(58)【調査した分野】(Int.Cl.,DB名)
前記結合位置より近位の位置において前記シースに接続された洗い流しラインをさらに含み、前記洗い流しラインは、前記近位伸張部の管腔へのアクセスを提供するように構成されることを特徴とする請求項1又は2に記載のシステム。
前記コントローラは、血流状態を変化させるためにユーザーが操作可能な少なくとも1つのアクチュエーターを含んでいることを特徴とする請求項11に記載のシステム。
【背景技術】
【0002】
本願の開示は、概して、医療方法および医療機器に関する。特に、本願の開示は、頚動脈ステント留置術および他の手技の間に、頚動脈血管にアクセスし、血流の逆流を確立するため方法およびシステムに関する。
【0003】
頚動脈疾患(Carotid artery disease)は、通常は、総頚動脈CCAと内頚動脈ICAとの間の接合部(junction)を狭くするプラークPの沈着から成り(
図5)、動脈は脳に血流を提供している。これらの沈着は、塞栓粒子(embolic particles)が生成され、そして脳血管に入るリスクを増加させ、例えば、一過性脳虚血発作TIA、虚血性脳卒中、あるいは死などの神経学的な結果(neurologic consequences)を引き起こす。さらに、そのような狭窄が重症になれば、脳への血流が阻害され、深刻で、しばしば致命的な結果を伴う。
【0004】
頚動脈疾患を治療するのに、主に2つの治療法が用いられる。第1は、頚動脈血管内膜切除術CEAという外科的切開手術であり、その手術では、総頚動脈、内頚動脈および外頚動脈を閉塞し、病変部位(the site of the disease)(通常、総頚動脈CCAが内頚動脈ICAと外頚動脈ECAとに分かれる頚動脈の分岐部)で頚動脈を切開し、プラークPを切り離して除去し、次に頚動脈を閉じることに依る。第2の手法は、頚動脈にステントを留置する手技に依り、これは、頚動脈ステント留置術CASと呼ばれており、典型的には、総頚動脈CAAから内頚動脈ICAへの分岐部に又は分岐部を横切って留置され、あるいは完全に内頚動脈内に留置される。通常、自己拡張型ステント(self-expanding stent)は、鼠径部内の大腿動脈への経皮的穿刺(percutaneous puncture)を通して、大動脈弓を上がり、目標となる総頚動脈CCAの中に導入される。
【0005】
これら両方法には、患者は、内頚動脈ICAを介して脳血管に放出される(released)塞栓のリスクにさらされる。顔の構造に血液を提供する動脈である外頚動脈ECAへの塞栓放出の臨床的結果は、それほど重要ではない。頚動脈血管内膜切除術(CEA)の間、血管を閉じて血流を回復する前に、動脈の創面切除と勢いのよい洗い流し(vigorously flushing)により、内頚動脈ICAへの塞栓放出のリスクを最小にされる。手術中に動脈が切開されている間は、すべての頚動脈が閉塞されるので、粒子は血管に入ることができない。
【0006】
頚動脈ステント留置術(CAS)の手術中には、通常は付加的な塞栓予防デバイス(embolic protection device)を用いて、少なくとも部分的に塞栓のリスクを軽減する。それらのデバイスの一例として遠位部フィルターがあり、ステント領域より遠位にある内頚動脈中に展開する。フィルターは、塞栓粒子を捕らえて脳血管への通過を防ぐことを目的としている。しかしながら、そのようなフィルタリングデバイスは、ある種の制限を備えている。それらのフィルタリングデバイスは目標血管に向かって前進し、そして展開に先立って狭窄を横断しなくてはならず、そのことは、脳血管を塞栓のシャワーにさらすことになる。狭い狭窄および/またはひどく角張っている血管を通って、それらを前進し、展開し、そして除去することが必ずしも簡単だとは限らない。そして最後に、それらは、フィルター細孔サイズ(典型的には100〜120μm)より大きな粒子をろ過するのみである。また、これらのデバイスは、フィルターの壁との対向が不完全なので、血流の100%をろ過できず、さらに、フィルター回収(filter retrieval)中に、デブリス(破片:debris)がすり抜けるリスクがある。
【0007】
本願開示で特に関心のあることは、内頚動脈ICAへの塞栓放出のリスクを減らす別の方法で、頚動脈ステント留置術(CAS)の手術中に用いられ、内頚動脈ICA内の血流を逆流させる概念を利用して、脳血管に入る塞栓のデブリスを防ぐ方法が提案されてきた。特定のプロトコル(specific protocols)は多数記述されてきたが、それらは一般に、大腿動脈を介して(経大腿部アクセス)総頚動脈にシースを入れることに頼っている。総頚動脈の血流は、典型的には、シースの遠位先端上のバルーンをふくらますことにより閉塞される。外頚動脈ECAへの血流も、典型的には、シースを通して導入されたバルーンカテーテルまたはバルーンガイドワイヤーを用いて閉塞されてもよい。その後、内頚動脈からシースを通って脳血管から離れる方向の逆流(reverse or retrograde flow)を確立するために、シースは、静脈の位置あるいは低圧の外部レセプタクル(low pressure external receptacle)に接続される。そのような逆流が確立された後に、塞栓が脳血管に入るリスクを大幅に低減した状態で、ステント留置術が行われる。
【0008】
内頚動脈(ICA)の血流を単に停止させる代わりのシステムは、2個の一体型バルーン(遠位先端の内頚動脈(ICA)閉塞バルーンと、その外頚動脈(ECA)バルーンの近傍にいくらかの一定距離あけて設置した総頚動脈(CCA)閉塞バルーン)を備えた頚動脈アクセスシース(carotid access sheath)から成る。2個のバルーンの間に、頚動脈ステント介入デバイス(interventional carotid stenting devices)を送る開口がある。このシステムは、内頚動脈(ICA)から静脈系まで血流を逆流させないが、その代りに、血流を遮断(block)し、内頚動脈(ICA)内の血流を確立する前に吸引を行って塞栓のデブリスを除去する。
【0009】
頚動脈内のステント留置術およびその他の介入手技(interventional procedures)を行うための、そのような血流の逆流または静止のプロトコルは、極めて有望である一方、そのような方法は、一般に、複数の別個アクセスと閉塞用構成要素(occlusion components)の操作を必要とした。さらに、そのプロトコルはやや複雑であり、多くの別個の工程を必要とし、それらの遂行を最も熟練した血管外科医インターベンショナルラジオロジスト(interventional radiologists)および心臓専門医だけに制限する。さらに、大腿部アクセスの寸法制限により、アクセスデバイス自身が非常に高い血流抵抗を与えて、逆流および/または吸引の可能性を制限する。更に、外頚動脈を閉塞する要求は、手技にリスクと複雑さを加える。ステントが総頚動脈から内頚動脈まで分岐部を横切って設置されていて、そのバルーンカテーテルを除去するときに展開したステントに損傷を与えるような場合には、外頚動脈を閉塞するためのバルーンカテーテルは、動脈壁の中にトラップされてもよい。
【0010】
記述された脳保護デバイスおよび方法のいずれも、手術後の保護を提供していない。しかしながら、ステント手術後48時間以降まで、塞栓粒子の発生が測定されてきた。頚動脈血管内膜切除術(CEA)では、内頚動脈ICAへの血流を遮断しながら手術の最後に洗い流すことは、術後の塞栓発生を低減するのに役立つだろう。頚動脈ステント留置術(CAS)における同様の洗い流し工程もまた、塞栓リスクを減らすだろう。さらに、塞栓粒子の取り込みを改善するように設計されたステントもまた、術後の塞栓を低減するだろう。
【0011】
さらに、現在利用可能な全ての頚動脈ステント留置術および脳保護システムは、大腿動脈からアクセスするように設計されている。残念なことに、大腿動脈から総頚動脈への経路は比較的長く、何人かの患者では完全に角張っているいくつかの湾曲(turns)を有し、そして、しばしば、プラークおよびその他の疾患を含んでいる。大腿動脈からの総頚動脈へのアクセスを含む手技の部分は、困難で、時間を消費すると共に、目標の総頚動脈と反対の総頚動脈の両方を上がってそこから脳血管に塞栓のデブリスのシャワーを生じるリスクの可能性がある。いくつかの研究は、頚動脈ステント留置術(CAS)中の塞栓の合併症(embolic complications)の半分以上が、総頚動脈(CCA)へのアクセス中に発生することを示唆している。プロトコルまたはシステムのいずれも、手術のこの部分(総頚動脈(CCA)へのアクセス)の間の保護を提供しない。
【0012】
近年、頚動脈までの代わりのアクセスルートを有する逆流プロトコルが、Criadoによって提案された。この代わりのルートは、総頚動脈CCAへの直接的な外科的アクセスから成り、経頚部アクセス(transcervical access)と呼ばれる。経頚部アクセスは、血管へのアクセスポイントから目標の処置位置サイトまでの経路の長さとねじれを非常に短くし、それにより手技の時間と困難性とを緩和する。さらに、このアクセスルートは、疾患があり、角張っており、あるいはねじ曲がっている(tortuous)大動脈弓または総頚動脈の組織(anatomy)を航海(navigation)することによる塞栓発生のリスクを低減する。
【0013】
Criadoのプロトコル(Criadoプロトコル)は、以下に引用された医学文献のいくつかの刊行物に記載されている。
図3に示すように、Criadoプロトコルは、動脈シース210および静脈シース212を含んでいる血流シャント(flow shunt)を用いる。各シースはサイドアーム214を有し、栓(stopcock)216で終端している。2つのシース栓はコネクター管材218によって接続され、それにより、動脈シース210から静脈シース212への逆流シャントが完成する。動脈シースは、頚動脈の分岐部より下側の頚部に開いた外科的切開を通じて総頚動脈CCA内に設置される。総頚動脈CCAの閉塞は、一時的な血管結紮(vessel ligation)、例えば、Rummel止血器(Rummel tourniquet)および臍テープ(umbilical tape)、あるいは血管ループ(vessel loop)を用いて達成することができる。静脈リターンシース(venous return sheath)212もまた、開いた外科的切開を介して内頚静脈IJV(
図3)の中に設置される。その後、内頚動脈ICAおよび外頚動脈ECAからの逆流は、栓216を開くことにより確立されるだろう。Criadoプロトコルは、大腿部アクセスを必要としないので、初期の逆流プロトコルに比べて進歩している。このように、大腿部アクセスに関連した潜在的な合併症は完全に回避される。更に、短いアクセスルートで提供される低い血流制限(flow restrictions)は、勢いのよい逆流速度の機会を提供し、塞栓のデブリスの除去効率を増大させる。低減された血流制限により、初期プロトコルで必要とされるような外頚動脈ECAの閉塞なしに、内頚動脈ICAの所望の逆流を確立できるだろう。
【0014】
大腿部アクセスに基づいた逆流プロトコルに比べれば著しく進歩しているが、Criadoプロトコルおよび血流シャントは、まだ進歩の恩恵を受けることができる。特に、手術中に用いられる既存の動脈シース及び静脈シースは、依然としてサイドアーム214および栓216に著しい血流制限を有している。介入カテーテルが動脈アクセスシースに挿入されたとき、逆流回路抵抗(reverse flow circuit resistance)は最大になる。患者の何パーセントかは、外頚動脈ECAの灌流圧力は内頚動脈ICAの灌流圧力より大きい。これらの患者では、この差圧が、外頚動脈(ECA)から内頚動脈(ICA)への順行性の血流を駆動するかもしれない。低い血流抵抗を伴う逆流シャントは、外頚動脈(ECA)から内頚動脈(ICA)への圧力勾配にもかかわらず、外頚動脈(ECA)と内頚動脈(ICA)の両方において逆流を保証することができた。
【0015】
さらに、逆流速度をモニタまたは調整する手段は存在しない。血流速度を増加および/または調整する能力は、患者の耐性(tolerance)および生理機能(physiology)ならびに手術のステージにとって最適な逆流速度を設定し、それにより塞栓のデブリスからの進化した保護を提供する能力をユーザーに与えるだろう。更に、Criadoによって記述されたシステムは、例えば、頚動脈ステント留置(CAS)システムの設置を容易にするために造影剤を射出している間に、手動で1つ以上の栓を回して逆流シャントを開閉することに依存している。最後に、Criadoプロトコルは、血管ループまたはRummel止血器を介した総頚動脈の外科的切開の閉塞に依存する。総頚動脈を血管内で閉塞する手段を備えた(例えば、動脈アクセスシース上の閉塞要素(occlusion element)を備えた)システムは、経皮的技術を用いて全手技を行なうことを可能にするだろう。経皮的アプローチは、外科以外の医師が手技を行なうことを可能にするだけでなく、外科的切開の寸法とそれに伴う合併症とを制限する。
【0016】
