(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0010】
以下に、本願に係る広告抽出装置、広告抽出方法及び広告抽出プログラムを実施するための形態(以下、「実施形態」と呼ぶ)について図面を参照しつつ詳細に説明する。なお、この実施形態により本願に係る広告抽出装置、広告抽出方法及び広告抽出プログラムが限定されるものではない。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。
【0011】
〔1.広告抽出処理〕
まず、
図1を用いて、実施形態に係る広告抽出処理の一例について説明する。
図1は、実施形態に係る広告抽出処理の一例を示す説明図である。
図1の例では、広告配信装置100によって広告抽出処理が行われる。
図1に示した広告配信装置100は、広告主によって利用される広告主装置10
1〜10
nから広告コンテンツの入稿を受け付け、受け付けた広告コンテンツを広告コンテンツ記憶部121に記憶する。そして、広告配信装置100は、ユーザによって利用される端末装置20等から広告コンテンツの取得要求を受信した場合に、広告コンテンツ記憶部121に記憶されている広告コンテンツの中から所定の広告コンテンツを端末装置20等に配信する。
【0012】
ここで、実施形態に係る広告配信装置100は、端末装置20に広告コンテンツを配信した場合に、広告コンテンツの配信に関する配信履歴を配信履歴記憶部131に記録する。そして、広告配信装置100は、以下に説明するように、配信履歴に基づいて、過去に広告コンテンツの配信先としたユーザのユーザ属性毎に、かかるユーザ属性を有するユーザが広告コンテンツをクリックする割合を仮想的なCTR(以下、仮想CTRと表記する場合がある)として算出する仮想CTR算出処理を行う。そして、広告配信装置100は、端末装置20から広告コンテンツの取得要求を受信した場合に、仮想CTRに基づいて配信候補とする広告コンテンツを抽出する広告抽出処理を行う。なお、広告配信装置100は、仮想CTR算出処理と広告抽出処理とを異なるフェーズで行う。具体的には、広告配信装置100は、仮想CTR算出処理を定期的に行うことで仮想CTRを算出しておき、算出済みの仮想CTRを用いて広告抽出処理を行う。以下、広告配信装置100による処理について
図1を用いて説明する。
【0013】
まず、仮想CTR算出処理について説明する。ここでは、広告配信装置100は、
図1の配信履歴記憶部131に示した配信履歴を保持しているものとする。例えば、
図1における配信履歴の1行目は、ユーザ属性が「男性」かつ「10代(年齢、以下同様)」であるユーザに配信した広告コンテンツがユーザによりクリック(押下)されなかったことを示している。また、例えば、
図1における配信履歴の2行目は、ユーザ属性が「男性」かつ「10代」であるユーザに配信した広告コンテンツがユーザによりクリックされたことを示している。なお、
図1の配信履歴記憶部131に示した「車」は、車に興味があることを示すユーザ属性に該当し、「旅行」は、旅行に興味があることを示すユーザ属性に該当し、「東京」は、東京都在住を示すユーザ属性に該当する。
【0014】
広告配信装置100は、このような配信履歴に含まれる単一のユーザ属性毎に、かかるユーザ属性を有するユーザへの広告コンテンツを配信した回数(「インプレッション数」等と呼ばれる)のうち、ユーザにより広告コンテンツがクリックされた回数の割合を仮想CTRとして算出する。例えば、配信履歴記憶部131にユーザ属性「男性」を含む配信履歴が1000レコード存在し、かかる1000レコードのうち20レコードが「クリック有」であるものとする。この場合、広告配信装置100は、「20」を「1000」により除算することで、ユーザ属性「男性」に対応する仮想CTR「0.02」を算出する。この仮想CTR「0.02」は、ユーザ属性「男性」を有するユーザがどの程度の割合で広告コンテンツをクリックするかを示す指標値に該当する。
【0015】
同様にして、広告配信装置100は、他のユーザ属性「女性」、「10代」、「20代」、「車」、「旅行」などについても仮想CTRを算出する。そして、広告配信装置100は、ユーザ属性と仮想CTRとを対応付けて仮想CTR記憶部132に格納する(ステップS11)。上記の通り、広告配信装置100は、このような仮想CTR算出処理を定期的に行うことで、仮想CTR記憶部132を定期的に更新する。
【0016】
続いて、広告抽出処理について説明する。まず、前提について説明すると、広告配信装置100が有する広告コンテンツ記憶部121には、一例として、広告主装置10
1〜10
nから入稿された膨大な量(例えば、数百万個)の広告コンテンツが記憶されている。そして、これらの各広告コンテンツには、配信対象のユーザ属性が広告主によって指定されている。例えば、自動車関連の広告主は、ユーザ属性が「男性」であるユーザに広告コンテンツを配信することを指定した上で、自社の広告コンテンツを入稿する。以下では、広告主によって指定される配信対象のユーザ属性をターゲティング条件と表記する場合がある。
【0017】
このような前提の下、広告配信装置100は、端末装置20から広告コンテンツの取得要求を受信した場合に、広告コンテンツ記憶部121に記憶されている数百万個の広告コンテンツの中から、端末装置20を利用するユーザのユーザ属性とターゲティング条件とが合致する所定数(例えば、数万個)の広告コンテンツを抽出する(ステップS21)。
図1の例では、広告コンテンツの取得要求を送信したユーザのユーザ属性が「男性」であるものとし、広告配信装置100は、ターゲティング条件に「男性」が含まれる広告コンテンツ群G11を広告コンテンツ記憶部121から抽出する。なお、
図1において、広告コンテンツ群G11内の矩形は広告コンテンツを示し、矩形内に表記した「男性」等はターゲティング条件を示すものとする。
【0018】
続いて、広告配信装置100は、仮想CTR記憶部132に記憶されている仮想CTRに基づいて、広告コンテンツ群G11から配信候補となる広告コンテンツ群G12を更に抽出する(ステップS22)。
【0019】
具体的には、広告配信装置100は、広告コンテンツ群G11に含まれる広告コンテンツ毎に、ターゲティング条件に対応する仮想CTRを仮想CTR記憶部132から取得し、取得した仮想CTRの総和(以下、「広告スコア」と表記する場合がある)を算出する。例えば、広告コンテンツのターゲティング条件が「男性」及び「10代」である場合、広告配信装置100は、仮想CTR記憶部132から、ユーザ属性「男性」に対応する仮想CTR「0.02」と、ユーザ属性「10代」に対応する仮想CTR「0.04」とを取得し、取得した全ての仮想CTRを加算することで広告スコア「0.06」を算出する。このようにして、広告配信装置100は、広告コンテンツ群G11に含まれる全ての広告コンテンツにおける広告スコアを集計する。そして、広告配信装置100は、広告コンテンツ群G11から広告スコアが高い順に所定数の広告コンテンツを抽出する。
