【実施例】
【0041】
以下、本発明の実施例について説明する。なお、以下の実施例、比較例において、各種物性の評価は、次のようにして行った。
【0042】
(1)線材への加工性
φ47mm×L350mmの合金塊を作製し、ビッカース硬さを測定することによって、線材への加工性を評価した。また硬さを測定した後の合金塊を鍛造してφ10mmに縮径するようにし、さらにφ1.6mmまで伸線するようにして、その加工性を下記の基準により評価した。
【0043】
○:φ1.6mmまでの伸線が可能
△:伸線工程で破断が発生
【0044】
(2)耐食性
下記の要領で耐食試験を行い評価した。すなわち、150mm×70mm×2mmのサンドブラスト鋼板を試験片として用い、これに、φ1.6mmの線材を用いた電気式アーク溶射方法によって、溶射量130g/m2で、厚さ20〜30μmの溶射被膜を形成して供試サンプルとした。腐食試験および評価方法は、次の通りとした。
【0045】
(2−1)
JIS Z2371に規定される塩水噴霧試験を実施し、Zn−Sn合金のみを溶射した場合またはZn−Sn−Mg合金のみを溶射した場合において、熱処理を施していないときの、白錆の発生程度と、赤錆が発生するまでの期間により評価した。白錆の発生程度は、目視にて、下記の基準により評価した。
【0046】
○:白錆の発生が少ない
△:白錆の発生が中程度
×:白錆の発生が多い
【0047】
(2−2)
赤錆については、Znのみを溶射し熱処理を施していない場合の塩水噴霧試験における赤錆が発生するまでの期間を「1」として、それとの対比のうえで、Zn−Sn合金のみを溶射した場合またはZn−Sn−Mg合金のみを溶射した場合において、熱処理を施していないときの供試サンプルについて塩水噴霧試験における赤錆が発生するまでの期間を数値で評価した。
【0048】
(2−3)
Ti、Co、Ni、Pのいずれかを単独で添加し、熱処理を施していないときの、塩水噴霧試験の際に赤錆が発生するまでの期間について評価した。すなわち、これらを添加しないZn−Sn合金のみの場合またはZn−Sn−Mg合金のみの場合において、熱処理を施していないときの赤錆が発生するまでの期間を「1」として、それとの対比のうえで、下記の基準により評価した。
【0049】
◎:赤錆が発生するまでの期間が1.5倍以上に伸びた
○:赤錆が発生するまでの期間が1.0倍以上1.5倍未満に伸びた
△:赤錆が発生するまでの期間はほぼ同じであった
【0050】
(2−4)
Ti、Co、Ni、Pを添加せずにZn−Sn合金のみを溶射した場合またはZn−Sn−Mg合金のみを溶射した場合において、熱処理を施したときの、塩水噴霧試験の際に赤錆が発生するまでの期間について評価した。すなわち、供試サンプルについて、30分間の熱処理を施した場合において、熱処理を施さない場合に比べて赤錆が発生するまでの期間が伸びて防食効果が向上したと評価できる熱処理温度の範囲を測定した。
【0051】
(2−5)
Ti、Co、Ni、Pを添加していない供試サンプルであって、熱処理を施していないものを、30℃の水道水中に浸漬して、赤錆が発生するまでの期間について評価した。すなわちZnのみを溶射した場合の赤錆が発生するまでの期間を「1」として、それとの対比のうえで、供試サンプルについて赤錆が発生するまでの期間を数値で評価した。
【0052】
(2−6)
Ti、Co、Ni、Pを添加していない供試サンプルであって、熱処理を施していないものを、30℃のpH3の硫酸中に浸漬して、赤錆が発生するまでの期間について評価した。すなわちZnのみを溶射した場合の赤錆が発生するまでの期間を「1」として、それとの対比のうえで、供試サンプルについて赤錆が発生するまでの期間を数値で評価した。
【0053】
各実施例、比較例の詳細は、下記の通りである。
【0054】
(実施例1〜6、比較例1〜4)
表1に示す成分組成のZn−Sn合金を試験片に溶射して、実施例1〜6、比較例1〜4の供試サンプルを得た。これらの供試サンプルについての評価結果を表1に示す。なお、比較例3はZnのみを溶射したものであり、比較例4はSnのみを溶射したものである。