これらの理由により、手術及び術後の塞栓のリスクを減らし、手術全体にわたる止血のレベルを改善し、そして頚動脈ステント留置術の容易さと速さを改善するために、経頚部アクセス、逆流、及び洗い流しの手技を行うための、そして頚動脈の血管中に頚動脈ステントを挿入するための改良された方法、装置およびシステムを提供することが望ましい。この方法、装置およびシステムは、不適切な手技を行うリスクおよび/または塞栓の放出に対する保護のための逆流および洗い流しが十分に達成できないリスクを減らすと共に、医師が行なう手技を単純化するだろう。このシステムは、互いに用いるのが容易で、且つ塞栓に関連する合併症を予防する個々の装置および構成要素を提供するだろう。この方法およびシステムはまた、手技の終わりの意図しない失血を防ぐために、幾つかのまたは全ての動脈の貫通部(arterial penetrations)のための便利で好都合な自動閉鎖部(automatic closure)も提供するだろう。さらに、このシステム、装置および方法は、外科的切開あるいは経皮的な血管内へのアクセスルートのいずれかで行なうのに適しているだろう。さらに、この方法、装置およびシステムは、術後の合併症を低下させる血管内の人工インプラント(prosthetic implant)の挿入を可能にするだろう。これらの目的のうち少なくともいくつかは、本願明細書の以下に記載された本発明により達成されるだろう。
【0017】
<背景技術の説明>
頚動脈内への介入手技を行なう間に、血流の逆流を引き起こす方法とシステムは、米国特許US6413235、US6423032、およびUS6837881ならびに印刷された公開公報US2001/0044598、US2002/0087119、およびUS2005/0154349に記載されている。総頚動脈の経頚部アクセスに関する文献刊行物は、Bergeron P.ら、 J. Endovasc Surg. 3, 76-79(1996)、Diethrich E.B.ら、J. Endovasc Surg. 3, 42-62(1996)、Diethrich E.B.ら、J. Endovasc Surg. 3, 182-202(1996)、Criado F.J.ら、Am. J. Surg. 174, 111-114(1997)、およびBergeron P.ら、J. Endovasc Surg. 6, 155-159(1999)を含む。逆流を伴う経頚部アクセスに関する文献は、Stecker M.S.ら、, J. Vase. Interv. Radiol. 2002, 13, 413-417(2002)、Criado E.ら、Ann, Vase. Surg. 2004 Mar., 18(2), 257-61(2004)、Chang D.W.ら、J. Vase. Surg. 2004 May, 39(5), 994-1002、Criado E.ら、J. Vase. Surg. 2004 Jul., 40(l), 92-7(2004)、Criado E.ら、J. Vase. Surg. Sep., 40(3), 476-83 (2004)、Lo C.H., Doblas M., Criado E.、J. Cardiovasc. Surg. (Torino) Jun., 46(3), 229-39(2005)、Pipinos ILら、J. Endovasc. Ther. Aug., 12(4), 446-53(2005)、Lin J.C.ら、Vase. Endovascular Surg. Nov.-Dec., 39(6), 499-503(2005)、Alexandrescu V.ら、J. Endovasc. Ther. Apr., 13(2), 196-204(2006)、Ribo M.ら、Stroke Nov., 37(ll), 2846-9(2006)、Pipinos I.L.ら、Vascular Sep.-Oct., 14(5), 245-55(2006)、およびMatas M.ら、J. Vase. Surg. Jul., 46(l), 49-54(2007)を含む。
【発明を実施するための形態】
【0034】
<発明の詳細な説明>
図1Aは、逆流システム100の第1の実施態様を示しており、このシステムは、脳血管(特に内頚動脈)への塞栓の放出を制限または防止するために、頚動脈分岐部の領域内における逆流血液循環(retrograde or reverse flow blood circulation)を確立し駆動するのに適している。システム100は、頚動脈と相互に作用して、頚動脈から、例えば内頚静脈(あるいは、別の大静脈や、代わりの実施態様における外部レセプタクルなどの別のリターンサイト)などの静脈リターンサイトに逆流を提供する。逆流システム100は、動脈アクセスデバイス110と、静脈リターンデバイス115と、動脈アクセスデバイス110から静脈リターンデバイス115までの逆流通路を提供するシャント120と、を含んでいる。血流制御アセンブリ125はシャント120と相互に作用する。以下により詳細に記述するように、血流制御アセンブリ125は、総頚動脈から内頚静脈までの逆流を調節しおよび/またはモニタするのに適している。血流制御アセンブリ125は、シャント120、内部の血流パスおよび外部の血流パスのいずれか一方あるいは両方を介して血流パスと相互に作用する。より詳細に下に記述されるように、動脈アクセスデバイス110は少なくとも部分的に、総頚動脈CCAに挿入され、静脈リターンデバイス115は少なくとも部分的に、内頚静脈IJVなどの静脈リターンサイトに挿入される。動脈アクセスデバイス110および静脈リターンデバイス115は、結合位置127a、127bにおいて、シャント120と結合される。総頚動脈を通る血流が遮断される場合、内頚動脈と静脈系との間の自然な圧力勾配によって、血液は、脳血管から内頚動脈とシャント120とを通って静脈系まで、逆方向RG(
図2A)に流れる。血流制御アセンブリ125は、逆流する血流を調整し(modulate)、増大させ(augment)、支援し(assist)、モニタし(monitor)、および/または別の方法で調節する(regulate)。
【0035】
図1Aの実施態様では、動脈アクセスデバイス110は、経頚部アプローチを介して総頚動脈CCAにアクセスする。経頚部アクセスは、血管アクセスポイントから目標の処置位置までの距離が短くねじ曲がっていない経路を提供し、それにより、例えば経大腿部アプローチと比較して、手技にかかる時間および困難性を緩和する。さらに、このアクセスルートは、疾患があり、角張っており、あるいはねじ曲がっている大動脈弓または総頚動脈組織を航海することによる塞栓発生のリスクを低減する。少なくとも静脈リターンデバイス115の一部は、内頚静脈IJVに設置される。ある実施態様では、総頚動脈への経頚部アクセスは、動脈アクセスデバイス110が挿入される皮膚の切開または穿刺を介して、経皮的に達成される。もし切開が用いられる場合、切開の長さを約0.5cmにすることができる。拡張可能なバルーンなどの閉塞要素129は、動脈アクセスデバイス110の遠位端の近位側の場所で総頚動脈CCAを閉塞するのに用いることができる。閉塞要素129は、動脈アクセスデバイス110に配置することができ、または別のデバイスに配置することができる。代わりの実施態様では、動脈アクセスデバイス110は、直接的な外科的経頚部アプローチ(direct surgical transcervical approach)を介して総頚動脈CCAにアクセスする。外科的アプローチでは、総頚動脈は止血器2105を用いて閉塞することができる。任意の外科的アプローチで用いられるデバイスであることを示すために、止血器2105は2点鎖線(phantom)で図示される。
【0036】
図1Bに示された別の実施態様では、動脈アクセスデバイス110は経頚部アプローチを介して総頚動脈CCAにアクセスし、その一方、静脈リターンデバイス115は、頚静脈以外の静脈リターンサイト(例えば大腿静脈FVから構成された静脈リターンサイトなど)にアクセスする。静脈リターンデバイス115は、鼠径部の経皮的穿刺を介して大腿静脈FVなどの中心静脈に挿入することができる。
【0037】
図1Cに示された別の実施態様によれば、動脈アクセスデバイス110は、大腿部アプローチを介して総頚動脈にアクセスする。大腿部アプローチによれば、動脈アクセスデバイス110は、例えば鼠径部内の大腿動脈FAへの経皮的穿刺を介して、大動脈弓AAを上がって目標となる総頚動脈CCAへと、総頚動脈(CCA)にアプローチする。静脈リターンデバイス115は、頚静脈JVあるいは大腿静脈FVと通じることができる。
【0038】
図1Dはさらに別の実施態様を示しており、システムは、頚動脈から、(静脈リターンサイトではなく)外部レセプタクル130へと向かう逆流を提供する。動脈アクセスデバイス110は、シャント120を介してレセプタクル130に接続しており、シャント120は血流制御アセンブリ125と通じている。逆流した血液は、レセプタクル130に回収される。必要に応じて、血液をろ過し、次いで患者に戻すことができる。レセプタクル130の圧力は、ゼロプレッシャー(大気圧)またはそれ以下に設定してもよく、それにより脳血管からレセプタクル130への逆方向の血液の流れがもたらされる。任意で、内頚動脈からの逆流を達成あるいは高めるために、典型的には、外部頚動脈中のうちで内頚動脈との分岐部の直上に、バルーンまたは他の閉塞要素を展開することにより、外頚動脈からの血流を遮断してもよい。
図1Dは、経頚部アプローチにおいて総頚動脈(CCA)に配列(arrange)された動脈アクセスデバイス110を示しているが、経大腿部アプローチにおいて動脈アクセスデバイス110と共に外部レセプタクル130を使用することもできる、と認識されるべきである。
【0039】
図2Aの頚動脈の拡大図に関して、詳細に下に記述されるように、ステント送達システム135または他の作動カテーテルなどの介入デバイスは、動脈アクセスデバイス110を介して頚動脈へ導入することができる。ステント送達システム135は、例えば頚動脈内にステントを展開するなど、プラークPを処置するために用いることができる。
図2Aの矢RGは、逆流の方向を表わす。
【0040】
図2Bは、別の実施態様を示しており、動脈アクセスデバイス110は、頚動脈に少なくとも1つの介入デバイスを導入するだけでなく、動脈−静脈シャント(arterial-to-venous shunt)を形成する目的で用いられる。閉塞要素129を備えた別個の動脈閉塞デバイス112は、動脈アクセスデバイス110の遠位端の近位側の場所で総頚動脈CCAを閉塞するのに用いることができる。
【0041】
図2Cは、さらに別の実施態様を示しており、動脈アクセスデバイス110は、閉塞要素129を用いて動脈を閉塞するだけでなく、動脈−静脈シャントも形成する目的で用いられる。別個の動脈イントロデューサデバイスは、少なくとも1つの介入デバイスを、動脈アクセスデバイス110の遠位側の場所で頚動脈内に導入するのに用いることができる。
【0042】
<組織の説明(DESCRIPTION OF ANATOMY)>
・脳の側副血行路(Collateral Brain Circulation)
ウィリス輪CWは、脳の主たる動脈吻合の主要部であり、脳に供給する全ての主な動脈、すなわち2本の内頚動脈(ICA)と椎骨脳底動脈系(vertebral basilar system)とが接続する。血液は、ウィリス輪から、前大脳動脈、中大脳動脈および後大脳動脈によって脳まで運ばれる。動脈間のこの連絡は、脳を通る側副血行路(collateral circulation)を形成することができる。代わりのルートを通る血流を形成することができるので、脳に血液を提供する血管の1つ以上が遮断状態(blockage)の場合には、安全機構を提供する。動脈系のどこかが遮断状態にあったとしても(例えば、本願明細書に記述されるように内頚動脈(ICA)が結紮されたときでも)、脳は、ほとんどの場合、適切な血液供給を受け続けることができる。ウィリス輪を通る血流は、血液の枯渇した側(deprived side)に血液を再分配する多数の経路によって、適切な脳血流を保証する。
【0043】
ウィリス輪の側副的な潜在力(collateral potential)は、その構成血管の存在およびサイズに依存すると考えられる。個体間の相当な解剖学的変化が彼らの血管に存在しうること、そして、含まれる血管の多くが病気かもしれないことを認識すべきである。例えば、何人かの人々は、交通動脈の1つが欠如している。そのような人々に遮断状態を開始する場合、側副血行路は、虚血性イベント(ischemic event)および潜在的な脳損傷という結果になる危険性にさらされる。さらに、灌流圧力の減少に対する自己調節性の応答は、ウィリス輪内の側副動脈(例えば交通動脈)の拡大を含むかもしれない。側副血行路が正常な機能を支持するレベルに達する前に、この代償機構(compensation mechanism)に、調整時間が時々必要である。この自己調節性の応答は、15〜30秒の時間にわたって発生することがあり、ある範囲内における圧力低下および血流低下だけを代償することができる。このように、一過性脳虚血発作において、調整時期中に発生することが可能である。長期間にわたる非常に高い逆流速度は、患者の脳が十分な血流を得ていない状況を引き起こして、神経症状あるいはいくつかのケースでは一過性脳虚血発作を示すような、患者が耐えられない状態を引き起こすかもしれない。
【0044】
図4は、ウィリス輪CWの正常な脳循環および構成を示している。大動脈AOは腕頭動脈BCAを生じさせ、それは、左総頚動脈LCCAおよび左鎖骨下動脈LSCAに分岐する。大動脈AOは、さらに、右総頚動脈RCCAおよび右鎖骨下動脈RSCAを生じさせる。左右の総頚動脈CCAは、中大脳動脈MCA、後交通動脈PCoAおよび前大脳動脈ACAに分岐する内頚動脈ICAを生じさせる。前大脳動脈ACAは、前頭葉および線条体のいくつかの部分に血液を提供する。中大脳動脈MCAは、脳の各半球の外側面全体に血液をもたらす樹状の枝部(branches)を有する大動脈である。左右の後大脳動脈PCAは脳底動脈BAから発生し、脳の後部(後頭葉)に血液を提供する。
【0045】