図1では、広告配信装置100が、ターゲティング条件が「男性」及び「旅行」である広告コンテンツ等を抽出せずに、100個程度の広告コンテンツを含む広告コンテンツ群G12を抽出したものとする。
【0020】
続いて、広告配信装置100は、例えば、各広告コンテンツの実際のCTR等に基づいて、広告コンテンツ群G12から配信対象の広告コンテンツを選択する。配信対象の広告コンテンツを選択する処理については後述する。そして、広告配信装置100は、このようにして選択した広告コンテンツを端末装置20に配信する。
【0021】
このように、実施形態に係る広告配信装置100は、仮想CTRを用いて広告コンテンツ群G11から広告コンテンツ群G12に絞り込むので、広告効果の高い広告コンテンツが配信することができる。例えば、広告主により指定された入札価格に基づいて、広告コンテンツ群G11から広告コンテンツ群G12に絞り込みが行われた場合、絞り込まれた各広告コンテンツの広告効果は必ずしも高いとは限らない。この場合、広告コンテンツ群G12から選択される配信対象の広告コンテンツも広告効果が高いとは限らず、結果として広告効果の高い広告コンテンツが配信されるとは限らなかった。しかし、実施形態に係る広告配信装置100では、仮想CTRを用いることで、ユーザにクリックされやすい広告コンテンツ群G12に絞り込むことができるので、広告効果の高い広告コンテンツを配信することが可能となる。
【0022】
また、一般に、ターゲティング条件が細かく指定されている広告コンテンツほど、ターゲティング精度が向上するので広告効果が高いと想定される。実施形態に係る広告配信装置100は、各ターゲティング条件に対応する仮想CTRを加算するので、ターゲティング条件が細かく指定されている広告コンテンツほど、高い広告スコアを算出する。このため、広告配信装置100は、広告効果が高いと想定される広告コンテンツを優先的に配信候補として抽出するので、広告効果の高い広告コンテンツを配信することが可能となる。
【0023】
また、実施形態に係る広告配信装置100は、配信履歴からユーザ毎の仮想CTRを定期的に算出しておくので、広告抽出処理を行う度に仮想CTR算出処理を行うことを要しない。このため、広告配信装置100は、広告抽出処理にかかる負荷を低減することができ、また、広告抽出処理が遅延することを防止できる。以下、上述してきた広告抽出処理を行う広告配信装置100について詳細に説明する。
【0024】
〔2.広告配信システムの構成〕
次に、
図2を用いて、実施形態に係る広告配信システムの構成について説明する。
図2は、実施形態に係る広告配信システム1の構成例を示す図である。
図2に示すように、広告配信システム1には、広告主装置10
1〜10
nと、端末装置20と、情報提供装置30と、広告配信装置100とが含まれる。広告主装置10
1〜10
n、端末装置20、情報提供装置30及び広告配信装置100は、ネットワークNを介して、有線又は無線により通信可能に接続される。なお、
図2に示した広告配信システム1には、複数台の端末装置20や、複数台の情報提供装置30や、複数台の広告配信装置100が含まれてもよい。
【0025】
広告主装置10
1〜10
nは、広告配信装置100に広告配信を依頼する広告主によって利用される情報処理装置である。かかる広告主装置10
1〜10
nは、広告主による操作に従って、広告コンテンツを広告配信装置100に入稿する。例えば、広告主装置10
1〜10
nは、静止画像や、動画像や、テキストデータや、広告主が管理する広告主サーバによって提供されるウェブページにアクセスするためのURL(Uniform Resource Locator)などに該当する広告コンテンツを広告配信装置100に入稿する。なお、なお、広告主は、広告主装置10
1〜10
nを用いて、広告コンテンツを広告配信装置100に入稿せずに、広告コンテンツの入稿を代理店に依頼する場合もある。この場合、広告配信装置100に広告コンテンツを入稿するのは代理店となる。以下では、「広告主」といった表記は、広告主だけでなく代理店を含む概念であり、「広告主装置」といった表記は、広告主装置だけでなく代理店によって利用される代理店装置を含む概念であるものとする。また、広告主装置10
1〜10
nは、それぞれ同様の機能を有するので、以下では、広告主装置10
1〜10
nを区別する必要がない場合には、これらを総称して「広告主装置10」と表記する場合がある。
【0026】
端末装置20は、例えば、デスクトップ型PC(Personal Computer)や、ノート型PCや、タブレット型端末や、携帯電話機、PDA(Personal Digital Assistant)等の情報処理装置である。例えば、端末装置20は、情報提供装置30にアクセスすることで、情報提供装置30からウェブページを取得し、取得したウェブページを表示装置(例えば、液晶ディスプレイ)に表示する。また、端末装置20は、ウェブページに広告枠が含まれる場合には、広告配信装置100にアクセスすることで、広告配信装置100から広告コンテンツを取得し、取得した広告コンテンツをウェブページ上に表示する。ただし、この例に限られず、端末装置20は、広告コンテンツを含むウェブページを情報提供装置30から取得してもよい。この場合、情報提供装置30は、広告配信装置100によって提供される広告コンテンツを組み込んだウェブページを端末装置20に配信する。
【0027】
情報提供装置30は、端末装置20にウェブページを提供するWebサーバ等である。かかる情報提供装置30は、例えば、ニュースサイト、オークションサイト、天気予報サイト、ショッピングサイト、ファイナンス(株価)サイト、路線検索サイト、地図提供サイト、旅行サイト、飲食店紹介サイト、ウェブブログなどに関する各種ウェブページを提供する。
【0028】
広告配信装置100は、広告主装置10から入稿された広告コンテンツを配信するサーバ装置である。上記の通り、広告配信装置100は、端末装置20からアクセスされた場合に、広告コンテンツを端末装置20に配信する。また、広告配信装置100は、情報提供装置30からアクセスされた場合には、広告コンテンツを情報提供装置30に配信する。
【0029】
〔3.広告配信装置の構成〕
次に、
図3を用いて、実施形態に係る広告配信装置100の構成について説明する。
図3は、実施形態に係る広告配信装置100の構成例を示す図である。
図3に示すように、広告配信装置100は、通信部110と、広告コンテンツ記憶部121と、配信履歴記憶部131と、仮想CTR記憶部132と、制御部140とを有する。なお、広告配信装置100は、広告配信装置100を利用する管理者等から各種操作を受け付ける入力部(例えば、キーボードやマウス等)や、各種情報を表示するための表示部(例えば、液晶ディスプレイ等)を有してもよい。
