは1〜5質量%の範囲である。
【0022】
重合後は、転相剤と呼ばれる親水性界面活性剤を添加して油の膜で被われたエマルジョン粒子が水になじみ易くし、中の水溶性高分子が溶解しやすくする処理を行ない、水で希釈しそれぞれの用途に用いる。親水性界面活性剤の例としては、カチオン性界面活性剤やHLB9〜15のノ二オン性界面活性剤であり、ポリオキシエチレンポリオキシプロピレンアルキルエーテル系、ポリオキシエチレンアルコールエーテル系等である。
【0023】
重合条件は通常、使用する単量体や共重合モル%によって適宜決めていき、温度としては0〜100℃の範囲で行なう。特に油中水型エマルジョン重合法を適用する場合は、20〜80℃、好ましくは20〜60℃の範囲で行なう。重合開始はラジカル重合開始剤を使用する。これら開始剤は油溶性あるいは水溶性のどちらでも良く、アゾ系、過酸化物系、レドックス系何れでも重合することが可能である。油溶性アゾ系開始剤の例としては、2、2’−アゾビスイソブチロニトリル、1、1−アゾビスシクロヘキサンカルボニトリル、2、2’−アゾビス−2−メチルブチロニトリル、2、2’−アゾビス−2−メチルプロピオネート、4、4’−アゾビス−(4−メトキシ−2、4−ジメチル)バレロニトリル等が挙げられる。
【0024】
水溶性アゾ開始剤の例としては、2、2’−アゾビス(アミジノプロパン)二塩化水素化物、2、2’−アゾビス[2−(5−メチル−イミダゾリン−2−イル)プロパン]二塩化水素化物、4、4’−アゾビス(4−シアノ吉草酸)等が挙げられる。またレドックス系の例としては、ペルオキソ二硫酸アンモニウムと亜硫酸ナトリウム、亜硫酸水素ナトリウム、トリメチルアミン、テトラメチルエチレンジアミン等との組み合わせが挙げられる。更に過酸化物の例としては、ペルオキソ二硫酸アンモニウムあるいはカリウム、過酸化水素、ベンゾイルペルオキサイド、ラウロイルペルオキサイド、オクタノイルペルオキサイド、サクシニックペルオキサイド、t−ブチルペルオキシ−2−エチルヘキサノエート等を挙げることができる。
【0025】
油中水型エマルジョンを乾燥し、粉末化したタイプの製造方法は、以下のようにして行う。油中水型エマルジョンを製造後、エマルジョンブレイクさせ固化し、固化物を粗砕あるいは細粒化し、乾燥する。更に粉砕が必要な場合は、粉砕し、粒度調整を行い製品とする。
【0026】
エマルジョンブレイクを引き起こす方法としては既知の方法を用いることができる。特に有効であるのは、エマルジョンブレイカーを添加する、機械的なシェアを掛けてエマルジョンを破壊する方法である。さらに加熱をすることでエマルジョンブレイクを効率よく行うことができる。
【0027】
初めにエマルジョンブレイカーによるエマルジョンブレイクの方法を説明する。エマルジョンブレイクの方法の一つに界面活性剤を添加して乳化バランスを変えることでエマルジョンブレイクさせることができる。界面活性剤としてはイオン性界面活性剤又はHLB価11〜20の非イオン性界面活性剤を用いる。非イオン性界面活性剤としては、ポリオキシエチレン、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリプロピレンアルキルエーテル、アルキルアミンなどが挙げられる。
イオン性界面活性剤としては、アルキルスルホン酸塩、アルキルベンゼンゼンスルホン酸塩、アルキルエーテルカルボン酸塩等のアニオン性界面活性剤やアルキルアンモニウム塩、アルキルトリメチルアンモニウム塩、アルキルピリジニウム塩等のカチオン界面活性剤が挙げられる。
【0028】
次に親水性基と疎水性基を有する高分子化合物によりエマルジョンブレイクさせる方法に関して説明する。親水性基と疎水性基を有する高分子化合物は、W/Oエマルジョンの連続相であるオイル相に実質的に溶解するものが好ましい。親水性基と疎水性基を有する高分子化合物は、W/Oエマルジョンに添加した際に、親水性基が水相粒子表面に吸着して、界面の乳化剤を排除し、乳化状態を不安定化させることで乳化状態を破壊することができる。親水性基と疎水性基を有する高分子化合物は、親水性基を有する単量体と疎水性基を有する単量体を共重合することにより得ることができる。
【0029】