【0055】
【表1】
【0056】
なお、実施例1〜6、比較例1〜4において、Ti、Co、Ni、Pを添加して塩水噴霧試験を実施した場合は、Ti、Co、Ni、Pのいずれを単独で添加した場合も、その添加量を変化させたときの赤錆が発生するまでの期間について、すべて同一の評価結果が得られた。そこで、表1では、簡単のために、代表例一つのみを記載した。すなわち、表1は、実施例1〜6、比較例1〜4において、Ti、Co、Ni、Pのいずれについても、その添加量を0.001、0.01、0.1、1、3質量%と変化させたときに、すべて同一の評価結果が得られたことを意味している。
【0057】
(実施例7〜42、比較例5〜18)
表2に示す成分組成のZn−Sn−Mg合金を試験片に溶射して、実施例7〜42、比較例5〜14の供試サンプルを得た。実施例7〜30の供試サンプルについての評価結果を表2に示し、実施例31〜42、比較例5〜14の供試サンプルについての評価結果を表3に示す。なお、参考のために、表2および表3に比較例3と比較例4を再掲する。
【0058】
【表2】
【0059】
【表3】
【0060】
なお、実施例7〜42、比較例5〜18においても、Ti、Co、Ni、Pをそれぞれ単独で添加して塩水噴霧試験を実施した場合に、その添加量を変化させたときの赤錆が発生するまでの期間について、すべて同一の評価結果が得られた。そこで、表2および表3においても、表1と同様にして、簡単のために、代表例一つのみを記載した。すなわち、実施例7〜42、比較例5〜18において、Ti、Co、Ni、Pのいずれを添加した場合も、その添加量を0.001、0.01、0.1、1、3質量%と変化させたときに、表2および表3に示すように、すべて同一の評価結果が得られた。
【0061】
(実施例43〜53)
表4に示すように、Zn−Sn−Mg線材を第1の線材として用いるとともに、Zn線材を第2の線材として用いて、同時にアーク溶射を行った。その結果を表4に示す。なお、上述の実施例と同様に、実施例43〜53において、Ti、Co、Ni、Pを添加して塩水噴霧試験を実施した場合は、Ti、Co、Ni、Pのいずれを単独で添加した場合も、その添加量を変化させたときの赤錆が発生するまでの期間について、すべて同一の評価結果が得られた。そこで、表4でも、簡単のために、代表例一つのみを記載した。
【0062】
【表4】
【0063】
表1から明らかな通り、Zn−Sn合金を溶射した実施例1〜6について、用いた合金は問題なく伸線可能なものであり、いずれもφ1.6mmの線材を得ることが可能であった。
【0064】
また実施例1〜6は、白錆の発生が少なく、しかも赤錆が発生するまでの期間も長く、十分な防食性能を有するものであった。Zn−Sn合金であるため、衛生面でも問題のないものであった。赤錆が発生するまでの期間は、公知のZn−15Al合金と同程度に優れたものであった。さらに、Zn−Sn合金にTi、Co、Ni、Pの少なくともいずれかを添加した場合や、溶射後に熱処理した場合は、よりいっそう防食性を向上させることができた。熱処理について、具体的には、溶射被膜を構成する合金の共晶温度である198℃以上かつ合金溶射被膜の融点未満の範囲の温度で熱処理した場合は、30分間の熱処理によって、防食効果を向上させることができた。水道水に浸漬したときの防食性や、硫酸に浸漬したときの防食性も、優れたものであった。
【0065】
これに対し比較例1は、Snの配合割合が本発明の範囲を下回っていたため、その分Znの配合割合が高く、したがってそれに対応した白錆の発生が見られた。また、Snの配合割合が本発明の範囲を下回っていたため、SnがZnの溶出を抑制するという働きを発揮しにくく、したがって赤錆が発生するまでの期間も、実施例1〜6に比べると極端に短かった。
【0066】
比較例2は、反対にSnの配合割合が本発明の範囲を上回っていたが、同様に赤錆が発生するまでの期間が、実施例1〜6に比べて短かった。