【0030】
(通信部110について)
通信部110は、例えば、NIC(Network Interface Card)等によって実現される。かかる通信部110は、ネットワークNと有線又は無線で接続され、ネットワークNを介して、広告主装置10や端末装置20や情報提供装置30との間で情報の送受信を行う。
【0031】
(記憶部について)
広告コンテンツ記憶部121、配信履歴記憶部131及び仮想CTR記憶部132は、例えば、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現される。
【0032】
(広告コンテンツ記憶部121について)
広告コンテンツ記憶部121は、広告主装置10から入稿された広告コンテンツを記憶する。ここで、
図4に、実施形態に係る広告コンテンツ記憶部121の一例を示す。
図4に示した例では、広告コンテンツ記憶部121は、「広告主ID」、「広告コンテンツ」、「ターゲティング条件」、「入札価格」、「キーワード」、「CTR」といった項目を有する。
【0033】
「広告主ID」は、広告主又は広告主装置10を識別するための識別情報を示す。「広告コンテンツ」は、広告主装置10から入稿された広告コンテンツを示す。
図4に示した例では、広告コンテンツ記憶部121の広告コンテンツに、「C11」や「C12」といった概念的な情報が格納される例を示したが、実際には、静止画像や動画像やテキストデータやURL、又は、これらの格納場所を示すファイルパス名、又は、広告コンテンツを識別するための広告IDなどが記憶される。
【0034】
「ターゲティング条件」は、広告コンテンツの配信対象となるユーザの条件を示し、広告コンテンツの入稿時に広告主によって指定される。例えば、「ターゲティング条件」には、広告コンテンツの配信対象とするユーザのユーザ属性が記憶される。「入札価格」は、広告主が広告コンテンツを入稿する際に指定する広告料金を示し、例えば、広告コンテンツがユーザに1回クリックされた際に広告主から広告配信者(例えば、広告配信装置100の管理者)に支払われる単価に該当する。
図4に示した例では、広告コンテンツ記憶部121の入札価格に、「M11」や「M12」といった概念的な情報が格納される例を示したが、実際には、金額を示す数値が記憶される。
【0035】
「キーワード」は、広告コンテンツから抽出される文字列等であり、広告コンテンツの分野や特徴を示す文字列に該当する。
図4に示した例のように、1個の広告コンテンツには複数のキーワードが記憶される場合がある。「CTR」は、広告コンテンツが端末装置20に配信された場合における実際の広告効果を示す。なお、端末装置20に配信されたことがない広告コンテンツのCTRには、予め決められている固定値や、全広告コンテンツにおけるCTRの平均値や、同一の広告カテゴリ(例えば、車、旅行)に属する全広告コンテンツにおけるCTRの平均値などが記憶される。
【0036】
すなわち、
図4では、広告主ID「A10」によって識別される広告主が、ターゲティング条件としてユーザ属性「男性」及び「10代」を指定するとともに、入札価格として「M11」を指定した上で、広告コンテンツ「C11」を入稿した例を示している。また、
図4では、広告コンテンツ「C11」から抽出されるキーワードが「車」や「黒」であり、かかる広告コンテンツを端末装置20に配信したところ、CTRが「0.02」であったことを示す。
【0037】
(配信履歴記憶部131について)
配信履歴記憶部131は、端末装置20への広告配信に関する配信履歴を記憶する。ここで、
図5に、実施形態に係る配信履歴記憶部131の一例を示す。なお、配信履歴記憶部131は、
図5に示した例のようにデータベースにおけるテーブルにより構成されてもよいが、実際には、配信履歴(広告配信に関するログ)が書き込まれるテキストファイル等に該当する。
図5に示した例では、配信履歴記憶部131は、「配信広告コンテンツ」、「配信対象ユーザ属性」、「クリック有無」といった項目を有する。
【0038】
「配信広告コンテンツ」は、
図4に示した広告コンテンツに対応し、広告配信装置100が端末装置20に対して実際に配信した広告コンテンツを示す。「配信対象ユーザ属性」は、配信広告コンテンツの配信先としたユーザ(端末装置20)のユーザ属性を示す。「クリック有無」は、配信広告コンテンツがユーザによりクリックされたか否かを示す。
図5に示す例では、クリックされた場合には「クリック有無」に「1(有り)」が記憶され、クリックされなかった場合には「クリック有無」に「0(無し)」が記憶される。
【0039】
すなわち、
図5では、ユーザ属性「男性」及び「10代」を有するユーザの端末装置20に対して広告コンテンツ「C11」が配信され、配信された広告コンテンツ「C11」がユーザによりクリックされなかった例を示している。
【0040】
なお、
図3では図示することを省略したが、広告配信装置100は、各ユーザのユーザIDに対応付けて、ユーザのユーザ属性を記憶するユーザ情報記憶部を保持する。このユーザ情報記憶部に記憶されるユーザ属性は、ユーザが閲覧したウェブページや、ユーザがウェブページを介して購入した商品情報などに基づいて収集される。そして、配信履歴記憶部131の「配信対象ユーザ属性」には、このようなユーザ情報記憶部に記憶されているユーザ属性のうち、配信広告コンテンツの配信先であるユーザのユーザ属性が記憶される。ただし、この例に限られず、配信履歴記憶部131の「配信対象ユーザ属性」には、配信広告コンテンツのターゲティング条件が記憶されてもよいし、ユーザ情報記憶部のユーザ属性と、配信広告コンテンツのターゲティング条件との双方が記憶されてもよい。
【0041】
(仮想CTR記憶部132について)
仮想CTR記憶部132は、広告配信装置100から広告コンテンツが配信されたユーザのユーザ属性毎に、かかるユーザ属性を有するユーザが広告コンテンツをクリックする割合である仮想CTRを記憶する。ここで、
図6に、実施形態に係る仮想CTR記憶部132の一例を示す。
図6に示した例では、仮想CTR記憶部132は、「ユーザ属性」、「仮想CTR」といった項目を有する。
【0042】
「ユーザ属性」は、配信履歴記憶部131に示した配信対象ユーザ属性に含まれる個々のユーザ属性に対応し、すなわち、広告コンテンツが配信されたユーザのユーザ属性を示す。「仮想CTR」は、「ユーザ属性」を有するユーザへの広告配信回数(インプレッション数)のうち、ユーザが広告コンテンツをクリックした回数の割合を示す。すなわち、
図6では、ユーザ属性「男性」を有するユーザは、「0.02(2%)」の確率で広告コンテンツをクリックする例を示している。
【0043】