前方では、ウィリス輪は、前大脳動脈ACAと2つの前大脳動脈(ACA)を接続する前交通動脈ACoAとよって形成される。2つの後交通動脈PCoAはウィリス輪を2つの後大脳動脈PCAに接続しており、それは脳底動脈BAから分岐して、輪の後方を完成する。
【0046】
総頚動脈CCAはまた外頚動脈ECAも生じさせ、それは、脳と眼の中身(contents of the orbit)以外の頭部のほとんどの構造物に供給するために広範囲に分岐している。外頚動脈(ECA)はまた、頚部および顔面の構造物への供給を助ける。
【0047】
<頚動脈分岐部(Carotid Artery Bifurcation)>
図5は、患者の頚部中の関連する血管の拡大図を示す。総頚動脈CCAは、分岐部Bで、内頚動脈ICAおよび外頚動脈ECAに分岐する。分岐部は、ほぼ第4頚椎のレベルに位置する。
図5は分岐部Bに生成されたプラークPを示す。
【0048】
上述のように、動脈アクセスデバイス110は経頚部アプローチを介して総頚動脈CCAにアクセスすることができる。経頚部アプローチに従って、動脈アクセスデバイス110は動脈アクセス場所Lで総頚動脈CCAに挿入され、動脈アクセス場所Lは、例えば総頚動脈CCAの壁部の外科的切開または穿刺であろう。動脈アクセス場所Lと分岐部Bとの間には、典型的には約5〜7cmの距離Dがある。動脈アクセスデバイス110が総頚動脈CCAに挿入されたときに、動脈アクセスデバイス110の遠位側の先端が分岐部Bと接触するのは望ましくなく、これがプラークPを粉砕して、塞栓粒子の発生をもたらすかもしれない。動脈アクセスデバイス110が分岐部Bに接触する可能性を最小限にするために、ある実施態様では、手技中に、動脈アクセスデバイスの遠位領域の約2〜4cmのみが総頚動脈CCAに挿入される。
【0049】
総頚動脈は、頚動脈鞘(carotid sheath)と呼ばれる筋膜層の各側で包まれる。この頚動脈鞘は、内頚静脈と迷走神経も包んでいる。頚動脈鞘の前側は、胸鎖乳突筋である。総頚動脈および内頚静脈への経皮的あるいは外科的な経頚部アクセスは、鎖骨の直上から、胸鎖乳突筋の2つの頭部の間で頚動脈鞘を通って、迷走神経を回避するように注意しながら行われる。
【0050】
この頚動脈鞘の上端で、総頚動脈は内頚動脈および外頚動脈の二叉に分かれる。内頚動脈は、頭蓋に入って網膜と脳とに血液を供給するまでは、分岐せずに上がり続ける。外頚動脈は分岐して、頭皮、顔面、眼、およびその他の表皮的な構造物に血液を供給する。いくつかの顔面神経および脳神経が、動脈の前側および後側の両方で絡み合っている。さらなる頚部の筋肉も、分岐部を覆っているだろう。頚動脈血管内膜切除術の手技中には、これらの神経および筋肉の構造体を切開し(dissect)押しやって、頚動脈の分岐部にアクセスすることができる。あるケースでは、頚動脈の分岐部が下顎のレベルに接近しており、そこでは、アクセスはより難しく(challenging)、回避すべき(spared)様々な神経からそれを分けることのできる余地が少ない。これらの場合には、不注意な神経損傷のリスクが増加しうるので、切開による動脈内膜除去術手技は好ましい選択ではないかもしれない。
【0051】
<逆流する血流システム(RETROGRADE BLOOD FLOW SYSTEM)の詳述>
先に述べたように、逆流システム100は、動脈アクセスデバイス110と、静脈リターンデバイス115と、動脈アクセスデバイス110から静脈リターンデバイス115への逆流のための通路を提供するシャント120と、を含んでいる。システムはまた、血流制御アセンブリ125を含んでおり、それはシャント120と相互に作用して、シャント120を介して逆流する血流を調節しおよび/またはモニタする。逆流システム100の構成要素の典型的な実施態様を、ここに記述する。
【0052】
<動脈アクセスデバイス>
図6Aは、動脈アクセスデバイス110の典型的な実施態様を示しており、遠位シース605、近位伸張部610、血流ライン615、アダプターまたはYコネクター620、および止血バルブ625を含む。遠位シース605は、開いた外科的切開、あるいは、例えばセルジンガー法を用いて確立された経皮的穿刺のいずれかによる総頚動脈の壁部への切開または穿刺を通して導入するのに適している。シースの長さは5〜15cmの範囲にすることができ、通常は10cm〜12cmである。内径は、典型的には7Fr(フレンチ:1Fr=0.33mm)〜10Frの範囲にあり、通常は8Frである。特に、シースが経頚部アプローチを介して、鎖骨より上側だが頚動脈の分岐部より下側に導入される場合、シース605は、よじれ(kinking)と曲がり(backling)に抵抗するためのフープ強度(hoop strength)を保持しつつ、非常に柔軟であるのが望ましい。このように、遠位シース605は、組み紐(braid)、螺旋状のリボン(helical ribbon)、螺旋状のケーブル(helical wire)などによって、周囲から強化されてもよい。代わりの実施態様では、遠位シースは、例えば鼠径部内の大腿動脈への経皮的穿刺を介して、大動脈弓AAを上がって目標となる総頚動脈CCAへと導入するのに適している。
【0053】
図6B(シース605の遠位領域630の拡大図を示している)に示すように、遠位シース605は、縮径された遠位領域630を有している階段状(stepped)あるいは他の形態を有することができる。シースの遠位領域630は、頚動脈への挿入に適したサイズにされていて、内径は典型的には2.16mm(0.085インチ)〜2.92mm(0.115インチ)の範囲であり、シースの残りの近位領域は、より大きい外径と内腔径(luminal diameters)にされていて、内径は典型的には2.794mm(0.110インチ)〜3.43mm(0.135インチ)の範囲である。近位領域のより大きな内腔径は、シースの全体的な血流抵抗を最小にする。ある実施態様では、縮径された遠位部分630の長さはおよそ2cm〜4cmである。縮径された遠位部分630の比較的短い長さによって、シース605の遠位端が分岐部Bと接触するリスクを低減しながら、この部分が経頚部アプローチを介して総頚動脈CCAに位置することを可能にする。さらに、縮径された部分630はまた、血流抵抗のレベルにわずかな影響しか及ぼさずに、動脈にシース605を導入するための動脈切開(arteriotomy)のサイズを縮小することを可能にする。
【0054】
図6Aを再び参照すると、近位伸張部610は、シース605の内腔に隣接した(contiguous with)内腔を有している。それらの管腔は、血流ライン615の管腔もシースに接続するYコネクター620によって連結することができる。アセンブリシステムでは、血流ライン615は、逆流シャント120(
図1)の第1の脚部(leg)に接続されて、それを形成する。近位伸張部610は、止血バルブ625をYコネクター620から間隔を置くのに十分な長さを有することができ、Yコネクター620は経皮的または外科的な挿入サイトに隣接している。止血バルブ625を経皮的挿入サイトから遠ざけて間隔を置くことによって、蛍光透視法(fluoroscopy)が行なわれているときに、医師は、ステント送達システムあるいは他の作動カテーテルを、蛍光透視法の視野外にとどまらせながら、近位伸張部610およびシース605に導入することができる。
【0055】
洗い流しライン(flush line)635は、止血バルブ625側に接続することができ、近位端または遠位端に栓640を有することができる。洗い流しライン635は、手術中に、食塩水、造影剤(contrast fluid)などの導入を可能にする。洗い流しライン635はまた、手術中に圧力をモニタすることを可能にするだろう。先細りの遠位端650を有する拡張器(dilator)645を提供して、総頚動脈への遠位シース605の導入を容易にすることができる。
図7Aに最もよく見られるように、先細りの遠位端650がシース605の遠位端を通って延在するように、拡張器645は止血バルブ625を通って導入することができる。拡張器645は、ガイドワイヤーを収容するために、中央の管腔を有することができる。典型的には、ガイドワイヤーが最初に血管に設置され、そして拡張器/シースの組合せがガイドワイヤーの上を移動して、血管に導入される。
【0056】
やはり
図7Aで見られるように、任意で、遠位シース605の外部に同軸で受容されるチューブ705を備えてもよい。チューブ705は、アダプター620を係合させるフレア状(flared:裾広がり)の近位端710と、遠位端715と、を有する。
図7Bに示すように、任意で、遠位端715を斜めにしてもよい。チューブ705は、少なくとも2つの目的のために役立つだろう。第1に、
図7Aに見られるように、チューブ705の長さによって、シース605の導入は、シース605の露出した遠位部分に制限される。第2に、チューブ705は頚動脈壁に配置される予備展開穿刺閉止デバイス(pre-deployed puncture closure device)と係合することができ、もし存在するなら、閉止デバイスを取り除かずに、シース605を引き抜くことを可能にする。
【0057】
遠位シース605は、およそ総頚動脈上の前後方向のアプローチ(anterior-posterior approach)から、およそ総頚動脈内の管腔の軸方向へと、曲線の変化を確立するように構成することができる。経皮的アクセスが総頚動脈壁を通って提供される場合、方向の変化は特に有用である。切開による外科的アクセスは、総頚動脈の管腔内の直線シースと角度をなすいくらかの距離を許容する一方、経皮的アクセスは、一般に管腔のアクセスに対して垂直または直角の方向であり、そのような場合、斜めに屈曲(flex)あるいは回転(turn)できるシースは、有益な利用法を見いだすだろう。
【0058】
シース605は、様々な方法で形成できる。例えば、シース605は、先端から所定の距離(典型的には2〜3cm)に、湾曲部または角部を持つようにプレシェイプする(pre-shaped:あらかじめ形づくる)ことができる。プレシェイプされた湾曲部または角部は、典型的には20°〜90°の範囲、好ましくは30°〜70°の範囲の曲げを提供する。導入初期には、シース605は、その管腔に設置される拡張器645などの閉鎖器具あるいは他の直線状または成形された器具によって、真っ直ぐにされるだろう。シース605が、経皮的または他の動脈壁貫通を通して少なくとも部分的に導入された後、閉鎖物(obturator)を引き抜いて、シース605が動脈管腔内でそのプレシェイプの形態を再び取り戻すことを可能にする。
【0059】
他のシース構造は、シースを設置できるようなわたみ機構(deflection mechanism)を持つことを含んでおり、カテーテルは、その位置で所望の展開角度にたわむことができる。さらに別の構造では、カテーテルは、総頚動脈の管腔内に設置したときに、硬くない構造(non-rigid configuration)を有する。管腔内に設置した後、シースを望ましい構造に形作るまたは硬直させるために、プルワイヤ(pull wire)又は他の硬直機構(stiffening mechanism)を展開することができる。そのような機構の1つの具体例は、医学および特許の文献によく記載されている「形状ロック」機構("shape-lock" mechanisms)として一般に知られている。
【0060】
別のシース構造は、直線で柔軟なシースに挿入される湾曲した拡張器を含み、拡張器とシースは、挿入中に湾曲する。シースは、拡張器を除去した後に、組織に適合するように十分に柔軟である。
【0061】
ある実施態様では、シースは、固有の(built-in) 穿刺能力と、ガイドワイヤーの先端と類似した無傷性の先端(atraumatic tip)とを有している。これにより、微小穿刺技術による動脈アクセスで現在用いられている針およびワイヤ交換の必要をなくし、よって、時間を節約し、失血を低減し、そして高い外科的スキルを必要としないようにできる。
【0062】
図8Aは、動脈アクセスデバイス110の別の実施態様を示す。この実施態様は、遠位シース605が、例えば総頚動脈を通る血流を閉塞するための閉塞要素129を含んでいる以外は、
図6Aに示された実施態様と実質的に同様である。閉塞要素129がバルーンなどの膨張式の構造体である場合、シース605は、閉塞要素129と通じている膨張管腔(inflation lumen)を含むことができる。閉塞要素129は、膨張式のバルーンにすることができるが、膨張式のカフ(cuff)や、総頚動脈の内壁に係合してそこを通過する血流を遮断するための外向きに裾が広がった円錐状または他の円周要素や、膜で覆われた組み紐や、軸方向に圧縮されたときに半径方向に拡大する穴あきチューブ(slotted tube)や、あるいは機械的手段等によって展開できる同様の構造体にすることもできる。バルーン閉塞の場合、バルーンは、適合した(compliant)、不適合の(non-compliant)、弾性の(elastomeric)、強化された(reinforced)、または様々な他の特徴を持っている。ある実施態様では、バルーンは、膨張する前はシースの遠位端の外側を覆って密着して受容されている弾性バルーンである。膨張したときは、弾性バルーンは、総頚動脈の内部壁を拡張し、内部壁に適合することができる。ある実施態様では、弾性バルーンは、非展開の形態に比べて少なくとも2倍の直径に拡張することができ、しばしば、非展開の形態に比べて少なくとも3倍の直径に拡張することができ、より好ましくは、非展開の形態に比べて少なくとも4倍の直径、あるいはそれ以上に拡張することができる。
【0063】