親水性基を有する単量体としては、メトキシ又はフェノキシポリエチレングリコール(ポリオキシエチレンの重合度、以下n=と記載4、9又は23)(メタ)アクリレート、ポリエチレングリコール(n=4、9又は23)モノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アリルエーテル、メトキシポリエチレングリコールモノアリルエーテルなどがあげられる。またイオン性単量体が更に好ましく、例えばジアルキルアミノアルキルアクリルアミドであるジメチルアミノプロピル(メタ)アクリルアミド、あるいはジアルキルアミノアルキル(メタ)アクリレートであるジメチルアミノエチル(メタ)アクリレート、(メタ)アクリル酸、イタコン酸、フマル酸、マレイン酸、
ビニルスルホン酸、(メタ)アリルスルホン酸、スルホエチル(メタ)アクリレート、スチレンスルホン酸、アクリルアミド−2−メチルプロパンスルホン酸等が例示できる。
【0030】
疎水基を有する単量体としては、スチレンやα−メチルスチレンなど芳香環やアルキル基の付加した芳香環を有する単量体やα−オレフィンなど炭素数6〜20の芳香環あるいは脂肪族ビニル化合物である。また炭素数4〜18のアルキル基を持つアルキル(メタ)アクリレートも使用することができる。すなわちアクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸ラウリル、アクリル酸ステアリル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリルなどである。
【0031】
親水性単量体の割合が多すぎるとオイル相に溶解できなくなってしまうが、一方、疎水性単量体の割合が多すぎるとエマルジョンブレイカーとしての作用が弱くなる。親水性単量体と疎水性単量体の割合は、モル比で親水性単量体:疎水性単量体が10:90〜70:30であり、好ましくは30:70〜60:40である。また、GPC測定による親水基と疎水基を有する高分子の平均分子量は5000〜100,000、好ましくは10,000〜50,000である。
【0032】
親水性基と疎水性基を有する高分子化合物は、後述の油中水型エマルジョンに用いる炭化水素系溶媒と同種の炭化水素系溶媒中で溶液重合にて製造することが好ましい。油中水型高分子エマルジョンに用いる炭化水素系溶媒と同種の炭化水素系溶媒を用いる事により油中水型高分子エマルジョン製造時の乳化剤としての使用に際し、作業性が良好である。単量体濃度は20〜80%、好ましくは40〜60%で重合する。重合温度は30〜180℃、好ましくは40〜150℃の範囲で行う。重合開始は油溶性ラジカル重合開始剤を使用する。アゾ系、過酸化物系、レドックス系いずれでも重合することが可能であるが好ましくはアゾ系である。油溶性アゾ系開始剤の例としては、2、2’−アゾビスイソブチロニトリル、1、1’−アゾビス(シクロヘキサンカルボニトリル)、2、2’−アゾビス(2−メチルブチロニトリル)、2、2’−アゾビス(2−メチルプロピオネ−ト)、4、4−アゾビス(4−メトキシ−2、4ジメチル)バレロニトリルなどがあげられる。
【0033】
エマルジョンブレイカーの添加量については特に指定はないが、添加量が少ないとエマルジョンブレイクに要する時間が長くなりすぎる。エマルジョンブレイカーは乾燥後に不純物として残存するため添加量が多すぎることも好ましくない。よってエマルジョンブレイカーの添加量は油中水型エマルジョンの液量に対して0.1〜10%質量であり、好ましくは0.5〜5%質量であり、更に好ましくは0.5〜3%質量である。
【0034】
乳化状態が不安定な系では機械的なシェアを掛けるだけでエマルジョンブレイクを引き起こすことができる。機械的なシェアを掛ける手段としてはホモジナイザーやミキサーを使用する方法が挙げられる。さらにエマルジョンブレイカーを添加して機械的シェアを掛けることにより、短時間でエマルジョンブレイクを引き起こすことができる。
【0035】
さらには加熱をすることでエマルジョンブレイクを効率よく引き起こすことができる。加熱温度が高いほどエマルジョンブレイクするまでの時間は短くてすむが、加熱温度が高すぎると、含有する親水性高分子が劣化するなどの問題も生じる。よって加熱温度は、50〜150℃であり、好ましくは70℃〜120である。