(制御部140について)
制御部140は、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等によって、広告配信装置100内部の記憶装置に記憶されている各種プログラム(広告抽出プログラムの一例に相当)がRAMを作業領域として実行されることにより実現される。また、制御部140は、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現される。
【0044】
かかる制御部140は、
図3に示すように、入稿受付部141と、受信部142と、広告抽出部143と、配信部147とを有し、以下に説明する情報処理の機能や作用を実現または実行する。なお、制御部140の内部構成は、
図3に示した構成に限られず、後述する情報処理を行う構成であれば他の構成であってもよい。また、制御部140が有する各処理部の接続関係は、
図3に示した接続関係に限られず、他の接続関係であってもよい。
【0045】
(入稿受付部141について)
入稿受付部141は、広告主装置10から広告コンテンツの入稿を受け付け、受け付けた広告コンテンツを広告コンテンツ記憶部121に格納する。具体的には、入稿受付部141は、広告主装置10から、入札価格やターゲティング条件の指定とともに広告コンテンツの入稿を受け付けた場合に、入稿された広告コンテンツから、広告コンテンツの特徴を示すキーワードを抽出する。そして、入稿受付部141は、入稿された広告コンテンツとともに、入札価格やターゲティング条件やキーワードを広告コンテンツ記憶部121に格納する。
【0046】
なお、入稿受付部141が広告コンテンツからキーワードを抽出する処理はいくつか考えられる。例えば、入稿受付部141は、広告コンテンツがHTML(HyperText Markup Language)ファイルである場合には、HTMLファイルに記述されているテキストを形態素解析し、高頻度で登場する形態素をキーワードとして抽出したり、HTMLファイルのタイトルとして指定されている文字列をキーワードとして抽出したり、HTMLファイルのメタデータ(例えば、metaタグに記述される文字列)をキーワードとして抽出したりする。また、例えば、入稿受付部141は、広告コンテンツが画像データである場合には、画像データのメタデータをキーワードとして抽出したりする。
【0047】
また、例えば、入稿受付部141は、広告コンテンツからキーワードを抽出するのではなく、広告主(広告主装置10)から広告コンテンツとともにキーワードの入稿を受け付けてもよい。この場合、入稿受付部141は、広告主から入稿されたキーワードを広告コンテンツ記憶部121に格納する。
【0048】
(受信部142について)
受信部142は、端末装置20や情報提供装置30から広告コンテンツの取得要求を受信する。例えば、受信部142は、HTTP(Hypertext Transfer Protocol)リクエスト等により、広告コンテンツの取得要求を受信する。
【0049】
なお、受信部142に広告コンテンツの取得要求を送信する装置は、情報提供装置30によって配信されるウェブページによって異なる。例えば、広告配信装置100にアクセスするためのURLが埋め込まれたウェブページが端末装置20に配信される場合、受信部142は、端末装置20から広告コンテンツの取得要求を受信する。また、広告コンテンツが既に埋め込まれたウェブページが端末装置20に配信される場合、受信部142は、情報提供装置30から広告コンテンツの取得要求を受信する。
【0050】
(広告抽出部143について)
広告抽出部143は、受信部142によって広告コンテンツの取得要求が受信された場合に、広告コンテンツを広告コンテンツ記憶部121から抽出する。かかる広告抽出部143は、
図3に示すように、算出部144と、集計部145と、抽出部146とを有する。
【0051】
(算出部144について)
算出部144は、配信履歴記憶部131に記憶されている配信履歴に基づいて、ユーザ属性毎の仮想CTRを算出し、算出した仮想CTRを仮想CTR記憶部132に格納する。
【0052】
具体的には、算出部144は、配信履歴記憶部131から、配信対象ユーザ属性に含まれる単一のユーザ属性毎に、かかるユーザ属性を含む配信履歴を取得する。続いて、算出部144は、取得した配信履歴のうちクリック有無が「1(有り)」である配信履歴の数を、取得した配信履歴の総数で除算することにより、ユーザ属性毎の仮想CTRを算出する。
【0053】
例えば、
図5に示した例において、算出部144が、配信対象ユーザ属性に含まれるユーザ属性「男性」に対応する仮想CTRを算出するものとする。この場合、配信履歴記憶部131に記憶されている1行目の配信対象ユーザ属性には「男性」が含まれるので、算出部144は、配信履歴記憶部131から1行目の配信履歴を取得する。同様にして、算出部144は、配信対象ユーザ属性に「男性」が含まれる2〜4、7及び8行目の配信履歴を取得する。続いて、算出部144は、配信履歴記憶部131から取得した配信履歴のうち、クリック有無が「1(有り)」である配信履歴の数を計数する。そして、算出部144は、計数結果を配信履歴記憶部131から取得した配信履歴の総数で除算することにより、ユーザ属性「男性」に対応する仮想CTRを算出する。このようにして、算出部144は、他のユーザ属性「女性」、「10代」、「20代」、「東京」などに対応する各仮想CTRを算出し、仮想CTR記憶部132を更新する。
【0054】
なお、上記の通り、算出部144は、上述した仮想CTR算出処理を定期的に行い、仮想CTR記憶部132を定期的に更新する。言い換えれば、算出部144は、受信部142によって広告コンテンツの取得要求が受信されたか否かにかかわらず、予め決められている所定のタイミング毎(例えば、1日毎、1週間毎)に、仮想CTR算出処理を行う。
【0055】
(集計部145について)
集計部145は、算出部144によって算出されたユーザ属性毎の仮想CTRに基づいて、各広告コンテンツの広告スコアを集計する。なお、実施形態に係る集計部145は、広告コンテンツ記憶部121に記憶されている広告コンテンツ群のうち、後述する抽出部146によって所定数に絞り込まれた広告コンテンツ群(
図1の広告コンテンツ群G11に対応)について広告スコアを集計するものとする。
【0056】
ここで、集計部145による集計処理の一例について説明する。集計部145は、抽出部146によって絞り込まれた広告コンテンツ毎に、かかる広告コンテンツに対応するターゲティング条件を広告コンテンツ記憶部121から取得する。そして、集計部145は、広告コンテンツ記憶部121から取得した各ターゲティング条件に対応する仮想CTRを仮想CTR記憶部132から取得し、取得した仮想CTRの総和を広告スコアとして集計する。
【0057】
例えば、広告コンテンツ記憶部121が