【0067】
比較例3は、Znのみを溶射したものであったため、比較例1よりもさらに白錆の発生が多く、赤錆発生までの期間も短かった。
【0068】
比較例4は、Snのみを溶射したものであったため、比較例2よりもさらに赤錆が発生するまでの期間が短かった。
【0069】
表2および表3から明らかな通り、Zn−Sn−Mg合金を溶射した実施例7〜42について、用いた合金は問題なく伸線可能なものであり、いずれもφ1.6mmの線材を得ることが可能であった。
【0070】
また実施例7〜42は、白錆の発生が少なく、しかも赤錆が発生するまでの期間も長く、十分な防食性能を有するものであった。赤錆が発生するまでの期間は、公知のZn−15Al合金と同程度以上に優れたものであった。さらに、Zn−Sn−Mg合金にTi、Co、Ni、Pの少なくともいずれかを添加した場合や、溶射後に熱処理した場合は、よりいっそう防食性を向上させることができた。熱処理について、具体的には、溶射被膜を構成する合金の共晶温度である198℃以上かつ合金溶射被膜の融点未満の範囲の温度で熱処理した場合は、30分間の熱処理によって、防食効果を向上させることができた。水道水に浸漬したときの防食性や、硫酸に浸漬したときの防食性も、優れたものであった。
【0071】
これに対し、比較例5は、表3に示すように、Mgの配合割合は問題なかったが、Snの配合割合が本発明の範囲を下回っていたため、その分Znの配合割合が高く、したがってそれに対応した白錆の発生が見られた。また、赤錆が発生するまでの期間も、実施例7〜42に比べると短かった。
【0072】
比較例6、8、10、12、14、16は、Snの配合割合は問題なかったが、Mgの配合割合が本発明の範囲を下回っていたため、MgがZnの溶出を抑制するという働きを発揮しにくく、したがって実施例7〜12、13〜18、19〜24、25〜30、31〜36、37〜42に比べて赤錆が発生するまでの期間が短かった。
【0073】
なお、比較例6、8、10、12、14、16は、ZnとSnの配合割合がこれらと同じである実施例1、2、3、4、5、6と比較すると、わずかながらMgが添加されているにもかかわらず、赤錆発生までの期間は却って短くなった。その理由は、明らかではないが、Mgの添加量が微量であったため、これを添加した効果が現れず、逆に劣る結果を導く要因が作用したのではないかと思われる。
【0074】
比較例7、9、11、13、15、17は、Snの配合割合は問題なかったが、Mgの配合割合が本発明の範囲を上回っていたため、耐食性が極端に低下した。このため、実施例7〜42に比べて、極めて短期間のうちに赤錆が発生した。
【0075】
比較例18は、Mgの配合割合は問題なかったが、Snの配合割合が本発明の範囲を上回っていたため、赤錆が発生するまでの期間が、実施例7〜42に比べて短かった。
【0076】
実施例43、44、45、46、47、48、49、50は、実施例7、12、13、18、19、24、25、30と同じ組成の被膜を得るために、Sn量とMg量を倍化させたZn−Sn−Mg線と、Znだけを含んだZn線とを用いたものであった。その結果、実施例43〜50のいずれも、対応する実施例7、12、13、18、19、24、25、30に比べて、水道水浸漬による赤錆発生までの期間と、硫酸浸漬による赤錆発生までの期間が長くなり、防食性能がよりいっそう向上していることが確認された。
【0077】
実施例51〜53も、実施例43〜50と同様に、水道水浸漬による赤錆発生までの期間と、硫酸浸漬による赤錆発生までの期間とが長く、防食性能に優れたものであった。
【0078】
なお、表1〜表4には記載していないが、Zn−Sn合金やZn−Sn−Mg合金にTi、Co、Ni、Pの少なくともいずれかを添加し、かつ、溶射後に、溶射被膜を構成する合金の共晶温度である198℃以上かつ合金溶射被膜の融点未満の範囲の温度で熱処理した場合も、よりいっそう防食性を向上させることができた。