【0036】
粒子径のコントロールは乾燥前と後のどちらでも行うことができる。乾燥前に粒子径をコントロールする場合、方法は特に制限しないが、カッター、ミートチョッパー、押出成型機等の含水ゲルを造粒する機具が採用される。乾燥方法に応じて適当な大きさに油中水型エマルジョンからなる親水性高分子の塊状化物を解砕、造粒する。
【0037】
造粒後の乾燥方法に特に制限は無く、熱風乾燥、伝導伝熱乾燥、輻射熱乾燥等の方法を用いることができる。特に流動乾燥、通気乾燥のような乾燥効率の良い熱風乾燥が好ましい。乾燥後に乾燥された固体物を解砕機等で処理することで、比較的大きい粒子のほかにマイクロメートルオーダーの平均粒子径を有する微細粒子を得ることができる。
【0038】
本発明は、架橋剤存在下で重合した架橋性水性高分子からなる凝集処理剤である。また本発明の水性高分子の処理対象として推奨される汚泥は、消化汚泥や各産業排水の微生物処理より発生する余剰汚泥など繊維分の少ない汚泥である。あるいは余剰汚泥と生汚泥の混合物など親水性コロイドなど親水性の高い成分を多く含む汚泥である。これら繊維分の少ない汚泥に対しては、いわゆる直鎖状水溶性高分子は汚泥脱水機に掛かるような強固なフロックを形成しにくい。すなわち直鎖状水溶性高分子は、水中に分子が広がった状態で存在する。重合系のような高分子量のカチオン性水溶性高分子の凝集作用は、いわゆる「架橋吸着作用」による多数懸濁粒子を水溶性高分子の分子鎖による結合作用で起きると考えられている。しかし直鎖状水溶性高分子は伸びた状態にあり、そこに懸濁粒子を吸着させ生成した凝集フロックは、大きいがふわふわして強固になりにくい。強度を増すため添加量を増加していってもフロックの改善はない。その原因は、伸びた状態にあるため懸濁粒子との接触サイトが多く、その結果見かけ上の電荷的飽和になりやすい。攪拌強度を増加させ生成フロックを破壊し新しい吸着面を作ればよいが、上記のような現象がまた起こり、結局小さく強固なフロックは生成しない。
【0039】
これに対し架橋性水溶性高分子は、架橋することによって水中における分子の広がりが抑制される。そのためにより「密度の詰まった」分子形態として存在し、さらに架橋が進めば水膨潤性の微粒子となる。通常高分子凝集剤として使用されるのは、前記の「密度の詰まった」分子形態であり、水溶性である場合が効率的とされる。架橋性水溶性高分子が汚泥中に添加されると懸濁粒子に吸着し、粒子同士の接着剤として作用し結果として粒子の凝集が起こる。この時「密度の詰まった」分子形態であるため粒子表面と多点で結合し、より締った強度の高いフロックを形成すると推定される。多点で結合することは、懸濁粒子への吸着性能が優れ、そのため未吸着の水溶性高分子が少なく、汚泥中に遊離せず汚泥粘性の増加が発生しない。またまるまった形態をした分子の内側に存在するカチオン性基は、懸濁粒子の電荷中和には寄与せず、見かけ上カチオン化度の低い分子として作用し、カチオン性飽和による再分散作用は少なくなる。結果として小さなサイズで絞まった強固なフロックが形成され機械脱水時、水切れが良くケーキ含水率が低下すると考えられる。
【0040】
ポリアミジン系水溶性高分子は、下水の混合生汚泥、同余剰汚泥、あるいは食品加工・水産加工排水の余剰汚泥など微生物処理の過程で発生した低分子化された有機物を不溶化・凝集する性能に特徴があると考えられるが、従来この作用を(メタ)アクリル系カチオン性あるいは両性高分子によって処理することは、なかなか困難であった。この理由の一つに(メタ)アクリル系カチオン性あるいは両性高分子は、分子量が非常に高く、架橋吸着作用による大きく強度の高いフロックを生成するには適していたが、微生物処理の過程で発生する親水性の高い汚泥を、表面電荷の中和や必ずしも表面電荷の中和を伴わない不溶化機能は低かった。これには分子量、カチオン当量、親水性・疎水性のバランスなど影響していると考えられるが、本発明においては、これらの因子を分子量の調節、高カチオン性、架橋剤を加え重合し架橋性高分子にすることにより
疎水化し調節することができたと考えられる。
【0041】