図4に示した状態であり、仮想CTR記憶部132が
図6に示した状態であるものとする。また、抽出部146に絞り込まれた広告コンテンツ群に広告コンテンツ「C12」が含まれるものとする。この場合、集計部145は、広告コンテンツ記憶部121から、広告コンテンツ「C12」に対応するターゲティング条件「男性、20代、車」を取得する。続いて、集計部145は、仮想CTR記憶部132から、ユーザ属性がターゲティング条件「男性」と一致する仮想CTR「0.02」を取得し、ユーザ属性がターゲティング条件「20代」と一致する仮想CTR「0.03」を取得し、ユーザ属性がターゲティング条件「車」と一致する仮想CTR「0.05」を取得する。そして、集計部145は、取得した全ての仮想CTR「0.02」、「0.03」及び「0.05」を加算することで、広告コンテンツ「C12」に対応する広告スコア「0.10」を求める。同様にして、集計部145は、抽出部146に絞り込まれた全ての広告コンテンツについて広告スコアを集計する。
【0058】
(抽出部146について)
抽出部146は、各種条件に基づいて、広告コンテンツ記憶部121に記憶されている広告コンテンツ群から配信候補となる広告コンテンツを抽出する。
【0059】
具体的には、実施形態に係る抽出部146は、最初に、広告コンテンツ記憶部121に記憶されている広告コンテンツ群から、広告コンテンツの取得要求を送信したユーザ(端末装置20)のユーザ属性とターゲティング条件とが合致する所定数(例えば、数万個)の広告コンテンツを第1広告コンテンツ群として抽出する。かかる抽出処理は、
図1に示したステップS21における処理に対応する。
【0060】
続いて、抽出部146は、広告コンテンツ記憶部121から抽出した第1広告コンテンツ群について広告コンテンツ毎の広告スコアを集計するよう集計部145に指示する。そして、抽出部146は、集計部145によって集計された広告スコアが高い順に、第1広告コンテンツ群から所定数(例えば、100個)の広告コンテンツを第2広告コンテンツ群として抽出する。
【0061】
(配信部147について)
配信部147は、受信部142によって受信された取得要求の送信元である端末装置20に対して、抽出部146によって抽出された第2広告コンテンツ群のいずれかを配信する。ここで、配信部147が配信対象の広告コンテンツを選択する処理はいくつか考えられる。以下に、配信部147による広告コンテンツの選択処理について、一例を挙げて説明する。
【0062】
例えば、配信部147は、抽出部146によって抽出された配信候補の広告コンテンツのうち、広告コンテンツ記憶部121に記憶されている「入札価格」が最も高い広告コンテンツや、「CTR」が最も高い広告コンテンツや、「入札価格」及び「CTR」を乗算又は加算した値が最も高い広告コンテンツを配信対象としてもよい。また、例えば、配信部147は、広告コンテンツとともに端末装置20に表示されるウェブページに含まれるキーワードと、広告コンテンツ記憶部121に記憶されているターゲティング条件やキーワードとの一致度が高い広告コンテンツを配信対象としてもよい。また、例えば、配信部147は、端末装置20のユーザが検索エンジンに入力した検索キーワードと、広告コンテンツ記憶部121に記憶されているターゲティング条件やキーワードとの一致度が高い広告コンテンツを配信対象としてもよい。また、例えば、配信部147は、「入札価格」、「CTR」、及び、ウェブページのキーワードや検索キーワードとの「一致度」を全て考慮して配信対象の広告コンテンツを選択してもよい。このような配信部147による選択処理は、抽出部146によって行われてもよい。
【0063】
なお、配信部147は、広告コンテンツの選択処理を行う際に、広告コンテンツ記憶部121に記憶されている実際のCTR自体を用いるのではなく、CTRの予測モデル等から予測される予測CTRを用いてもよい。このような予測CTRは、例えば、広告コンテンツの種別や、広告コンテンツが表示されるウェブページの種別等によって予測される。また、端末装置20に配信されるウェブページには、複数の広告コンテンツが表示される場合がある。この場合、配信部147は、配信候補の広告コンテンツ群から、ウェブページに表示される広告コンテンツの数だけ配信対象の広告コンテンツを選択し、選択した広告コンテンツを端末装置20に配信する。
【0064】
また、配信部147は、端末装置20に配信した広告コンテンツがユーザによりクリックされた場合には、端末装置20からクリックされた旨のクリック通知を受信する。この場合、配信部147は、クリック通知に基づいて、クリックされた広告コンテンツに対応する広告コンテンツ記憶部121のCTRを更新する。具体的には、配信部147は、広告コンテンツ毎に、配信回数の総計とクリック回数の総計とを保持しておく。そして、配信部147は、定期的(例えば、1時間毎や1日毎)に、「クリック回数の総計」を「配信回数の総計」により除算することでCTRを算出し、広告コンテンツ記憶部121に記憶されている各広告コンテンツのCTRに更新する。また、配信部147は、クリック通知に基づいて、配信履歴記憶部131のクリック有無を更新する。
【0065】
〔4.仮想CTR算出処理手順〕
次に、
図7を用いて、実施形態に係る広告配信装置100による仮想CTR算出処理の手順について説明する。
図7は、実施形態に係る広告配信装置100による仮想CTR算出処理手順を示すフローチャートである。
【0066】
図7に示すように、広告配信装置100の算出部144は、仮想CTRの算出タイミングであるか否かを判定する(ステップS101)。そして、算出部144は、仮想CTRの算出タイミングでない場合には(ステップS101;No)、算出タイミングになるまで待機する。
【0067】
一方、算出部144は、仮想CTRの算出タイミングである場合には(ステップS101;Yes)、配信履歴記憶部131の配信対象ユーザに含まれるユーザ属性のうち、1個の未処理のユーザ属性を処理対象とする(ステップS102)。例えば、算出部144は、配信履歴記憶部131が
図5に示した状態である場合、ユーザ属性「男性」などを処理対象とする。
【0068】
続いて、算出部144は、処理対象のユーザ属性を有するユーザが広告コンテンツをクリックした回数(クリック回数)を計数する(ステップS103)。例えば、算出部144は、配信履歴記憶部131を参照し、処理対象のユーザ属性が配信対象ユーザ属性に含まれるレコードのうち、クリック有無が「1(有り)」であるレコード数を計数する。
【0069】
続いて、算出部144は、ステップS103において計数したクリック回数を、処理対象のユーザ属性が配信対象ユーザ属性に含まれる配信履歴記憶部131のレコード数で除算することにより、処理対象のユーザ属性に対応する仮想CTRを算出する(ステップS104)。
【0070】