図8Bに示すように、閉塞要素129を備えた遠位シース605は、縮径された遠位領域630を有している階段状(stepped)あるいは他の形態を有することができる。遠位領域630は、頚動脈への挿入に適したサイズにされており、シース605の残りの近位領域はより大きい外径と内腔径にされていて、内径は典型的には2.794mm(0.110インチ)〜3.43mm(0.135インチ)の範囲である。近位領域のより大きな内腔径は、シースの全体的な血流抵抗を最小にする。ある実施態様では、縮径された遠位部分630の長さはおよそ2cm〜4cmである。縮径された遠位部分630の比較的短い長さによって、シース605の遠位端が分岐部Bと接触するリスクを低減しながら、この部分が経頚部アプローチを介して総頚動脈CCAに位置することを可能にする。
【0064】
図2Bは代わりの実施態様を示しており、閉塞要素129は、動脈アクセスデバイス110の遠位シース605と別個の第2のシース112上で頚動脈に導入することができる。第2あるいは「近位」のシース112は、脳血管から離れた近位または「下側」方向で総頚動脈に挿入するのに適しているだろう。概略的に上述したように、第2の近位シースは、膨張式のバルーン129あるいは他の閉塞要素を含むことができる。その後、動脈アクセスデバイス110の遠位シース605は、第2の近位シースより遠位側で、通常は脳血管に向けて遠位方向に方向付けられて、総頚動脈に設置することができる。別個の閉塞シースとアクセスシースとを用いることによって、アクセスシースの導入に必要とされる動脈切開のサイズを縮小することができる。
【0065】
図2Cは、2つの動脈シースシステムのさらに別の実施態様を示しており、介入デバイスは、動脈デバイス110の遠位シース605と分離した導入シース114によって導入される。第2あるいは「遠位」のシース114は、動脈アクセスデバイス110より遠位側で、総頚動脈に挿入するのに適しているだろう。先の実施態様と同様に、2つの別個のアクセスシースを使用することによって、各々の動脈切開のサイズを縮小することができる。
【0066】
<静脈リターンデバイス>
次に
図9を参照すると、静脈リターンデバイス115は、遠位シース910および血流ライン915を含むことができ、システムの使用中は、シャント120に接続されてシャント120の脚部を形成する。遠位シース910は、切開または穿刺を通して静脈リターン場所(頚静脈または大腿静脈など)に導入するのに適している。遠位シース910および血流ライン915は永久に取り付けることができ、あるいは、
図9に示すように、従来のluer嵌合を用いて取り付けることができる。任意で、
図10に示すように、シース910はYコネクター1005によって血流ライン915に結合することができる。Yコネクター1005は、拡張器1015の挿入を可能にする止血バルブ1010を含むことができ、内頚静脈あるいは他の静脈への静脈リターンデバイスの導入を容易にする。動脈アクセス拡張器645と同様に、静脈拡張器1015はガイドワイヤー用の中央の管腔を含んでおり、それにより、静脈シースと拡張器との組合せをガイドワイヤー上に設置できる。任意で、静脈シース910は、近位端または遠位端に栓1025を備えた洗い流しライン1020を含むことができる。
【0067】
システム全体の血流抵抗を低減するために、動脈アクセス血流ライン615(
図6A)および静脈リターン血流ライン915、並びにYコネクター620(
図6A)、1005の各々は、比較的大きい血流の管腔内部径で、典型的には2.54mm(0.100インチ)〜5.08mm(0.200インチ)の範囲の内部径と、比較的短い長さで、典型的には10cm〜20cmの範囲の長さとを持つことができる。システム血流抵抗は低いのが望ましく、それは、塞栓のリスクが最大になったときに、手技の一時期の間に血流を最大にすることを可能にできるからである。以下に詳細に説明するように、低いシステム血流抵抗はまた、システム中の血流を制御するための可変血流抵抗の使用を可能にする。静脈リターンシース910の寸法は、上記した動脈のアクセスシース605の寸法と、およそ同じである。静脈リターンシース内に、止血バルブ1010用の伸張部は必要ではない。
【0068】
<逆流シャント(Retrograde Shunt)>
シャント120は、動脈アクセスカテーテル110と静脈リターンカテーテル115との間の流体の連絡を提供してそれらの間で逆流する血流の経路を提供する単一チューブまたは複数の接続チューブから形成することができる。
図1Aに示すように、シャント120は、その一端で、(コネクター127aを介して)動脈アクセスデバイス110の血流ライン615に接続し、他端で、(コネクター127bを介して)静脈リターンカテーテル115の血流ライン915に接続する。
【0069】
ある実施態様では、シャント120は、血流制御アセンブリ125と通じる少なくとも1本のチューブで形成することができる。シャント120は、血流用の流体経路を提供するどのような構造体でもよい。シャント120は、単一の管腔を持つことができ、あるいは複数の管腔を持つことができる。シャント120は、血流制御アセンブリ125、動脈アクセスデバイス110および/または静脈リターンデバイス115に、取り外し可能に取り付けられてもよい。使用に先立って、ユーザーは、動脈アクセス場所および静脈リターン場所に使用するのに最適な長さのシャント120を選択することができる。ある実施態様では、シャント120は、シャント120の長さを変更するのに利用できる1本以上の延長チューブを含んでいてもよい。延長チューブは、所望の長さを達成するために、シャント120にモジュールで取り付けることができる。シャント120のモジュール態様は、ユーザーが、必要に応じて、静脈リターンサイトに依存してシャント120を延長するのを可能にする。例えば、何人かの患者では、内頚静脈IJVは小さく、および/またはねじ曲がっている。他の組織構造体に近いので、この位置での合併症のリスクは他の場所よりも高いかもしれない。さらに、頚部の血腫は、気道閉塞および/または脳血管の合併症を引き起こすかもしれない。従って、そのような患者にとって、内頚静脈IJV以外の場所、例えば大腿静脈などに静脈リターンサイトを置くのが望ましいだろう。大腿静脈リターンサイトは、重大な合併症の低いリスクと共に経皮的に達成されてもよく、そして、内頚静脈IJVが利用可能でない場合には、中心静脈に代わりの静脈アクセスを提供する。更に、大腿部静脈リターンは、装置が導入され造影剤射出ポートが配置される介入の「作業領域(working area)」に近接してシャント制御が配置されるように、逆流シャントのレイアウトを変更する。
【0070】
ある実施態様では、シャント120は、内径が4.76mm(3/16インチ)で、長さが40〜70cmである。上述のように、シャントの長さは調節することができる。
【0071】
<血流制御アセンブリ---逆流の調節とモニタリング>
血流制御アセンブリ125は、シャント120と相互に作用して、総頚動脈から、例えば内頚静脈などの静脈リターンサイトへの、あるいは外部レセプタクル130への逆流速度を調節および/またはモニタする。これに関して、ユーザーは、血流制御アセンブリ125により、現存のシステムより高い最大血流速度を達成することができ、また、逆流する血流速度を選択的に調節、設定、あるいは調整することができる。以下に全て記載するように、様々な機構を利用して、逆流速度を調節することができる。以下に記載するように、ユーザーは、血流制御アセンブリ125により、様々な処置法に適したやり方で逆流する血流を構成することができる。
【0072】
一般的に、連続的な逆流速度を制御する能力は、医師が個々の患者および手術のステージのためにプロトコルを調節することを可能にする。逆流する血流速度は、典型的には、低速〜高速の範囲にわたって制御されるだろう。高速は、低速に比べて少なくとも2倍速く、典型的には低速に比べて少なくとも3倍速く、また多くの場合低速に比べて少なくとも5倍あるいはそれ以上速い。ある実施態様では、高速は、低速より少なくとも3倍速く、また別の実施態様では、高速は低速より少なくとも6倍速い。逆流する血流速度を高くして、頚動脈からの塞栓の抽出を最大にするのが一般的に望ましいが、患者が逆流する血流を許容する能力は変化するだろう。このように、逆流する血流速度を容易に調整できるシステムおよびプロトコルを有することにより、血流速度がその患者にとって耐えられるレベルを越えているときは、治療する医師が決定して、それに応じて逆流速度を設定することができる。連続的な高速の逆流速度を許容できない患者には、医師は、塞栓のデブリスのリスクが最も高く、手技で危険な短い間だけ、高速の血流を作動させることを選択できる。短い間隔、例えば15秒〜1分であれば、患者の耐性限界は通常は要因にならない。
【0073】
特定の実施態様では、連続的な逆流する血流速度は、10ml/分〜200ml/分の範囲のベースラインの血流速度に制御でき、典型的には20ml/分〜100ml/分の範囲に制御できる。これらの血流速度は、大多数の患者が耐えられるだろう。手術のほとんどの間は、血流速度をベースラインの血流速度に維持するが、塞栓放出のリスクが増加したときは、そのような塞栓を捕らえる能力を高めるために、血流速度を、短時間だけベースラインを越えて増加させることができる。例えば、ステントカテーテルが導入されるとき、ステントを展開するとき、ステントの拡張前および拡張後、および総頚動脈閉塞部の除去時などに、逆流する血流速度を、ベースラインを越えて増加することができる。
【0074】
血流速度コントロールシステムは、頚動脈分岐部の領域内の頚動脈を「洗い流す」ために、順行性の血流を再建する前に、比較的低い血流速度と比較的高い血流速度との間で繰り返すことができる。そのような繰り返しは、低い血流速度に比べておよそ2〜6倍速い高い血流速度、典型的には約3倍速い血流速度を確立することができる。繰り返しの周期は、典型的には0.5秒〜10秒の範囲の長さ、通常は2秒〜5秒の長さを有することができ、繰り返しの合計継続時間は、5秒〜60秒の範囲、通常は10秒〜30秒にすることができる。
【0075】
図11は、血流制御アセンブリ125の配置図を含むシステム100の例を示しており、血流制御アセンブリ125は、逆流する血流が少なくとも血流制御アセンブリ125の一部を通過するか、あるいは一部と通じるように、シャント120に沿って配置されている。血流制御アセンブリ125は、逆流の調節および/またはモニタのために、様々な制御可能な機構を含むことができる。その機構は、1つ以上のポンプ1110、バルブ1115、シリンジ1120および/または可変抵抗成分1125を含む逆流制御用の様々な手段を含むことができる。血流制御アセンブリ125は、ユーザーによって手動で制御され、および/またはコントローラ1130を介して自動で制御されて、シャント120を通る血流を変更することができる。例えば、血流抵抗を変更することにより、シャント120を通る逆流する血流速度を制御することができる。コントローラ1130(以下に詳細に記載される)は、血流制御アセンブリ125に統合することができ、あるいは、血流制御アセンブリ125の構成要素と通じている別個の構成要素とすることができる。
【0076】
さらに、血流制御アセンブリ125は、逆流の1つ以上の状況を検知するために、1つ以上の血流センサ(flow sensors)1135および/または解剖学的データセンサ(anatomical data sensors)1140(以下に詳細に記載される)を含むことができる。フィルター1145は、血液が静脈リターンサイトに戻る前に塞栓を除去するために、シャント120に沿って配置することができる。フィルター1145がコントローラ1130の上流に配置すると、フィルター1145は、塞栓がコントローラ1145に入って可変血流抵抗成分1125を詰めるおそれを防ぐことができる。血流制御アセンブリ125の様々な構成要素(ポンプ1110、バルブ1115、シリンジ1120、可変抵抗成分1125、センサ1135/1140およびフィルター1145を含む)は、シャント120に沿って様々な場所に配置でき、そして互いに対して上流あるいは下流の様々な位置に配置できると認識されるべきである。血流制御アセンブリ125の構成要素は、
図11に示される場所に制限されない。さらに、血流制御アセンブリ125は、必ずしも全ての構成要素を含んでいるとは限らず、どちらかといえば、構成要素の様々なサブコンビネーション(sub-combinations)含むことができる。例えば、シリンジは、血流を調節する目的で、血流制御アセンブリ125内に任意で使用することができ、あるいは、シャント120を介して順行性の方向で動脈に放射線造影剤などの流体を導入するなどの血流調節以外の目的で、アセンブリの外部で使用することもできる。
【0077】
可変抵抗成分1125およびポンプ1110の両方は、シャント120に連結して、逆流する血流速度を制御することができる。ポンプ1110がシャント120を通って容積式(positive displacement)に血液を提供する間に、可変抵抗成分1125は血流抵抗を制御する。このように、外頚動脈(ECA)と内頚動脈(ICA)の灌流幹圧力(perfusion stump pressures)および静脈の背圧(back pressure)に依存して逆流を駆動するよも、ポンプを稼働して逆流を駆動することができる。ポンプ1110は、蠕動チューブポンプ、あるいは容積式ポンプを含むいずれかのタイプのポンプにすることができる。ポンプ1110は、(手動またはコントローラ1130を介して自動で)稼働または停止して、シャント120を通る血液移動を選択的に達成することができ、そしてシャント120を通して血流速度を制御することができる。シャント120を通る血液移動は、吸引シリンジ1120を用いることを含む他の方法によって達成することもでき、あるいは、バキュティナ(vacutainer)、バキュロック(vaculock)シリンジあるいは壁面吸い込みなどの吸気源を用いてもよい。ポンプ1110はコントローラ1130と通じることができる。