架橋性高分子の架橋の度合いを表示する方法は、現在のところまだ一般的な表示はない。前述した特許文献2では「イオン性回復率」によって定義され、また特開2005−144346号公報では、「電荷内包率」を定義しているが、いずれも架橋によって高分子のイオン性基が分子の外側に現れにくくなることを応用してそれらの電荷を測定している。ここでは初めに粘性の測定によって架橋度を表すことを説明する。本発明の水性高分子は、その0.2質量%水溶液粘度をAQV、前記両性水溶性高分子の0.5質量%1N食塩水溶液中粘度をSLVとすると、両方の比が
30≦AQV/SLV≦300(25℃において)
であることが好ましい。この数値は架橋の度合いを表すのに使用することができる。架橋性のイオン性水溶性高分子は、分子内で架橋しているために、水中においても分子が広がりにくい性質を有し、直鎖状高分子に較べれば水中での広がりは小さいはずであるが、架橋度が増加するに従い、B型粘度計(回転粘度計の一種)により測定した場合の粘度は大きくなる。この原因はB型粘度計のローター(測定時の回転子)と溶液との摩擦かあるいは絡み合いによるものと推定されるが正確には不明である。一方、架橋性のイオン性水溶性高分子の塩水中の粘度は、架橋度が増加するに従い低下していく。架橋によって分子が収縮しているので、塩水中の多量のイオンによってその影響をより大きく受けるものと考えられる。従ってこれらの理由によって二つの粘度測定値の比、AQV/SLVは、架橋度が高くなるに従い大きくなる(架橋がさらに進み水不溶性になった場合は、この関係は成り立たない)。本発明の架橋性カチオン性あるいは両性水性高分子では、この値は約30〜300程度になる。直鎖状の水溶性高分子、あるいは弱く架橋した水性高分子では、この値が10から30未満程度であることを考慮すると、本発明の架橋性カチオン性あるいは両性水性高分子は、高度に架橋した水溶性高分子であることが分かる。
【0042】
また前述の電荷内包率に関しても説明する。電荷内包率は、以下のように定義される。すなわち
定義1)水溶性カチオン性高分子および両性でかつカチオン性単量体とアニオン性単量体共重合率の差が正である水溶性高分子の場合
電荷内包率[%]=(1−α/β)×100
αは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液をポリビニルスルホン酸カリウム水溶液にて滴定した滴定量。βは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液にポリビニルスルホン酸カリウム水溶液を前記水溶性カチオン性高分子あるいは両性水溶性高分子の電荷の中和を行うに十分な量加え、その後ポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量をブランク値から差し引いた滴定量。ここでブランク値とは、水溶性カチオン性高分子あるいは両性水溶性高分子水溶液無添加時にポリビニルスルホン酸カリウム水溶液をポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量である。
定義2)両性でかつカチオン性単量体とアニオン性単量体の共重合率の差が負である水溶性高分子の場合
電荷内包率[%]=(1−α/β)×100
αはアンモニアにてpH10.0に調整した水溶性両性高分子水溶液をポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量。βはアンモニアにてpH10.0に調整した水溶性両性高分子水溶液にポリジアリルジメチルアンモニウムクロライド水溶液を前記水溶性両性高分子の電荷の中和を行うに十分な量加え、その後ポリビニルスルホン酸カリウム水溶液にて滴定した滴定量をブランク値から差し引いた滴定量。ここでブランク値とは、水溶性両性高分子水溶液無添加時にジアリルジメチルアンモニウムクロライド水溶液をポリビニルスルホン酸カリウム水溶液にて滴定した滴定量である。
【0043】
すなわち電荷内包率の高い水溶性高分子は、架橋度が高まった水溶性高分子であり、電荷内包率の低い水溶性高分子は、架橋度が低い水溶性高分子であると言える。この理由は、以下の通りに説明される。直鎖状水溶性高分子は、希薄溶液中では、分子はほぼ「伸びきった」形状をしている。一方、架橋性水溶性高分子は、溶液中において粒子状の丸まった形状をしていて、粒子状の内部に存在するイオン性基は、外側には現われにくく、反対電荷との反応も緩慢に起こると考えられる。