続いて、算出部144は、配信履歴記憶部131の配信対象ユーザに含まれる全てのユーザ属性について処理済みであるか否かを判定する(ステップS105)。そして、算出部144は、未処理のユーザ属性が存在する場合には(ステップS105;No)、ステップS102に戻り、未処理のユーザ属性についてステップS103及びS104における処理を行う。
【0071】
一方、算出部144は、全てのユーザ属性について処理済みである場合には(ステップS105;Yes)、ステップS104において算出したユーザ属性毎の仮想CTRを仮想CTR記憶部132に格納する(ステップS106)。
【0072】
〔5.広告配信処理手順〕
次に、
図8を用いて、実施形態に係る広告配信装置100による広告配信処理の手順について説明する。
図8は、実施形態に係る広告配信装置100による広告配信処理手順を示すフローチャートである。
【0073】
図8に示すように、広告配信装置100の受信部142は、端末装置20や情報提供装置30から広告コンテンツの取得要求を受信したか否かを判定する(ステップS201)。そして、受信部142は、広告コンテンツの取得要求を受信していない場合には(ステップS201;No)、取得要求を受信するまで待機する。
【0074】
一方、受信部142によって広告コンテンツの取得要求を受信された場合には(ステップS101;Yes)、抽出部146は、広告コンテンツ記憶部121に記憶されている広告コンテンツ群から、広告コンテンツの取得要求を送信したユーザのユーザ属性とターゲティング条件とが合致する第1広告コンテンツ群を抽出する(ステップS202)。
【0075】
続いて、集計部145は、仮想CTR記憶部132に記憶されている仮想CTRを用いて、抽出部146によって抽出された第1広告コンテンツ群の広告スコアを集計する(ステップS203)。具体的には、集計部145は、広告コンテンツ毎に、かかる広告コンテンツのターゲティング条件に対応する仮想CTRを仮想CTR記憶部132から取得し、取得した仮想CTRの総和を広告スコアとして集計する。
【0076】
続いて、抽出部146は、ステップS202において抽出した第1広告コンテンツ群から、集計部145によって集計された広告スコアが高い順に所定数の広告コンテンツを第2広告コンテンツ群として抽出する(ステップS204)。
【0077】
続いて、配信部147は、広告コンテンツ記憶部121に記憶されている入札価格やCTRに基づいて、抽出部146によって抽出された第2広告コンテンツ群から配信対象の広告コンテンツを選択する(ステップS205)。そして、配信部147は、ステップS201において取得要求を送信した端末装置20又は情報提供装置30に対して、選択した広告コンテンツを配信する(ステップS206)。
【0078】
〔6.変形例〕
上述した実施形態に係る広告配信装置100は、上記実施形態以外にも種々の異なる形態にて実施されてよい。そこで、以下では、上記の広告配信装置100の他の実施形態について説明する。
【0079】
〔6−1.キーワードを考慮した仮想CTRモデル〕
上記実施形態では、広告コンテンツの種別(ジャンル)を考慮せずに、「どのようなユーザ属性のユーザが、広告コンテンツをどの程度クリックしやすいか」を示す仮想CTRを算出する例について説明した。しかし、同一のユーザ属性を有するユーザであっても、広告コンテンツの種別によって、広告コンテンツをクリックしやすいか否かは異なる。そこで、広告配信装置100は、広告コンテンツの種別(ジャンル)も考慮して、「どのようなユーザ属性のユーザが、どのようなキーワードを含む広告コンテンツをどの程度クリックしやすいか」を示す仮想CTRを算出してもよい。すなわち、広告配信装置100は、配信履歴記憶部131の配信対象ユーザ属性に含まれる単一のユーザ属性毎、かつ、かかるユーザ属性を有するユーザに配信した広告コンテンツのキーワード毎に、仮想CTRを算出してもよい。以下、この点について具体的に説明する。
【0080】
まず、算出部144は、
図1〜
図8を用いて説明した例と同様に、配信履歴記憶部131から、配信対象ユーザ属性に含まれる単一のユーザ属性毎に、かかるユーザ属性を含む配信履歴(広告コンテンツ、配信対象ユーザ属性、及び、クリック有無の組合せ)を取得する。また、算出部144は、配信履歴記憶部131から取得した配信広告コンテンツに対応するキーワードを広告コンテンツ記憶部121から取得する。
【0081】
例えば、広告コンテンツ記憶部121が
図4に示した状態であり、配信履歴記憶部131が
図5に示した状態であり、算出部144による処理対象のユーザ属性が「男性」であるものとする。この場合、算出部144は、
図5に示した配信履歴記憶部131から1〜4、7及び8行目の配信履歴を取得する。そして、算出部144は、1行目の配信履歴に示される広告コンテンツ「C11」に対応するキーワード「車」、「黒」などを広告コンテンツ記憶部121から取得する。同様に、算出部144は、2〜4、7及び8行目の配信履歴に示される広告コンテンツ「C31」、「C12」、「C13」、「C14」に対応するキーワードについても取得する。
【0082】
そして、算出部144は、配信履歴記憶部131から取得した「クリック有無」と、広告コンテンツ記憶部121から取得した「キーワード」との関係を機械学習(例えば、回帰分析)することにより、所定のユーザ属性を有するユーザが、どのような「キーワード」を含む広告コンテンツをクリックしやすいかといったモデル(例えば、回帰分析により得られるモデル)をユーザ属性毎に生成する。このモデルは、1以上のキーワードが入力されると、かかるキーワードを含む広告コンテンツがユーザによりどの程度クリックされやすいかを示す仮想的なCTRを出力する。このようなモデルから得られる仮想的なCTRは、
図1〜
図8において説明した仮想CTRと異なるが、以下では「仮想CTR」と表記する場合があり、また、このようなモデルを仮想CTRモデルと表記する場合がある。
【0083】
算出部144によるモデル生成処理について、回帰分析を例に挙げて説明する。ここでは、算出部144が、処理対象のユーザ属性「男性」について、クリック有無を従属変数(目的変数)とし、広告コンテンツに含まれる各キーワードを独立変数(説明変数)として回帰分析を行うことにより、クリック有無を各キーワードによって表す回帰式(仮想CTRモデル)を生成するものとする。この場合、算出部144は、「クリック有無」が「1(有り)」である広告コンテンツに多く含まれるキーワードであり、かつ、「クリック有無」が「0(無し)」である広告コンテンツに多く含まれないキーワードほど、かかるキーワードに対応する係数(回帰式における独立変数の係数)を大きい値とする。一方、算出部144は、「クリック有無」が「1(有り)」である広告コンテンツに多く含まれないキーワードであり、かつ、「クリック有無」が「0(無し)」である広告コンテンツに多く含まれるキーワードほど、かかるキーワードに対応する係数を小さい値とする。