【0078】
1つ以上の血流コントロールバルブ1115を、シャントの経路に沿って配置することができる。バルブは、手動で動かすことができ、あるいは(コントローラ1130を介して)自動で動かすことができる。血流コントロールバルブ1115は、例えば、シャント120内の順行性の方向の血流を防ぐための一方向弁、逆止弁、あるいは、例えば高圧での造影剤注入(それらは順行性の方向で動脈血管に入るように意図される)の間にシャント120を閉じるであろう高圧弁にすることができる。
【0079】
コントローラ1130は、血流制御アセンブリ125を含むシステム100の構成要素と通じており、システム100の構成要素(例えば、シャント120、動脈アクセスデバイス110、静脈リターンデバイス115および血流制御アセンブリ125を含む)を通して、手動および/または自動で、逆流の調整および/またはモニタを可能にしている。例えば、ユーザーは、コントローラ1130上の1つ以上のアクチュエーターを動かして、血流制御アセンブリ125の構成要素を手動で制御することができる。手動制御は、コントローラ1130に直接置かれたスイッチ、ダイヤルまたは同様の構成要素か、あるいは、例えばフットペダルや同様のデバイスなどのコントローラ1130から離れて置かれた構成要素を含んでいるかもしれない。コントローラ1130はまた、ユーザーに入力を要求せずに、システム100の構成要素を自動的に制御することもできる。ある実施態様では、ユーザーは、コントローラ1130にソフトウェアをプログラムして、そのような自動制御を可能にすることができる。コントローラ1130は、血流制御アセンブリ125の機械的部分の動作を制御できる。コントローラ1130は、センサで生成された信号に応じてコントローラ1130が血流制御アセンブリ125の動作を制御できるように、センサ1135/1140で生成されたそのような信号を解釈する電気回路とプログラミングを含むことができる。
【0080】
図11のコントローラ1130の描写は単なる例示である。コントローラ1130は、外観および構造を変更できると認識されるべきである。
図11では、コントローラ1130は単一のハウジングに統合されているように図示されている。これにより、ユーザーは、1つの場所から、血流制御アセンブリ125を制御することが可能である。コントローラ1130の構成要素は、別個のハウジングに分散させることができると認識されるべきである。更に、
図11は、コントローラ1130と血流制御アセンブリ125とを別個のハウジングとして図示している。コントローラ1130と血流制御レギュレータ125は、単一のハウジングに統合することができ、あるいは、複数のハウジングあるいは複数の構成要素に分割することもできると認識されるべきである。
【0081】
<血流状態インジケータ(Flow State Indicator(s))>
コントローラ1130は、逆流の状態に関して、ユーザーに視覚的および/または音声的な信号を提供する1つ以上のインジケータ(表示部)を含むことができる。音声表示は、ユーザーに対して血流コントローラ1130の視覚的チェックを要求せずに、血流状態をユーザーに思い出させるのに有利である。インジケータは、スピーカー1150および/またはライト1155、あるいはユーザーに逆流の状態を伝えるための他の手段を含むことができる。コントローラ1130は、システムの1つ以上のセンサと通じて、インジケータの作動を制御することができる。あるいは、インジケータの作動は、血流制御アクチュエーター1165の1つを動かすユーザーに直接結び付けることができる。インジケータは、スピーカーまたはライトでなくてもよい。インジケータは、視覚的に逆流の状態を示す単なるボタンまたはスイッチにすることができる。例えば、ある状態(例えば、押されたまたは下がった状態)のボタンは、逆流が高い状態にあることを視覚的に表示していてもよい。あるいは、特定のラベルを付けた血流状態を指しているスイッチまたはダイヤルが、逆流がラベルを付けた状態にあることを、視覚的に表示していてもよい。
【0082】
インジケータは、逆流の1つ以上の状態を示す信号を提供することができる。ある実施態様では、インジケータは、たった2つの個別の状態---「高い」血流速度の状態と「低い」血流速度の状態---を同定する。別の実施態様では、インジケータは2つより多い血流速度を同定し、「高い」血流速度と、「中程度の」血流速度と、「低い」速度とを含んでいる。インジケータは、逆流の個別の状態のどんな量も同定するように構成することができ、または、逆流の状態に対応した目盛り付きの信号(graduated signal)を同定することができる。その際には、インジケータは、ml/分または他の単位などの逆流速度の値を示すデジタルメーターまたはアナログメーター1160にすることができる。
【0083】
ある実施態様では、インジケータは、逆流速度が「高い」血流速度の状態なのか、「低い」血流速度なのかをユーザーに示すように構成される。例えば、インジケータは、血流速度が高いときは、第1の様式(first manner)(例えば、明るさのレベル)で明るくなりおよび/または第1の音声信号を発し、その後に、血流速度が低いときは、明るさの第2の様式に変化しおよび/または第2の音声信号を発する。あるいは、インジケータは、血流速度が高いときだけ、または血流速度が低いときだけ、明るくなるおよび/または音声信号を発してもよい。何人かの患者は、高い血流速度に耐えられないこと、あるいは長期間を越える高い血流速度に耐えられないことを考慮すると、インジケータは、血流速度が高い状態にあるときに、ユーザーに通知を提供するのが望ましいだろう。これはフェイルセーフ(二重安全)の特徴として役立つだろう。
【0084】
別の実施態様では、血流速度変化の状態が変わったとき、たとえば、血流速度が高い状態から低い状態に変化および/またはその逆に変化したときに、インジケータは信号(音声的および/または視覚的)を提供する。別の実施態様では、逆流が存在しないとき、例えばシャント120が遮断されたとき、またはシャント120の栓のうちの1つが閉じられたときに、インジケータは信号を提供する。
【0085】
<血流速度アクチュエーター(Flow Rate Actuators)>
コントローラ1130は、ユーザーが押し(press)、切り替え(switch)、操作し(manipulate)、あるいは動かす(actuate)ことのできる1つ以上のアクチュエーターを含んで、逆流する血流速度を調節および/または血流速度をモニタすることができる。例えば、コントローラ1130は、コントローラが逆流の態様を選択的に変更するためにユーザーが動かすことのできる血流制御アクチュエーター1165(例えば、1つ以上のボタン、ノブ、ダイヤル、スイッチなど)を含むことができる。例えば、図示された実施態様では、血流制御アクチュエーター1165は、システム100に特定の逆流状態を達成させるコントローラ1130に各々が対応している様々な別個の位置に回転させることのできるノブである。
それらの状態は、例えば、(a)オフ(OFF)状態、(b)低流(LO-FLOW)状態、(c)高流(HI-FLOW)状態、および(d)吸引(ASPIRATE)状態を含んでいる。前述の状態は単なる例示であり、異なる状態や、状態の組合せも利用できると認識されるべきである。コントローラ1130は、センサ、バルブ、可変抵抗成分および/またはポンプを含むシステムの1つ以上の構成要素と相互に作用することにより、様々な逆流状態を達成する。コントローラ1130はまた、ユーザーがコントローラ1130を積極的に動かす必要のないように、逆流速度を調節しおよび/または血流速度をモニタする電気回路およびソフトウェアを含むこともできると認識されるべきである。
【0086】
オフ状態は、シャント120を通る逆流する血流が存在しない状態に対応する。ユーザーが血流制御アクチュエーター1165をオフに設定すると、コントローラ1130は、例えばシャント120のバルブを締めることあるいは栓を閉じることにより、逆流を停止する。低流(LO-FLOW)状態および高流(HI-FLOW)状態は、低い逆流速度と高い逆流速度とにそれぞれ対応する。ユーザーが血流制御アクチュエーター1165を低流(LO-FLOW)あるいは高流(HI-FLOW)に設定すると、コントローラ1130は、ポンプ1110、バルブ1115および/または可変抵抗成分1125を含む血流制御レギュレータ125の構成要素と相互に作用して、それに応じて血流速度を増加または減少させる。最後に、積極的な逆流が望まれるならば、吸引(ASPIRATE)状態は、回路を吸気源(例えば、バキュティナまたは吸引装置)に開くことに対応する。
【0087】
システムは、血流を、能動状態、受動状態、吸引状態およびオフ状態を含む様々な状態間で変更するのに利用される。能動状態は、逆流する血流を積極的に駆動する手段を用いるシステムに対応する。そのような能動手段は、例えばポンプ、シリンジ、真空源などを含むことができる。受動状態は、外頚動脈(ECA)と内頚動脈(ICA)の灌流幹圧力と、恐らく静脈圧とによって、逆流する血流が駆動されているときに対応する。吸引状態は、吸気源(例えばバキュティナまたは吸引装置)を用いて逆流する血流を駆動するシステムに対応する。オフ状態は、栓またはバルブを閉じた結果として、逆流する血流がないシステムに対応する。低い血流速度および高い血流速度は、受動的または能動的な血流状態のいずれかにすることができる。ある実施態様では、低い血流速度および/または高い血流速度のいずれかの特定の値(例えばml/分の単位で)は、ユーザーが実際に値を設定または入力しないように、コントローラにあらかじめ決めることおよび/またはあらかじめプログラムすることができる。もっと正確に言えば、ユーザーは単に「高い血流」および/または「低い血流」を(例えば、コントローラ1130のボタンなどのアクチュエーターを押すことによって)選択し、そしてコントローラ1130は、血流制御アセンブリ125の構成要素の1つ以上と相互に作用して、血流速度を所定の高い血流速度の値あるいは低い血流速度の値にする。別の実施態様では、ユーザーは、低い血流速度および/または高い血流速度の値を、例えばコントローラに設定または入力する。別の実施態様では、低い血流速度および/または高い血流速度は実際には設定されない。もっと正確に言えば、外部データ(例えば、解剖学的データセンサ1140からのデータ)を、血流速度に影響をおよぼす基準として用いる。
【0088】
血流制御アクチュエーター1165は、複数のアクチュエーター---例えば、低流(LO-FLOW)状態から高流(HI-FLOW)状態に状態を切り替えるための(例えばボタンまたはスイッチなどの)1つのアクチュエーターと、例えば、造影剤が順行性で頚動脈に向けられている場合の造影剤の注入の間に、血流ループを閉じてオフ状態にするための別のアクチュエーター---にすることができる。ある実施態様では、血流制御アクチュエーター1165は複数のアクチュエーターを含むことができる。例えば、1つのアクチュエーターを操作して血流速度を低速から高速に切り替えることができ、別のアクチュエーターを操作して一時的に血流を止めることができ、そして第3のアクチュエーター(例えば栓など)を操作してシリンジを用いて吸引することができる。別の例では、1つのアクチュエーターを操作して低流(LO-FLOW)状態に切り替え、そして別のアクチュエーターを操作して高流(HI-FLOW)状態に切り替える。あるいは、血流制御アクチュエーター1165は、低流(LO-FLOW)状態から高流(HI-FLOW)状態に切り替えるための複数のアクチュエーターと、高い血流速度および低い血流速度のなかで、血流速度を微調整するための追加のアクチュエーターとを含むことができる。低流(LO-FLOW)状態と高流(HI-FLOW)状態との間で切り替える際に、これらの追加のアクチュエーターを用いて、血流速度をそれらの状態のなかで微調整することができる。このように、様々な血流速度は、それぞれの状態(つまり、高い血流状態と低い血流状態)なかで、ダイヤルを回されて(dialed in)微調整できる、と理解されるべきである。多種多様のアクチュエーターを用いて、血流状態に対するコントロールを達成することができる。
【0089】
コントローラ1130、またはコントローラ1130の個々の構成要素は、患者に対しておよび/またはシステム100の他の構成要素に対して、様々な位置に置くことができる。例えば、ツールの導入中における血流制御アクチュエーター1165へのアクセスを容易にするために、介入ツールを患者へ導入する場合、血流制御アクチュエーター1165は止血バルブの近くに置くことができる。
図1A〜Cに示すように、例えば、経大腿部アプローチあるいは経頚部アプローチを用いるかどうかに基づいて、置く場所は変更してもよい。コントローラ1130は、システム100の残りの部分に対する無線接続および/または調節可能な長さの有線接続を有して、システム100のリモートコントロールを可能にすることができる。コントローラ1130は、血流制御レギュレータ125との無線接続および/または調節可能な長さの有線接続を有して、血流制御レギュレータ125のリモートコントロールを可能にすることができる。コントローラ1130はまた、血流制御レギュレータ125に統合することもできる。コントローラ1130が血流制御アセンブリ125の構成要素に機械的に接続される場合、機械的動作能力の範囲(tether)で、コントローラ1130を1つ以上の構成要素に接続することができる。ある実施態様では、コントローラ1130を、システム100から十分な距離をおいて位置させることにより、蛍光透視法が使用されているときに、コントローラ1130を放射線場の外側に位置させることができる。