【0044】
ここで架橋性水溶性カチオン性高分子および、両性でかつカチオン性単量体とアニオン性単量体の共重合率の差が正である架橋性水溶性両性高分子に関しては、電荷内包率は以下のようになる。
電荷内包率[%]=(1−α/β)×100
滴定量αは、試料である架橋性カチオン性(両性)水溶性高分子に反対電荷を有するポリビニルスルホン酸カリウム水溶液を滴下して行き、水溶性カチオン性(両性)高分子の「表面」(粒子状の表面部)に存在するイオン性基にイオン的静電反応を行わせる操作を意味する。
【0045】
次に架橋性カチオン性(両性)水溶性高分子の理論的な電荷量を中和するに十分な量以上の反対電荷を有するポリビニルスルホン酸カリウムを添加し、反応時間を十分取ったその後、余剰のポリビニルスルホン酸カリウムをジアリルジメチルアンモニウムクロライド水溶液により滴定する。また別に架橋性カチオン性(両性)水溶性高分子を添加しないでポリビニルスルホン酸カリウム溶液をジアリルジメチルアンモニウムクロライド水溶液により滴定し、ブランク値を出しておき、ブランク値より架橋性カチオン性(両性)水溶性高分子を添加した場合の滴定量を差し引き、この値がβとなる。β値は、架橋性カチオン性(両性)水溶性高分子の化学組成から計算される理論的な電荷量に相当すると考えられる。すなわち架橋性カチオン性(両性)水溶性高分子に対し、反対電荷が多量に存在するので、表面のカチオン性電荷だけでなく、内部の電荷まで静電的な中和反応が行われると考えられる。架橋度が高ければ、αはβに対し小さくなり、(1−α/β)値は、1に比べ大きくなり電荷内包率は大きい(すなわち架橋の度合いは高くなる)。
【0046】
両性でかつカチオン性単量体とアニオン性単量体の共重合率の差が負である架橋性水溶性両性高分子の電荷内包率に関しても、上記とほぼ同じ内容で説明することができるが、アニオン性基を解離させるためアンモニアでpHをアルカリ性にするという違いだけがある。
【0047】
電荷内包率に関しては、20%から30%が弱く架橋した水性高分子であり、30%から50%は中程度に架橋した水性高分子、50%以上は高度に架橋した水性高分子ということができる。本発明の水性高分子は30%以上の電荷内包率の中程度以上の架橋度を有する水性高分子である。ここでAQV/SLVと電荷内包率の数値の比較をする。段落0063の表1に記載する試料−1は、AQV/SLV値は45、電荷内包率は47%であり、高度に架橋した水性高分子である。これに対し比較−1は、架橋単量体の添加量を本発明の範囲外で共存させ重合したものでありAQV/SLV値は11、電荷内包率は20%であり、弱く架橋した水性高分子であり、比較―2は架橋単量体無添加で重合したものであり、それらの値は7および13%であり、ほぼ直鎖高分子である。また比較−3は、単量体組成が本発明の範囲外であるが架橋剤は本発明の範囲内でありAQV/SLV値は35、電荷内包率は40%であり、架橋水性高分子である。
【0048】
本発明の水性高分子からなる凝集処理剤は、下水、し尿、産業排水の処理で生じる有機性汚泥(いわゆる生汚泥、余剰汚泥、混合生汚泥、消化汚泥、凝沈・浮上汚泥およびこれらの混合物)に通常0.1〜0.2質量%水溶液として添加される。添加量は、対汚泥固形分として0.2〜2質量%であり、好ましくは0.3〜1.0質量%である。対象とする汚泥に特に限定されないが、繊維分の少ない汚泥、有機分含有量(VSS/SS)の高い汚泥、腐敗度の高い汚泥に対し特に有効であり好ましい。
【0049】
カチオン性あるいは両性水性高分子(A)とカチオン性あるいは両性水性高分子(B)の配合比はいずれも質量%表示において、(A):(B)=60:40〜10:90が好ましく、より好ましくは(A):(B)=20:80〜60:40である。カチオン性あるいは両性水性高分子(A)が全体に対し60質量%高くなると汚泥脱水時の添加量が増加し、また10質量%未満では脱水ケーキ含水率が低下することができない。またカチオン性あるいは両性水性高分子(B)は、異なる二つの(B)の組成により重合した水性高分子の混合物であってもよい。例えばメタクロイルオキシエチルトリメチルアンモニウムクロリド単独重合物とアクリロイルオキシエチルトリメチルアンモニウムクロリド単独重合物の混合物、あるいはメタクロイルオキシエチルトリメチルアンモニウムクロリド単独重合物と、アクリロイルオキシエチルトリメチルアンモニウムクロリドとアクリルアミドの共重合物の混合物などである。