【0084】
例えば、ユーザ属性「男性」を有するユーザが、キーワード「車」を含む広告コンテンツを多くクリックする傾向にあり、キーワード「化粧品」を含む広告コンテンツをクリックしない傾向にある場合、ユーザ属性「男性」に対応する回帰式(仮想CTRモデル)において、キーワード「車」の係数は大きい値となり、キーワード「化粧品」の係数は小さい値となる。すなわち、仮想CTRモデルに含まれる各キーワードに対応する係数は、かかるキーワードを含む広告コンテンツをユーザがクリックしやすいか否かを示す仮想CTRに該当する。
【0085】
このようにして、算出部144は、上述した仮想CTRモデルをユーザ属性毎に生成し、生成した仮想CTRモデルを仮想CTR記憶部132に格納する。この例では、
図6に示した仮想CTR記憶部132の「仮想CTR」は「仮想CTRモデル」となる。ここで、
図9に、算出部144によって生成される仮想CTRモデルを模式的に示す。
図9には、一例として、算出部144によって生成されるユーザ属性「男性」、「女性」、「10代」に対応する仮想CTRモデルM11〜M13を示す。
図9に示したユーザ属性「男性」に対応する仮想CTRモデルM11には、キーワード「車」の係数(仮想CTR)「0.03」や、キーワード「スポーツ」の係数(仮想CTR)「0.01」や、キーワード「化粧品」の係数「0.001」などが含まれる。
【0086】
そして、これらの仮想CTRモデルM11〜M13は、キーワードが入力された場合に、かかるキーワードに対応する係数(仮想CTR)を加算した値を出力する。例えば、仮想CTRモデルM11にキーワード「車」及び「スポーツ」が入力されると、それぞれのキーワードに対応する係数(仮想CTR)「0.03」と係数(仮想CTR)「0.01」の加算結果である「0.04」が出力される。
【0087】
そして、集計部145は、算出部144によって生成されたユーザ属性毎の仮想CTRモデルを用いて、各広告コンテンツの広告スコアを集計する。具体的には、集計部145は、抽出部146によって絞り込まれた第1広告コンテンツ群に含まれる広告コンテンツ毎に、かかる広告コンテンツに対応するターゲティング条件を広告コンテンツ記憶部121から取得する。そして、集計部145は、広告コンテンツ記憶部121から取得した各ターゲティング条件に対応する各仮想CTRモデルを仮想CTR記憶部132から取得し、取得した各仮想CTRモデルに対して、広告コンテンツに対応するキーワードを入力する。そして、集計部145は、各仮想CTRモデルから出力される仮想CTRの総和を広告スコアとして集計する。
【0088】
例えば、広告コンテンツ記憶部121が
図4に示した状態であり、仮想CTR記憶部132が
図9に示した状態であるものとする。また、抽出部146に絞り込まれた広告コンテンツ群に広告コンテンツ「C13」が含まれるものとする。この場合、集計部145は、広告コンテンツ記憶部121から、広告コンテンツ「C13」に対応するターゲティング条件「男性、10代」を取得する。続いて、集計部145は、ターゲティング条件「男性」に対応する仮想CTRモデルM11に対して、広告コンテンツ「C13」のキーワード「車」及び「スポーツ」を入力することで、仮想CTR「0.04」を得る。また、集計部145は、ターゲティング条件「10代」に対応する仮想CTRモデルM13に対して、広告コンテンツ「C13」のキーワード「車」及び「スポーツ」を入力することで、仮想CTR「0.05」を得る。そして、集計部145は、仮想CTRモデルM11及びM13から得られた仮想CTR「0.04」及び「0.05」を加算することで、広告コンテンツ「C13」に対応する広告スコア「0.09」を求める。同様にして、集計部145は、抽出部146に絞り込まれた広告コンテンツ群G11に含まれる全ての広告コンテンツについて広告スコアを集計する。
【0089】
このように、実施形態に係る広告配信装置100は、ユーザ属性及び広告コンテンツに含まれるキーワードを考慮した仮想CTRモデルを生成し、かかる仮想CTRモデルを用いて各広告コンテンツの仮想CTRを求めることにより、各広告コンテンツがユーザによりクリックされやすいか否かを示す広告スコアを高精度の求めることができる。すなわち、広告配信装置100は、広告効果の高い広告コンテンツ群に高精度に絞り込むことができるので、精度良く広告効果の高い広告コンテンツを配信することができる。
【0090】
なお、算出部144は、広告コンテンツにおけるキーワードの出現頻度やキーワードの希少度に応じて、上述した仮想CTRモデルにおけるキーワードの係数を補正してもよい。具体的には、算出部144は、ユーザにクリックされた広告コンテンツにおいて出現頻度の高いキーワードほど、かかるキーワードに対応する係数を高い値に補正する。また、算出部144は、ユーザにクリックされた広告コンテンツにおいて出現するキーワードであり、かつ、他の広告コンテンツにおける出現頻度が低いキーワードほど、かかるキーワードに対応する係数を高い値に補正する。例えば、算出部144は、tf−idf(term frequency inverse document frequency)等の手法を用いて、キーワード毎の重要度(出現頻度、希少度)を求め、求めた重要度に基づいて仮想CTRモデルの係数を補正する。
【0091】
〔6−2.仮想CTRと入札価格〕
また、上記実施形態では、集計部145が、仮想CTRの総和を広告スコアとして集計する例を示した。しかし、集計部145は、仮想CTRだけでなく広告コンテンツの入札価格を用いて、広告スコアを集計してもよい。例えば、集計部145は、広告コンテンツ毎に、かかる広告コンテンツの入札価格を仮想CTRの総和に乗算又は加算した値を広告スコアとして集計してもよい。これにより、広告配信装置100は、広告効果が高いだけでなく、高い広告収入を得ることができる広告コンテンツを優先的に配信することができる。
【0092】
〔6−3.ユーザ属性の組合せ毎に仮想CTR〕
また、上記実施形態では、
図6に示した例のように、単一のユーザ属性毎の仮想CTRを算出する例を示した。しかし、算出部144は、複数のユーザ属性の組合せ毎に、仮想CTRを算出してもよい。この場合、算出部144は、配信履歴記憶部131から、配信対象ユーザ属性に含まれる複数のユーザ属性毎に、かかる複数のユーザ属性を含む配信履歴を取得する。例えば、算出部144は、ユーザ属性「男性」及び「10代」の組合せを処理対象とする場合、
図5に示した配信履歴記憶部131から1、2及び7行目の配信履歴を取得する。この後の処理は上述してきた処理と同様であり、算出部144は、複数のユーザ属性の組合せ毎に、仮想CTRを仮想CTR記憶部132に格納する。また、この例の場合、集計部145は、広告コンテンツのターゲティング条件の組合せとユーザ属性の組合せとが合致する仮想CTRを仮想CTR記憶部132から取得することで、広告コンテンツ毎の広告スコアを集計する。