【0090】
コントローラ1130およびその構成要素は、様々な様態で、システムの他の構成要素(例えば、ポンプ、センサ、シャントなど)と相互に作用することができる。例えば、様々な機械的接続部を用いて、コントローラ1130とシステムの構成要素との間の連絡を可能にすることができる。代わりに、コントローラ1130は、システムの構成要素と、電子的あるいは磁気的に連絡することができる。電気機械的な接続もまた、用いることができる。コントローラ1130は、コントローラがシステムの構成要素を制御する機能を実装することを可能にする制御ソフトウェアを装備することができる。コントローラ自体は、機械的、電気的、または電子機械的なデバイスにすることができる。コントローラは、機械的に、空気圧で、または油圧で動かすことができ、あるいは電気機械的に動かすことができる(例えば、血流制御状態のソレノイド動作の場合など)。コントローラ1130は、データ記憶能力だけでなく、コンピューター、コンピュータープロセッサおよびメモリを含むことができる。
【0091】
<センサ>
上述のように、血流制御アセンブリ125は、1つ以上のセンサを含むか、あるいは1つ以上のセンサと相互に作用することができ、それは、システム100と連絡しており、および/または患者の組織と連絡している。センサの各々は、物理的な刺激(例えば、熱、光、音、圧力、磁気、運動などを含む)に応答するのに適していてもよく、また、計測または表示用に、あるいはコントローラ1130の操作用に得られた信号を伝えるのに適してもよい。ある実施態様では、血流センサ1135はシャント120と相互に作用して、シャント120を通る血流の状況(例えば、血流の流速または容積流量など)を検知する。血流センサ1135は、血流の容積流量または流速の値を直接表示するディスプレイに、直接連結することができる。あるいは、血流センサ1135は、表示用の容積流量あるいは流速のデータをコントローラ1130に入力することができる。
【0092】
血流センサ1135のタイプは変更することができる。血流センサ1135は、例えば、パドルホイール(paddle wheel)、フラッパー弁(flapper valve)、回転ボール(rolling ball)、あるいはシャント120を通る血流に応答する機械的な構成要素などの機械デバイスであってもよい。シャント120を通る血流に応じた機械デバイスの動きは、流量の視覚表示として役立つことができ、液体流速の視覚表示としてスケールに目盛をつける(calibrated to)こともできる。機械デバイスは、電気部品に連結することができる。例えば、パドルホイールは、流量がパドルホイールを回転させるように、シャント120内に位置することができ、流量の速度が大きいほどパドルホイールの回転速度は大きくなる。パドルホイールは、ホール効果センサに磁気的に連結して、回転速度を検出することができ、それはシャント120を通る流量を示している。
【0093】
ある実施態様では、血流センサ1135は、超音波または電磁気の流量計であり、それは、血液と接触することなく、シャント120の壁を通して血流測定を可能にする。超音波または電磁気の流量計は、それがシャント120の内腔と接触する必要がないように構成することができる。実施態様では、血流センサ1135は、シャント120を通る流量を測定するドップラー流量計(例えば遷音速流量計)を、少なくとも部分的に含んでいる。超音波流量計およびトランスデューサーを含め、多種多様のセンサタイプを用いることができると認識されるべきである。さらに、システムは複数のセンサを含むことができる。
【0094】
システム100は、シャント120内に位置する血流センサ1135を用いること、あるいは静脈リターンデバイス115または動脈アクセスデバイス110と相互に作用するセンサを用いることに制限されない。例えば、解剖学的データセンサ1140は、患者の組織(例えば、患者の神経学的組織など)と通じるか、あるいは相互に作用することができる。このように、解剖学的データセンサ1140は、頚動脈からの逆流速度に対して直接的あるいは間接的に関連している測定可能な組織の状況を検知することができる。例えば、解剖学的データセンサ1140は、脳内の血流条件(例えば中大脳動脈の血流速度)を測定し、ディスプレイおよび/または所定の基準に基づいて逆流速度を調整するためのコントローラ1130に、そのような条件を伝えることができる。ある実施態様では、解剖学的データセンサ1140は経頭蓋ドップラー超音波診断(TCD)を含み、それは、反射された音波を用いて、脳を通って流れる血液を評価する超音波検査である。経頭蓋ドップラー超音波診断(TCD)の使用はTCD信号をもたらし、所望のTCDプロファイルを達成あるいは維持するために、逆流速度を制御するためのコントローラ1130に伝えることができる。解剖学的データセンサ1140は、生理学的測定値(逆流速度、中大脳動脈を通る血流、塞栓粒子のTCD信号、あるいは他の神経学的モニタリング(neuromonitoring)信号を含む)に基づくことができる。
【0095】
ある実施態様では、システム100は閉ループ制御システムを含む。閉ループ制御システムでは、1つ以上のセンサ(血流センサ1135または解剖学的データセンサ1140など)が、システム100あるいは組織の所定の状況(例えば、逆流速度および/または神経学的モニタリング信号など)を検知またはモニタする。センサはコントローラ1130に関連データを入力し、所望の逆流速度を維持する必要に応じて、システムの状況を連続的に調節する。コントローラ1130が、そのデータを翻訳して血流制御レギュレータ125の構成要素を動かして、逆流速度への乱れをダイナミックに補うことができるように、センサは、システム100がコントローラ1130をどのように操作しているかについてフィードバックを伝える。例えば、コントローラ1130はソフトウェアを含んでもよく、それは、コントローラ1130に血流制御アセンブリ125の構成要素へ信号を送らせて、患者からの血圧が異なるにもかかわらず血流速度が一定の状態で維持されるように血流速度を調節する。この実施態様では、システム100は、いつ、どれくらいの長さで、および/またはどれくらの値で、逆流速度を高い状態あるいは低い状態に設定するかを決定するのに、ユーザーに依存する必要はない。もっと正確に言えば、コントローラ1130内のソフトウェアは、そのようなファクターを支配(govern)することができる。閉ループシステムでは、コントローラ1130は、血流制御アセンブリ125の構成要素を制御して、センサ1135で検知された逆流速度に基づいて、逆流のレベルまたは状態(アナログレベルか、あるいは例えば高い、低い、ベースライン、中間などの個別の状態のいずれか)を確立することができる。
【0096】
実施態様では、(患者の生理学的測定値を測定する)解剖学的データセンサ1140はコントローラ1130に信号を伝え、それは血流速度を信号に基づいて調節する。例えば、生理学的測定値は、中大脳動脈(MCA)を通る流速、経頭蓋ドプラー超音波診断(TCD)信号、あるいは他の脳血管信号に基づいてもよい。TCD信号の場合、経頭蓋ドプラー超音波診断(TCD)を用いて、脳血流変化をモニタし、微小塞栓を検出してもよい。コントローラ1130は、血流速度を調節して、TCD信号を所望のプロファイル内に維持してもよい。例えば、TCD信号が微小塞栓の存在を示してもよく(「TCD hits」)、また、コントローラ1130が逆流する血流速度を調節して、TCD hitsを、TCD hitsの閾値より下に維持することができる。(Riboら、「血流反転保護を伴う頚動脈の経頚部ステント留置術の経頭蓋ドップラーモニタ:新しい頚動脈の血管再生術("Transcranial Doppler Monitoring of Transcervical Carotid Stenting with Flow Reversal Protection: A Novel Carotid Revascularization Technique ")」Stoke 2006、37, 2846-2849、Shekelら、「頚動脈血管内膜切除術における神経生理学的モニタの500例の経験("Experience of 500 Cases of Neurophysiological Monitoring in Carotid Endarterectomy")」Acta Neurochir, 2007, 149:681-689を参照。これらは、引用して本明細書に組み込む。)
【0097】
中大脳動脈(MCA)の血流の場合、コントローラ1130は、患者が耐えられる「最大の」血流速度に逆流速度を設定することができ、脳への灌流によって評価される。コントローラ1130は、ユーザーが仲を取り持つ(intercede)ことに依存せずに、逆流速度を制御して患者の保護レベルを最適化する。別の実施態様では、フィードバックは、システム100中のデバイスまたは使用された介入ツールの状態に基づいている。例えば、システム100がハイリスク状態にあるとき(例えば、介入カテーテルがシース605内に位置するとき)、センサは、コントローラ1130に通知してもよい。その後、コントローラ1130は血流速度を調節して、そのような状態を補う。
【0098】
コントローラ1130を用いて、様々な様態にある逆流を選択的に増大させることができる。例えば、より大きな逆流速度が、結果として、脳に向かう血流のより大きい降下を引き起こすことが観測されており、ここで最も重要なのは同側の中大脳動脈(MCA)であり、それはウィリス輪からの側副血流で十分に代償されないかもしれない。このように、長期間にわたる高い逆流速度は、患者の脳が十分な血流を得られない状況を引き起こして、それに患者が耐えられず、神経症状として現れる。研究から、10cm/秒未満の中大脳動脈(MCA)の血流速度が、それ以下であると患者が神経学的血液欠乏のリスクにさらされる閾値であることを示されている。脳への適切な灌流をモニタするための他のマーカー(例えば、EEG(脳波)信号など)がある。しかしながら、中大脳動脈(MCA)への血流の完全停止に至るような高い血流速度でさえも、約15秒〜1分以内の短期間なら耐えられるだろう。
【0099】
このように、コントローラ1130は、手術中に塞栓発生のリスクの高い期間に相当する限られた期間だけ、自動的に逆流を増加させることにより、塞栓のデブリスの捕獲を最適化することができる。リスクの高い期間には、介入デバイス(ステント拡張前後の拡張バルーンまたはステント送達デバイス)がプラークPを横切る期間が含まれる。別の期間は、例えばステントの展開あるいは拡張前後のバルーンの膨張または収縮などの介入操作の間である。第3の期間は、処置領域の血管造影画像のための造影剤注入の間である。リスクの低い期間には、コントローラは、逆流速度をより低いベースラインレベルに戻すことができる。このより低いレベルは、内頚動脈(ICA)内の低い逆流速度に相当してもよく、あるいは、内頚動脈(ICA)に対する外頚動脈(ECA)の高い灌流圧力比を伴った患者内のわずかな順行性の血流に相当してもよい。
【0100】
ユーザーが手動で血流状態を設定する血流調節システムでは、ユーザーが逆流状態(高いまたは低い)に注意を払わず、誤って回路を高い血流に保持してしまうリスクがある。このことが、後で有害な患者の反応を引き起こすだろう。ある実施態様では、セーフティ機構として、血流速度の初期値は低い血流速度である。これは、高い血流速度に耐えられない患者のためのフェイルセーフ手段として役立つ。これに関して、高い血流速度で所定時間が経過した後に、システムがコントローラによって低い血流速度に戻るように、コントローラ1130に速度の初期値に向かうバイアスをかけることができる。低い血流速度に向かうバイアスは、電子機器またはソフトウェアによって達成することができ、または、機械的な構成要素、あるいはそれらの組合せを用いて達成することができる。ある実施態様では、コントローラ1130の血流制御アクチュエーター1165および/またはバルブ1115および/または血流制御レギュレータ125のポンプ1110は、低い血流速度を達成する状態に向けてバネ荷重されている。コントローラ1130は、必要に応じてシステムを低い血流速度の状態に手動で戻せるように、ユーザーがコントローラ1130に優先するように(あるいは、コントローラ1130を無効できるように)構成される。
【0101】
別のセーフティ機構では、コントローラ1130は、どれくらいの時間だけ高い血流速度にあるか関して、時間を記録するタイマー1170(
図11)を含んでいる。コントローラ1130は、高い血流速度で所定の期間(例えば15、30あるいは60秒以上)が経過した後、システム100を低い血流速度に自動的に戻らせるようにプログラムすることができる。コントローラが低い血流速度に戻した後、必要であれば、ユーザーは、高い血流速度の別の所定期間を開始することができる。さらに、ユーザーがコントローラ1130に優先して(あるいはコントローラ1130を無効にして)、システム100を所望の低い血流速度(あるいは高い血流速度)に移らせることができる。
【0102】
例示的な手技では、最初に低速の逆流レベルに設定し、そして手術中の危機的段階の間に個別の期間だけ高速に切り替えることにより、患者の耐性の問題を生ぜずに、塞栓のデブリスの捕獲を最適化する。代わりに、血流速度を最初に高速に設定し、そして残りの手技を続ける前に、そのレベルに対する患者の耐性を確認する。患者が耐えられない兆候を示せば、逆流速度を下げる。患者の耐性は、解剖学的データセンサ1140からのフィードバックに基づいて、コントローラが自動的に決定してもよく、あるいは、患者の観察に基づいてユーザーが決定してもよい。逆流速度の調整は、コントローラにより自動で、あるいはユーザーが手動で行うことができる。代わりに、ユーザーは、例えば経頭蓋ドップラー超音波診断(TCD)を用いて中大脳動脈(MCA)を通る流速をモニタし、そして、閾値レベルを越える中大脳動脈(MCA)の流速を維持できる逆流の最大レベルに設定してもよい。この状況では、血流状態を修正せずに全手技が行われてもよい。中大脳動脈(MCA)の流速が手技の経過中に変化したなら、あるいは患者が神経症状を示したなら、必要な調整が行われるだろう。