【0050】
また本発明の両性水溶性高分子を含有するからなる汚泥脱水剤は、単独で汚泥脱水に使用しても良いが、脱水効果がより向上する場合があるが、そのような無機凝集剤と併用することもできる。該無機凝集剤としては、塩鉄、硫鉄、ポリ鉄、PAC、硫酸バンドなどが挙げられる。汚泥に対する添加量は、通常汚泥固形分に対し0.1〜2質量%、好ましくは0.3〜1.0質量%である。
【0051】
使用する脱水機の種類は、ベルトプレス、遠心脱水機、スクリュープレス、多重円板脱水機、ロータリープレスなどに対応できる。
【0052】
(実施例)以下に実施例をあげて本発明を詳細に説明するが、本発明はこれら実施例により限定されるものではない。
【0053】
(製造例1)
攪拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン126.0gにポリオキシエチレントリデシルエ−テル12.5g(対エマルジョン2.5質量%)を仕込み溶解させた。別に脱イオン水103.1gとアクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMQと略記)80%水溶液250.0g、及びメチレンビスアクリルアミド1質量%水溶液3.0g(質量で対単量体
50ppm)を各々採取し、各々を混合し完全に溶解させた。その後pHを3.95に調節し、油相と水溶液を混合し、ホモジナイザーにて1000rpmで15分間攪拌乳化した。
【0054】
得られたエマルジョンにイソプロピルアルコール10質量%水溶液1.0g(対単量体0.05質量%)を加え、単量体溶液の温度を30〜33℃に保ち、窒素置換を30分行った後、2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物の1質量%水溶液2.0g(対単量体0.01質量%)を加え、重合反応を開始させた。反応温度を32±2℃で12時間重合させ反応を完結させた。この試料名を試料−1とする。試験に供する試料を、水溶性高分子濃度0.1質量%とした場合の粘度(AQV)、0.1質量%で1N食塩水中の粘度(SLV)を25℃においてB型粘度計(回転粘度計の一種)により測定し、ミューテック社製PCD滴定装置により電荷内包率および光散乱法による重量平均分子量を測定した。
【0055】
(製造例2)
攪拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン126.0gにポリオキシエチレントリデシルエ−テル12.5g(対エマルジョン2.5質量%)を仕込み溶解させた。別に脱イオン水101.0gとアクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMQと略記)80%水溶液246.1g、アクリルアミド50質量%水溶液6.0g(以下AAMと略記)及びメチレンビスアクリルアミド1質量%水溶液3.0g(質量で対単量体
50ppm)を各々採取し、各々を混合し完全に溶解させた。その後pHを3.95に調節し、油相と水溶液を混合し、ホモジナイザーにて1000rpmで15分間攪拌乳化した。
【0056】
得られたエマルジョンにイソプロピルアルコール10質量%水溶液1.0g(対単量体0.05質量%)を加え、単量体溶液の温度を30〜33℃に保ち、窒素置換を30分行った後、2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物の1質量%水溶液2.0g(対単量体0.01質量%)を加え、重合反応を開始させた。反応温度を32±2℃で12時間重合させ反応を完結させた。この試料名を試料−2とする。試験に供する試料を、水溶性高分子濃度0.1質量%とした場合の粘度(AQV)、0.1質量%で1N食塩水中の粘度(SLV)を25℃においてB型粘度計(回転粘度計の一種)により測定し、ミューテック社製PCD滴定装置により電荷内包率および光散乱法による重量平均分子量を測定した。
【0057】
