特許第5693746号(P5693746)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アリババ・グループ・ホールディング・リミテッドの特許一覧

<>
  • 特許5693746-製品情報のランク付け 図000006
  • 特許5693746-製品情報のランク付け 図000007
  • 特許5693746-製品情報のランク付け 図000008
  • 特許5693746-製品情報のランク付け 図000009
  • 特許5693746-製品情報のランク付け 図000010
  • 特許5693746-製品情報のランク付け 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5693746
(24)【登録日】2015年2月13日
(45)【発行日】2015年4月1日
(54)【発明の名称】製品情報のランク付け
(51)【国際特許分類】
   G06F 17/30 20060101AFI20150312BHJP
【FI】
   G06F17/30 380E
   G06F17/30 220C
   G06F17/30 210D
【請求項の数】19
【全頁数】19
(21)【出願番号】特願2013-543229(P2013-543229)
(86)(22)【出願日】2011年12月4日
(65)【公表番号】特表2014-501013(P2014-501013A)
(43)【公表日】2014年1月16日
(86)【国際出願番号】US2011063211
(87)【国際公開番号】WO2012078481
(87)【国際公開日】20120614
【審査請求日】2014年1月29日
(31)【優先権主張番号】13/310,731
(32)【優先日】2011年12月3日
(33)【優先権主張国】US
(31)【優先権主張番号】201010590355.2
(32)【優先日】2010年12月7日
(33)【優先権主張国】CN
(73)【特許権者】
【識別番号】510330264
【氏名又は名称】アリババ・グループ・ホールディング・リミテッド
【氏名又は名称原語表記】ALIBABA GROUP HOLDING LIMITED
(74)【代理人】
【識別番号】110000028
【氏名又は名称】特許業務法人明成国際特許事務所
(74)【代理人】
【識別番号】100102989
【弁理士】
【氏名又は名称】井上 佳知
(72)【発明者】
【氏名】チェン・チャオ
(72)【発明者】
【氏名】フェン・ジーンフォア
【審査官】 山本 俊介
(56)【参考文献】
【文献】 国際公開第2010/132212(WO,A1)
【文献】 特開2002−063303(JP,A)
【文献】 国際公開第2008/054001(WO,A1)
【文献】 特開2007−318364(JP,A)
【文献】 特開2010−108082(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06F 17/30
(57)【特許請求の範囲】
【請求項1】
コンピュータによって実行される、製品情報をランク付けするための方法であって、
複数の製品情報のそれぞれに対応するカテゴリ及び複数の属性を抽出し、
前記製品情報に対応する前記カテゴリに関連付けられるカテゴリ格付け値及び前記製品情報に対応する前記複数の属性のぞれぞれに対応する複数の属性格付け値を決定し、
前記複数の製品情報のそれぞれに関連付けられる、前記カテゴリ格付け値と前記複数の属性格付け値の少なくとも1つとに少なくとも部分的に基づいて、前記複数の製品情報に対応する複数のユーザ需要値を決定し、前記複数の製品情報に対応する複数のユーザ需要値を決定することは、前記製品情報に対応するユーザ需要値を決定することを含み、前記製品情報に対応するユーザ需要値を決定することは、
前記複数の属性格付け値のそれぞれに少なくとも部分的に基づく条件に一致する前記複数の属性の少なくともサブセットを決定し、
前記カテゴリ格付け値および前記決定された前記複数の属性のサブセットに少なくとも部分的に基づいて前記製品情報に対応する前記ユーザ需要値を決定することを含み、
前記対応する複数のユーザ需要値に少なくとも部分的に基づいて、前記複数の製品情報をランク付けすること、
を備える方法。
【請求項2】
請求項1に記載の方法であって、更に、
1つ以上のクエリワードを含む検索クエリを受信することを備える方法。
【請求項3】
請求項2に記載の方法であって、
前記複数の製品情報は、前記1つ以上のクエリワードに応答した結果として決定される、方法。
【請求項4】
請求項1に記載の方法であって、更に、
前記ランク付けされた複数の製品情報を、最も高いユーザ需要値に関連付けられる製品情報から順に表示することを備える方法。
【請求項5】
請求項1に記載の方法であって、
製品情報に関連付けられているカテゴリ格付け値及び複数の属性格付け値は、ストレージからアクセスされる、方法。
【請求項6】
請求項に記載の方法であって、
製品情報に関連付けられるカテゴリ格付け値及び複数の属性格付け値は、過去の検索データに少なくとも部分的に基づいて決定される、方法。
【請求項7】
請求項に記載の方法であって、
前記過去の検索データは、クックログ及びインプレッションログの1つ以上を含む、方法。
【請求項8】
請求項に記載の方法であって、
前記過去の検索データは、製品情報に対応するクリックスルー率を含む、方法。
【請求項9】
請求項1に記載の方法であって、
前記条件は最も高い属性格付け値に関連付けられており、
前記製品情報に対応する前記ユーザ需要値は、前記製品情報に対応する前記カテゴリ格付け値と、前記条件に一致する前記決定された前記複数の属性のサブセットに関連付けられている属性の数と、前記複数の属性に関連付けられている属性の合計数との関数に少なくとも部分的に基づいて決定される、方法。
【請求項10】
製品情報をランク付けするためのシステムであって、
プロセッサであって、
複数の製品情報のそれぞれに対応するカテゴリ及び複数の属性を抽出し、
前記製品情報に対応する前記カテゴリに関連付けられるカテゴリ格付け値及び前記製品情報に対応する前記複数の属性のぞれぞれに対応する複数の属性格付け値を決定し、