【0103】
<血流を調節する例示的な機構(Exemplary Mechanisms to Regulate Flow)>
システム100は、様々な様態で逆流を調節するのに適している。ポンプ1110、バルブ1115、シリンジ1120および/または可変抵抗成分1125の組合せを、ユーザーが手動制御するか、あるいはコントローラ1130を介して自動制御して、逆流速度を調節することができる。このように、システム100は、能動的な血流構成要素(例えば、ポンプ、シリンジなど)を制御すること、血流の制限(restriction)を低減すること、吸引源(あらかじめ設定されたバキュロックシリンジ、バキュティナ、吸気装置など)に切り替えること、またはそれらの組合せを含む様々な様態で、逆流を調節することができる。
【0104】
外部レセプタクルまたはリザーバが用いられている
図1Dの状況の場合、逆流は様々な様態で増大されてもよい。リザーバは、リザーバ内の血液の高さと、患者に対するリザーバの高さとから成るヘッド高さを有している。リザーバへの逆流は、リザーバ高さを設定して、総頚動脈(CCA)からリザーバへの圧力勾配の量を増加または減少させることにより、調整されてもよい。ある実施態様では、リザーバを上げて、リザーバ圧力を静脈圧より大きい圧力に増加させる。あるいは、リザーバを、患者より下に(例えば床のレベルまで下げて)位置させて、リザーバ圧力を静脈または大気圧より低い圧力に低下させることができる。
【0105】
シャント120内の可変血流抵抗は、多種多様な方法で提供することができる。これに関して、血流抵抗成分1125は、シャントのサイズまたは形状を変化させて血流のコンディションを変更することができ、その結果として、流速を変更することができる。あるいは、血流抵抗成分1125は、血流を、シャント内の1つ以上の代わりの血流経路を通る別の経路に切り替えて、血流コンディションを変更する。血流抵抗成分1125のいくつかの例示的な実施態様が以下に記述される。
【0106】
図12A、12B、12Cおよび12Dに示すように、ある実施態様では、シャント120は、その内腔の一部に沿って形成された膨張式の空気袋(bladder)1205を有している。
図12Aおよび12Cに示すように空気袋1205の空気を抜くと、シャント120の内腔は実質的に無制限のままになり、低い抵抗血流を提供する。しかしながら、
図12Bおよび12Dに示すように、空気袋1205を膨張させることによって血流の管腔が著しく制限され、それにより血流抵抗を大幅に増加させて、静脈の血管に向かう動脈血の血流速度を減少することができる。コントローラ1130は、空気袋1205の膨張/収縮を制御することができ、あるいは、ユーザーがそれを手動で制御することができる。
【0107】
図12A〜12Dに示すように膨張式の内部空気袋を用いるのではなく、
図13A〜13Dに示すように、例えば1対の向かい合ったプレート1405でシャント120を平らにするなどの外力を加えることにより、シャント120内の管腔の断面積を減少してもよい。向かい合ったプレートは、そのプレート間に位置するシャント120と共に、互いに向かって、および互いに離れるように移動するのに適している。
図13Aおよび13Cに示すようにプレート1405が間隔を置いて離れている場合、シャント120の管腔は無制限のままになる。それに対して、
図13Bおよび13Dに示すようにプレート1405がシャント120上で閉じている場合、プレート1405はシャント120を収縮させる。このように、シャント120内に残っている管腔を大幅に減少させて、シャントを通る血流抵抗を大幅に増加させることができる。コントローラ1130は、プレート1405の移動を制御することができ、あるいは、ユーザーがそのような移動を手動で制御することができる。
【0108】
図14Aおよび14Bを参照すると、シャント120の利用可能な断面積は、シャント120のある部分1505を軸方向に引き延ばすことによって制限することもできる。
図14Aに示すように、軸方向の伸張前には、その部分1505は一般に不変で、その部分1505内に最大の管腔血流面積(full luminal flow area)を提供する。しかしながら、
図14Bに示すように、その部分1505を引き延ばすことによって、その部分1505では、シャント120の内腔の面積が著しく減少し、長さが増加しており、その両方ともが血流抵抗を増加させる効果がある。軸方向の伸張を使用してシャント120の管腔面積を縮小する場合、少なくともその部分1505のシャントに、メッシュまたは組紐の構造を使用するのが有利であろう。メッシュまたは組紐の構造は、シャント120に、破壊することなく軸方向の引き延ばしを容易にする柔軟性を提供する。コントローラ1130は、シャント120の伸張を制御することができ、あるいは、ユーザーがそれを手動で制御することができる。
【0109】
図15A〜15Dを参照すると、外力を加えてシャント120の断面積を縮小する代わりに、
図15Aおよび15Cに示すように、シャント120の一部を、始めに小径で作ることができる。シャント120は、両端部を密閉したチャンバ1600を通っている。チャンバ1600内でシャント120の外側を真空に引いて、圧力勾配を発生させる。
図12Bおよび12Dに示すように、圧力勾配によって、チャンバ1600内でシャント120のサイズが増加する。真空源1610に取り付けられたレセプタクル1605内を真空に引いてもよい。反対に、同様のシステムが、休止形態(resting configuration)において増加したサイズにあるシャント120と共に使用されてもよい。チャンバに圧力を加えて、シャントを縮めるあるいは平らにして、血流抵抗を減少させてもよい。コントローラ1130は、真空を制御することができ、あるいは、ユーザーがそれを手動で制御することができる。
【0110】
さらに別の代替方法として、シャント120を通る血流抵抗を、2つ以上の別の血流パスを提供することにより、変更してもよい。
図16Aに示すように、シャント120による血流は、メインの管腔1700も、第2の管腔1705も通過する。第2の管腔1705は、メインの管腔1700よりも、長くおよび/または小径である。よって、第2の管腔1705は、メイン管腔1700よりも高い血流抵抗を有している。血液がこれらの両方の管腔を通過すると、血流抵抗は最小になるだろう。メイン管腔1700内で形成されて第2の管腔1705の入口と出口を横切る圧力降下により、血液は両方の管腔1700、1705を流通することができる。これには血液の停滞を防止できる利点がある。
図16Bに示すように、シャント120のメイン管腔1700を通る血流を遮断することによって、血流を第2の管腔1705に完全に迂回させることができ、それにより、血流抵抗を増加して、血流速度を減少することができる。追加の血流管腔も並列に提供して、3つ、4つあるいはそれ以上の個別の血流抵抗を可能にできると認識されるだろう。シャント120は、メイン管腔1700および第2の管腔1705への血流を制御するバルブ1710を装備してもよく、バルブ1710は、コントローラ1130によって制御されているか、ユーザーが手動で制御する。
図16Aおよび16Bの実施態様は、この実施態様が、可変血流抵抗機構の他の実施態様のように、所望の逆流速度を達成するために管腔サイズを小さくする必要がない点で、有利である。これは、血流ラインにおいて、小さな管腔サイズよりも大きな管腔サイズのほうが、詰まって凝血塊を生じる可能性が低い点で有利である。
【0111】
シャント120はまた、外部圧迫によって様々な方法で血流抵抗を変更できるようにした様々なコイル状の形態で配列することもでき、コイル状のシャント120の一部の配列には、比較的狭い範囲にシャントの長い部分が含まれる。これにより、小スペース上で長いシャント120を圧迫できる。
図17Aおよび17Bに示すように、シャント120の一部は、合わせ釘(dowel)1805に巻きつけられて、コイル領域を形成する。合わせ釘1805は、軸方向で、互いに向かっておよび互いに離れるように移動することのできるプレート1810a、1810bを有している。プレート1810a、1810bが互いに離れるように移動すると、シャント105のコイル部分は圧迫されず、血流抵抗は最小になる。シャント120は大径であるので、シャントが圧迫されていないときは、血流抵抗は低く、高い血流状態が可能になる。血流を下方制御(down-regulate)するために、2つのプレート1810a、1810bを互いに押して、シャント120のコイルを圧迫する。
図17Bに示すように、プレート1810a、1810bを共に移動させることによって、シャント120のコイル部分が圧迫されて、血流抵抗が増加する。コントローラ1130はプレートを制御することができ、あるいは、ユーザーがそれらを手動で制御することができる。
【0112】
同様の圧迫装置が、
図18Aおよび18Bに示されている。この形態では、コイル状シャント120は、2つの可動半筒(movable cylinder halves)1905a、1905bの間に完全に包まれる。半筒1905a、1905bを合せピン1910に沿って滑らせて、互いに向かって、および互いに離れるように移動させることができる。半筒1905が離れるように移動すると、コイル状シャント120は圧迫されず、血流抵抗は最小になる、半筒1905をくっつけると、コイル状シャント120は周囲から圧迫されて、血流抵抗が増加する。コントローラ1130は、半筒1905を制御することができ、あるいは、ユーザーがそれらを手動で制御することができる。
【0113】
図19A〜19Dに示すように、シャント120は、向かい合った端部にくさび要素(wedge elements)2015を有している軸方向に分離したマンドレル2010の周りに巻きつけられてもよい。くさび要素2015を、分離したマンドレル2010の内側および外側へ、軸方向に移動させることにより、マンドレルの分離した部分は、互いに対して開いて、あるいは閉じて、それにより管材のコイルが伸ばされ(マンドレル部分2010が別々に広げられたとき、
図19C、19D参照)、あるいは緩められる(マンドレル部分2010が閉まっているとき、
図19A、19B参照)。したがって、
図19A及び19Bに示すようにくさび要素2015が間隔を置いて離れると、シャント120にかかる外部圧力は最小になり、血流抵抗もまた最小になる。
図19Cおよび19Dに示すようにくさび要素2015を内側方向に動かすと、分離した半分のマンドレル2020が離れるように力をうけて、シャント120のコイルが伸ばされる。これは、シャントの断面積を減少させ、そしてコイル領域内のシャントを長くする、という二重の効果があり、それら両方は、血流抵抗の増加をもたらす。
【0114】
図20Aと20Bは、合わせ釘を用いて血流抵抗を変更する可変抵抗成分1125の実施態様を示す。ハウジング2030は、シャント120の一部に差し込まれる。ハウジング2030は、シャント120の内腔に隣接している内腔2035を有している。合わせ釘2040は、内腔2035の一部の中に、または一部の外に移動することができる。
図20Aに示すように合わせ釘2040が内腔2035に差し込まれると、内腔2035は環状の断面積になり、その断面積は、合わせ釘が存在しないときの内腔2035の断面積に比べて小さい。このように、合わせ釘2040が内腔2035に位置すると、血流抵抗が増大する。環状の内腔2035の長さはSであり、管腔2035に差し込まれる合わせ釘2040の部分を変更することにより、変更することができる。このように、合わせ釘2040のほとんどを差し込めば環状の管腔2035の長さSは増加し、またその逆も正しい。これは、合わせ釘2040の存在によってもたらされる血流抵抗のレベルを変更するために、用いることができる。
【0115】
合わせ釘2040は、ハウジング2030内の止血バルブを介して内腔2035に入る。キャップ2050およびOリング2055は、シール係合(sealing engagement)を提供して、漏れに対してハウジング2030と合わせ釘2040とをシールする。キャップ2050は、例えばネジ山などのロック機能を有しており、それはハウジング2030に対してキャップ2050をロックするのに用いることができ、そしてハウジング2040内の合わせ釘2040の位置を固定するのにも用いることができる。キャップ2050がロックまたは締め付けられると、キャップ2050がOリング2055に対して圧力を働かせて、シール係合内の合わせ釘2040に対して締めつける。キャップ2050のロックが外れる、あるいは締め付けを緩めると、合わせ釘2040は、ハウジング2030の中または外に自由に移動することができる。
【0116】
<使用方法の例示>
図21A〜21Eを参照すると、本願で開示された方法の異なる段階における頚動脈分岐部を通る血流が記載されている。最初は、
図21Aに示すように、動脈アクセスデバイス110の遠位シース605が総頚動脈CCAに導入される。上述のように、総頚動脈CCAへのエントリーは、経頚部アプローチあるいは経大腿部アプローチであろう。動脈アクセスデバイス110のシース605が総頚動脈CCAに導入された後、
図21Aに示すように、血流は順行性の方向AGで継続し、血流は、総頚動脈から内頚動脈ICAおよび外頚動脈ECAの両方に入るだろう。