【0093】
このように、広告配信装置100は、複数のユーザ属性の組合せ毎に仮想CTRを算出することで、より高精度に広告スコアを集計することができるので、精度良く広告効果の高い広告コンテンツを配信することができる。
【0094】
〔6−4.抽出処理〕
また、上記実施形態では、
図1に示したように、抽出部146が、最初に、ターゲティング条件に基づいて広告コンテンツを絞り込み(ステップS21)、次に、仮想CTRに基づいて広告コンテンツを絞り込み(ステップS22)、最後に、実際のCTRや入札価格に基づいて配信対象の広告コンテンツを選択する例を示した。しかし、この例に限られず、抽出部146は、最初に、仮想CTRに基づいて広告コンテンツを絞り込み、次に、実際のCTRや入札価格に基づいて配信対象の広告コンテンツを選択してもよい。また、抽出部146は、最初に、ターゲティング条件に基づいて広告コンテンツを絞り込み、次に、仮想CTRに基づいて配信対象の広告コンテンツを選択してもよい。また、抽出部146は、絞込みを行わずに、広告コンテンツ記憶部121に記憶されている広告コンテンツから、仮想CTRに基づいて配信対象の広告コンテンツを選択してもよい。
【0095】
〔6−5.その他〕
また、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
【0096】
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
【0097】
例えば、
図3に示した広告コンテンツ記憶部121、配信履歴記憶部131及び仮想CTR記憶部132は、広告配信装置100が保持せずに、ストレージサーバ等に保持されてもよい。この場合、広告配信装置100は、ストレージサーバにアクセスすることで、広告コンテンツを取得する。
【0098】
また、例えば、上述してきた広告配信装置100は、ウェブページを配信する情報提供装置30と一体となって構成されてもよい。また、広告配信装置100は、広告コンテンツの提供処理は行わず、広告抽出部143による広告抽出処理のみを行う広告抽出装置であってもよい。この場合、広告抽出装置は、少なくとも入稿受付部141や配信部147を有しない。そして、入稿受付部141や配信部147を有する広告配信装置が、広告抽出装置によって抽出された広告コンテンツを端末装置20等に配信する。
【0099】
〔7.効果〕
上述してきたように、実施形態に係る広告配信装置100は、算出部144と、集計部145と、抽出部146とを有する。算出部144は、ユーザによって利用される端末装置20への広告コンテンツ配信に関する配信履歴に基づいて、かかるユーザのユーザ属性毎に仮想CTR(「仮想的な広告効果」の一例に相当)を算出する。また、集計部145は、ターゲティング条件(「配信対象のユーザ属性」の一例に相当)が予め決められている広告コンテンツ毎に、算出部144によって算出されたユーザ属性毎の仮想CTRのうち、かかる広告コンテンツにおけるターゲティング条件に対応する仮想CTRを用いて広告効果を集計する。抽出部146は、集計部145によって集計された広告効果に基づいて、配信候補の広告コンテンツを抽出する。
【0100】
これにより、実施形態に係る広告配信装置100は、配信履歴から得られるユーザ属性毎の仮想CTRに基づいて配信候補の広告コンテンツを絞り込むので、結果として広告効果の高い広告コンテンツを配信することができる。
【0101】
また、実施形態に係る広告配信装置100において、算出部144は、仮想CTRとして、ユーザに広告コンテンツを配信した配信回数のうち、かかるユーザにより広告コンテンツが押下された回数の割合を算出する。また、集計部145は、広告コンテンツ毎に、かかる広告コンテンツにおけるターゲティング条件に対応する仮想CTRの合計を集計する。
【0102】
これにより、実施形態に係る広告配信装置100は、広告コンテンツをクリックしやすいユーザ属性であるか否かを示す仮想CTRに基づいて配信候補の広告コンテンツを絞り込むので、結果として広告効果の高い広告コンテンツを配信することができる。
【0103】
また、実施形態に係る広告配信装置100において、算出部144は、配信履歴に基づいて、複数のユーザ属性の組合せ毎に仮想CTRを算出する。
【0104】
これにより、実施形態に係る広告配信装置100は、各広告コンテンツの広告スコアを高精度に集計できるので、精度良く広告効果の高い広告コンテンツを配信することができる。
【0105】
また、実施形態に係る広告配信装置100において、算出部144は、ユーザ属性毎、かつ、かかるユーザ属性を有するユーザに配信した広告コンテンツの特徴を示すキーワード毎に、仮想CTRを算出する。また、集計部145は、広告コンテンツ毎に、算出部144によって算出されたユーザ属性毎かつキーワード毎の仮想CTRのうち、かかる広告コンテンツにおけるターゲティング条件及びキーワードに対応する仮想CTRを用いて広告効果を集計する。
【0106】
これにより、実施形態に係る広告配信装置100は、広告コンテンツ毎に変動する広告スコアを高精度の求めることができるので、精度良く広告効果の高い広告コンテンツを配信することができる。
【0107】
また、実施形態に係る広告配信装置100において、配信部147は、抽出部146によって抽出された配信候補の広告コンテンツのうち、広告主により指定された入札価格、又は、広告コンテンツの実際の広告効果に基づいて決定される広告コンテンツを端末装置20に配信する。
【0108】
これにより、実施形態に係る広告配信装置100は、抽出部146によって抽出された広告効果の高い広告コンテンツのうち、さらに、収益の高い広告コンテンツや、ユーザにクリックされやすい広告コンテンツを配信することができる。
【0109】
以上、本願の実施形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、発明の開示の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。
【0110】
また、上述した広告配信装置100は、複数のサーバコンピュータで実現してもよく、また、機能によっては外部のプラットフォーム等をAPI(Application Programming Interface)やネットワークコンピューティングなどで呼び出して実現するなど、構成は柔軟に変更できる。
【0111】
また、特許請求の範囲に記載した「手段」は、「部(section、module、unit)」や「回路」などに読み替えることができる。例えば、算出手段は、算出部や算出回路に読み替えることができる。