同様な操作により表1のような組成の水性高分子、DMQ/AAM=80/20(試料−3)、DMQ=100(試料−4)
、DMC=100(試料−6)、DD=100(試料−7)、DMPQ=100(試料−8)をそれぞれ合成した。
【0058】
(製造例3)
攪拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン126.0gにポリオキシエチレントリデシルエ−テル12.5g(対エマルジョン2.5質量%)を仕込み溶解させた。別に脱イオン水103.1gとアクリロイルオキシエチルベンジルジメチルアンモニウム塩化物(以下DMBZと略記)80%水溶液250.0g、及びメチレンビスアクリルアミド1質量%水溶液3.0g(質量で対単量体
200ppm)を各々採取し、各々を混合し完全に溶解させた。その後pHを4.03に調節し、油相と水溶液を混合し、ホモジナイザーにて1000rpmで15分間攪拌乳化した。
【0059】
得られたエマルジョンにイソプロピルアルコール10質量%水溶液1.0g(対単量体0.05質量%)を加え、単量体溶液の温度を30〜33℃に保ち、窒素置換を30分行った後、2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物の1質量%水溶液2.0g(対単量体0.01質量%)を加え、重合反応を開始させた。反応温度を32±2℃で12時間重合させ反応を完結させた。この試料名を試料−9とする。試験に供する試料を、水溶性高分子濃度0.1質量%とした場合の粘度(AQV)、0.1質量%で1N食塩水中の粘度(SLV)を25℃においてB型粘度計(回転粘度計の一種)により測定し、ミューテック社製PCD滴定装置により電荷内包率および光散乱法による重量平均分子量を測定した。
【0060】
(製造例4)
攪拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン126.0gにポリオキシエチレントリデシルエ−テル12.5g(対エマルジョン2.5質量%)を仕込み溶解させた。別に脱イオン水101.0gとアクリロイルオキシエチルベンジルジメチルアンモニウム塩化物(以下DMQと略記)80%水溶液246.1g、アクリルアミド50質量%水溶液4.4g(以下AAMと略記)及びメチレンビスアクリルアミド1質量%水溶液3.0g(質量で対単量体
200ppm)を各々採取し、各々を混合し完全に溶解させた。その後pHを3.95に調節し、油相と水溶液を混合し、ホモジナイザーにて1000rpmで15分間攪拌乳化した。
【0061】
得られたエマルジョンにイソプロピルアルコール10質量%水溶液1.0g(対単量体0.05質量%)を加え、単量体溶液の温度を30〜33℃に保ち、窒素置換を30分行った後、2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物の1質量%水溶液2.0g(対単量体0.01質量%)を加え、重合反応を開始させた。反応温度を32±2℃で12時間重合させ反応を完結させた。この試料名を試料−10とする。試験に供する試料を、水溶性高分子濃度0.1質量%とした場合の粘度(AQV)、0.1質量%で1N食塩水中の粘度(SLV)を25℃においてB型粘度計(回転粘度計の一種)により測定し、ミューテック社製PCD滴定装置により電荷内包率および光散乱法による重量平均分子量を測定した。
【0062】
同様な操作により表1のような組成の水性高分子、DMBZ/AAM=80/20(試料−11)、DMBZ=100(試料−12)、DMBZ=100(試料−13)をそれぞれ合成した。また架橋性単量体の添加量を本発明の範囲外で共存させ重合したもの、共存せず重合したもの、比較−1〜比較−3を合成した。以上の結果を表1に示す。
【0063】
(
表1)
DMC;メタクロイルオキシエチルトリメチルアンモニウムクロリド
DMQ;アクリロイルオキシエチルトリメチルアンモニウムクロリド
DMBZ;アクリロイルオキシエチルジメチルベンジルアンモニウムクロリド
DMPQ;アクリロイルアミノプロピルトリメチルアンモニウムクロリド
DD;ジアリルジメチルアンモニウムクロリド、MBA;メチレンビスアクリルアミド、AAM;アクリルアミド、EM;油中水型エマルジョン