【0117】
その後、静脈リターンデバイス115が、内頚静脈IJV(
図21A〜21Eには図示されず)などのような静脈リターンサイトへ挿入される。シャント120を用いて、(
図1Aに示されたように)動脈アクセスデバイス110および静脈リターンデバイス115のそれぞれの血流ライン615、915を接続する。このように、シャント120は、動脈アクセスデバイス110から静脈リターンデバイス115への逆流用の通路を提供する。別の実施態様では、
図1Cに示すように、シャント120は、静脈リターンデバイス115ではなく外部レセプタクル130に接続する。
【0118】
システムの全ての構成要素が配置されて接続されたら、総頚動脈CCAを通る血流は、典型的には
図21Bに示されるような閉塞要素129を用いて止められる。閉塞要素129は、シース605の遠位開口の近位側で拡張されて、総頚動脈(CCA)を閉塞する。代わりに、止血器2105(
図1A)あるいは他の外部血管閉塞デバイスを用いて、総頚動脈CCAを閉塞して、そこを通る血流を止めてもよい。代わりの実施態様では、
図2Bに示すように、閉塞要素129は、動脈アクセスデバイス110の遠位シース605と分離した第2の閉塞デバイス112で導入される。外頚動脈(ECA)は、同じデバイス110上あるいは別個の閉塞デバイス上の別個の閉塞要素で閉塞されてもよい。
【0119】
その時点で、外頚動脈ECAおよび内頚動脈ICAからの逆流RGが始まり、シース605、血流ライン615、シャント120を通り、そして血流ライン915を介して静脈リターンデバイス115に流れるだろう。血流制御アセンブリl25は、上述のように逆流を調節する。
図21Bは、逆流RGの発生を示している。逆流が維持されている間に、
図21C示すように、ステント送達カテーテル(stent delivery catheter)2110がシース605に導入される。ステント送達カテーテル2110は、止血バルブ615および動脈アクセスデバイス110の近位伸張部610(
図21A〜21Eには図示されず)を通ってシース605へ導入される。
図21Dに示すように、ステント送達カテーテル2110は、内頚動脈ICAに進められて、ステント2115が分岐部Bで展開される。
【0120】
例えば、ステント送達カテーテル2110が導入されている間や、任意でステント2115が展開されている間などの塞栓発生のリスクが高い期間には、逆流速度を増加することができる。ステントの展開前後の拡張用バルーンの配置および膨張の間にも、逆流速度を増加することができる。ステント留置術の前に、アテローム切除術も、逆流状態のもとで行なうことができる。
【0121】
さらに任意で、ステント2115を拡張した後に、低い血流速度と高い血流速度との間で逆流を繰り返すことにより、分岐部Bを洗い流すことができる。正常な血流を再建する前に、ステントが展開された又は他の手技が行われた頚動脈の領域を、血液で洗い流してもよい。特に、総頚動脈が閉塞され続けている間に、バルーンカテーテルあるいは他の閉塞要素を内頚動脈に進めて展開することにより、その動脈を完全に閉塞してもよい。また、展開後のステント拡張(a post-deployment stent dilatation)を行なうために、同じ操作を用いてもよく、それは現在、自己拡張ステント手技で典型的に行われている。その後、動脈中に存在する閉塞手段を一時的に開いて、総頚動脈から外頚動脈への血流も再建されてもよい。得られた血流(遅い血流、乱れた血流、または外頚動脈内の頚動脈閉塞中の停滞した血流)は、総頚動脈を洗い流すことができるだろう。さらに、同じバルーンを逆流中にステントの遠位側に位置させ、そして、総頚動脈の閉塞を一時的に取り除いて洗い流すことにより、前方流を確立してもよい。このように、洗い流しの作用がステントされた領域で生じて、その領域において遊離または緩く付着している塞栓のデブリスを除去するのを役立つ。
【0122】
任意で、総頚動脈からの血流が続き、内頚動脈が遮断され続けている間に、手段(measures)によって、処置された領域からのさらなる遊離塞栓を取ることができる。例えば、機械的要素を用いて、ステント内で遊離または緩く付着しているプラークまたは他の潜在的な塞栓のデブリスを洗浄または除去してもよく、血栓溶解剤または他の流体を送達するカテーテルを用いて、その領域を洗浄してもよく、あるいは他の手技が行われてもよい。例えば、バルーン、アテローム切除術、またはさらなるステントを用いたステント内再狭窄の処置を逆流下で行うことができる。別の実施例では、閉塞バルーンカテーテルは、バルーンの近位に開口した血流または吸引の管腔またはチャネルを含んでいてもよい。追加のデバイスを必要とせずに、処理領域からまたは処理領域に、生理食塩水、血栓溶解剤、あるいは他の流体を注入し、および/または血液およびデブリスを吸引してもよい。このようにして放出された塞栓が、外頚動脈に流入するかもしれないが、外頚動脈は、内頚動脈に比べて塞栓の放出に対して一般にそれほど過敏ではない。残っている潜在的な塞栓を予防的に除去することによって、内頚動脈への血流が再建されたときに、放出される塞栓のリスクがさらに低減される。塞栓は逆流下でも放出されて、その結果、塞栓がシャント120を通って静脈系、シャント120内のフィルター、またはレセプタクル130に流れ込む可能性がある。
【0123】
分岐部から塞栓が除去された後に、閉塞要素129または代わりの止血器2105を取り除いて、
図21Eに示すように、順行性の血流を再建することができる。その後に、シース605を除去することができる。
【0124】
手技が終わってシース605を引き抜く前に、総頚動脈の壁内の貫通部の周囲に自己閉鎖要素(self-closing element)を展開してもよい。通常は、自己閉鎖要素は、手技の開始時またはその近くで展開されるが、任意で、自己閉鎖要素は、シースが引き抜かれたとき、多くの場合はシースの遠位端が総頚動脈の壁の上から解放されたときに、展開することもできる。自己閉鎖要素は、シースが引き抜かれているときに、総頚動脈の貫通部の迅速な閉止に実質的に作用するので、自己閉鎖要素の使用は有利である。そのような迅速な閉止は、手技の終わりに、あるいはシースが不慮に取り外された間に、意図しない失血を低減あるいは排除することができる。さらに、そのような自己閉鎖要素は、アクセス中の動脈壁の解離(dissection)のリスクを減らすだろう。更に、自己閉鎖要素は、手技中にシース上に部分的な(fractional)または他の保持力(retention force)を働かせるように構成されてもよい。そのような保持力は有利であり、手技中にシースが不慮に取り外される可能性を減らすことができる。自動閉鎖要素は、シースを除去した後に縫合糸による動脈の外科的縫合の必要性をなくし、大きな手術野の必要を低減し、そして手技に必要な外科的スキルを大幅に低減する。
【0125】
開示されたシステムおよび方法では、多種多様の自己閉鎖要素を使用してもよく、典型的には、アンカー部と自己閉鎖部とを含んだ機械的要素である。アンカー部は、フック、ピン、ステープル、クリップ、歯(tine)、縫合糸などを含んでもよく、それは、総頚動脈の外表面で貫通部の周囲に係合して、その貫通部が完全に開いているときに自己閉鎖要素を固定する。自己閉鎖要素は、バネ状または他の自己閉鎖部を含んでいてもよく、それは、閉止を提供すると共に動脈壁内の組織を引き寄せるために、シースの除去に際して、アンカー部を閉じるだろう。通常、その閉止は十分であり、貫通部を閉止あるいはシールするために更なる手段を取る必要はないだろう。しかしながら、任意で、シースが引き抜かれた後、自己閉鎖要素の補助シーリングを備えるのが望ましいかもしれない。例えば、自己閉鎖要素および/または要素の範囲内にある組織管(tissue tract)は、生体吸収性高分子、コラーゲンプラグ、接着剤、シーラント、凝固因子あるいは他の凝血促進剤などの止血材で処理することができる。代わりに、組織または自己閉鎖要素は、電気焼灼、縫合、クリッピング、ステープル留めなどの他のシーリングプロトコルを用いて、シールしてもよい。別の方法では、自己閉鎖要素は、クリップ、接着剤、バンドまたは他の手段により血管の外壁に付けられた自己閉鎖膜またはガスケット材料であろう。自己閉鎖膜は、スリットまたはクロスカットなどの内部開口部を有していてもよく、それは血圧に抵抗して通常は閉じられるだろう。これらの自己閉鎖要素は、切開する外科的手技で設置されるように、あるいは経皮的に展開されるように設計することができる。
【0126】
もう一つの実施態様では、外頚動脈内にシースを設置して閉塞バルーンカテーテルを展開した後に、頚動脈ステント留置術が行われてもよい。側面の穴部を有するステントあるいは外頚動脈口を遮断しないように意図された他の要素は、ガイドワイヤーあるいは側面の穴部を通って受容される外頚動脈閉塞バルーンのシャフトを備えたシースを通して送達される。このように、典型的には内頚動脈へ延在するガイドワイヤー上に導入されたカテーテルによってステントが進められた場合、側面の穴部内にカテーテルのシャフトが存在することによって、ステントが進められたときに側面の穴部が外頚動脈口に整列することを保証するだろう。閉塞バルーンが外頚動脈中で展開されたときに、側面の穴部は、他の血流逆転システムの欠点である、ステントを備えた外頚動脈閉塞バルーンシャフトのトラップを防ぐ。このアプローチはまた、外頚動脈を「拘置(jailing)」するこをと避け、ステントがグラフト原料で覆われている場合に、外頚動脈への血流を遮断することを避ける。
【0127】
もう一つの実施態様では、総頚動脈と内頚動脈との間の先在する角度に実質的に適合する形状を有するステントが設置される。患者間の組織的な著しい変化により、内頚動脈と外頚動脈との間の分岐部には種々様々の角度および形状があるだろう。異なる幾何学的形状を有するステントの仲間を提供することにより、あるいは展開に先立って医師が成形できる個々ステントを提供することにより、医師は、展開に先立って患者の特定の組織と一致するステントを選択できる。患者の組織は、血管造影法または他の従来の手段を用いて決定されるだろう。さらなる代替物として、ステントは関節(articulation)の部分を有していてもよい。これらのステントが最初に設置され、次いで、総頚動脈と内頚動脈との間の分岐部の角度と一致するためにその場で関節接合(articulated)されてもよい。ステントは頚動脈に設置されてもよく、そこでは、ステントは異なる密度のゾーンを備えた側壁を有している。
【0128】
別の実施態様では、ステントの一端または両端が、グラフト原料によって少なくとも部分的に覆われている場合に、ステントが設置されるだろう。一般に、ステントはグラフト原料が存在せず、また、総頚動脈から外頚動脈への血流を可能にするために、外頚動脈口に隣接して展開されるステントの中間部分も存在しないだろう。
【0129】
もう一つの実施態様では、ステント送達システムは、経大腿部アクセスのため設計されたシステムよりも短くて固くすることにより、経頚部アクセスのため最適化することができる。これらの変更は、展開中に、ステントに正確にトルクを与えそして正確に位置決めする能力を高めるだろう。さらに、ステント送達システムは、外頚動脈内の外頚動脈閉塞バルーンまたは別個のガイドワイヤーのいずれかを用いることによって、ステントが外頚動脈口と整列するように設計することができ、これは、側面の穴部を備えたステント、及び向きが重大な部分に湾曲部、屈曲部、または角度のついた部分を備えたステントに特に有用である。
【0130】
ある実施態様では、シャントは動脈のアクセスシースおよび静脈リターンシースに固定して接続されて、取り替え可能な血流アセンブリおよびシースの全アセンブリが使い捨てで、1単位として取り替え可能である。他の例では、血流制御アセンブリは、一方のシースまたは両方のシース両方に、取り外し可能に取り付けられてもよい。
【0131】
ある実施態様では、ユーザーは最初に、手技中に、塞栓発生のリスクの高い期間が存在するかどうかを決定する。上述のように、リスクの高い典型的な期間には、(1)デバイスがプラークPを横切る期間の間、(2)例えばステントの送達中、ならびにバルーンカテーテルまたはガイドワイヤーの膨張中または収縮中などの、介入手技の間、および(3)造影剤の射出中、が含まれる。前述したものは、リスクが高い期間の単なる例示である。このような期間の間、ユーザーは、個々の期間に高速の逆流を設定する。ハイリスクな時間が終わったときに、または、患者が高い血流速度に対する不耐性を示したならば、ユーザーは血流状態をベースラインの血流に戻す。もしシステムがタイマーを有していれば、設定された期間の経過後に、血流状態は自動的にベースライン血流に戻る。この場合、手技が依然として塞栓のリスクの高い期間にあるならば、ユーザーは、血流状態を高い血流速度に再び設定してもよい。
【0132】
別の実施態様では、患者が逆流の存在に対して不耐性を示す場合、逆流は、内頚動脈(ICA)内でプラークPより遠位側にフィルターを配置する間だけ確立される。その後、逆流は停止され、介入手技がプラークP上で行なわれる。そして、フィルターが除去される間に逆流が再建される。別の実施態様では、フィルターは内頚動脈(ICA)でプラークPの遠位側に配置され、フィルターが定位置にある間、逆流が確立される。この実施態様では、遠位フィルターの使用を逆流と組み合わせる。
【0133】
様々な方法および装置の実施態様が、いくつかの変形例を参照して本願明細書に詳細に記述されているが、他の変形例、実施態様、使用方法およびそれらの組合せもまた可能であると認識されるべきである。従って、添付された特許請求の範囲の精神および範囲は、本明細書に含まる実施態様の記載に制限されるべきでない。