前記複数の製品情報のそれぞれに関連付けられる、前記カテゴリ格付け値と前記複数の属性格付け値の少なくとも1つとに少なくとも部分的に基づいて、前記複数の製品情報に対応する複数のユーザ需要値を決定し、前記複数の製品情報に対応する複数のユーザ需要値を決定することは、前記製品情報に対応するユーザ需要値を決定することを含み、前記製品情報に対応するユーザ需要値を決定することは、
前記複数の属性格付け値のそれぞれに少なくとも部分的に基づく条件に一致する前記複数の属性の少なくともサブセットを決定し、
前記カテゴリ格付け値および前記決定された前記複数の属性のサブセットに少なくとも部分的に基づいて前記製品情報に対応する前記ユーザ需要値を決定することを含み、
前記対応する複数のユーザ需要値に少なくとも部分的に基づいて、前記複数の製品情報をランク付けするように構成されているプロセッサと、
前記プロセッサに接続され、前記プロセッサに命令を提供するように構成されている1つ以上のメモリと、
を備える、システム。
【請求項11】
請求項10に記載のシステムであって、
前記プロセッサは、更に、1つ以上のクエリワードを含む検索クエリを受信するように構成されている、システム。
【請求項12】
請求項11に記載のシステムであって、
前記複数の製品情報は、前記1つ以上のクエリワードに応答した結果として決定される、システム。
【請求項13】
請求項10に記載のシステムであって、
前記プロセッサは、更に、前記ランク付けされた複数の製品情報を、最も高いユーザ需要値に関連付けられる製品情報から順に表示するように構成されている、システム。
【請求項14】
請求項10に記載のシステムであって、
製品情報に関連付けられる、カテゴリに対応する格付け値及び複数の属性に対応する複数の格付け値は、ストレージからアクセスされる、システム。
【請求項15】
請求項14に記載のシステムであって、
製品情報に関連付けられる前記カテゴリ格付け値及び前記複数の属性格付け値は、過去の検索データに少なくとも部分的に基づいて決定される、システム。
【請求項16】
請求項15に記載のシステムであって、
前記過去の検索データは、クックログ及びインプレッションログの1つ以上を含む、システム。
【請求項17】
請求項15に記載のシステムであって、
前記過去の検索データは、製品情報に対応するクリックスルー率を含む、システム。
【請求項18】
請求項10に記載のシステムであって、
前記条件は最も高い属性格付け値に関連付けられており、
前記製品情報に対応する前記ユーザ需要値は、前記製品情報に対応する前記カテゴリ格付け値と、前記条件に一致する前記決定された前記複数の属性のサブセットに関連付けられている属性の数と、前記複数の属性に関連付けられている属性の合計数との関数に少なくとも部分的に基づいて決定される、システム。
【請求項19】
製品情報をランク付けするためのコンピュータプログラムであって、
複数の製品情報のそれぞれに対応するカテゴリ及び複数の属性を抽出するための機能と、
前記製品情報に対応する前記カテゴリに関連付けられるカテゴリ格付け値及び前記製品情報に対応する前記複数の属性のぞれぞれに対応する複数の属性格付け値を決定するための機能と、
前記複数の製品情報のそれぞれに関連付けられる、前記カテゴリ格付け値と前記複数の属性格付け値の少なくとも1つとに少なくとも部分的に基づいて、前記複数の製品情報に対応する複数のユーザ需要値を決定するための機能と、前記複数の製品情報に対応する複数のユーザ需要値を決定するための機能は、前記製品情報に対応するユーザ需要値を決定することを含み、前記製品情報に対応するユーザ需要値を決定することは、
前記複数の属性格付け値のそれぞれに少なくとも部分的に基づく条件に一致する前記複数の属性の少なくともサブセットを決定し、
前記カテゴリ格付け値および前記決定された前記複数の属性のサブセットに少なくとも部分的に基づいて前記製品情報に対応する前記ユーザ需要値を決定することを含み、
前記対応する複数のユーザ需要値に少なくとも部分的に基づいて、前記複数の製品情報をランク付けするための機能と、
をコンピュータによって実現させる、コンピュータプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願の相互参照]
本出願は、あらゆる目的のために参照によって本明細書に組み込まれる、2010年12月7日に出願された、発明の名称を「QUERY RESULT SORTING METHOD AND DEVICE(クエリ結果を並べ替える方法及び装置)」とする中国特許出願第201010590355.2号に基づく優先権を主張する。
【0002】
本出願は、インターネットデータ処理の分野に関わり、特に、検索結果をランク付けするための技術に関する。
【背景技術】
【0003】
通常、クエリに応答して返される検索結果は、それらの検索結果がクエリ結果にどの程度関係しているか、及び/又は検索結果の質、及び/又は検索結果に関連付けられている関係者などの商業的要因に基づいて、(例えば、それらの検索結果が画面上に出現する順序を決定するために)ランク付けされる。しかしながら、このような従来の技術は、検索ユーザが所望する結果ランキングを常に生成するとは限らない。例えば、関係していると検索エンジンによって決定され、検索結果の中で早い段階で出現する検索結果が、必ずしも実際にユーザが所望する検索結果であるとは限らない。
【0004】
従来の方法に基づく検索結果のランキングは、それらの検索結果のクリックスルー率を比較的低くする原因になりうる。検索結果(例えばリンク)のクリックスルー率は、そのリンクの合計クリック数を、そのリンクが表示された合計回数(そのリンクの合計インプレッション数)で除算して決定される。低クリックスルー率は、検索ユーザが所望するランキングを検索結果のランキングが反映していないゆえに、そのユーザは検索結果をクリックする気を削がれた、という事実によって説明することができる。
【0005】
従来の技術に見られるある特定の欠点は、どの検索結果のユーザ需要が高くてどの検索結果のユーザ需要が低いかのように、検索結果どうしを見分けることができないことである。高いユーザ需要を有する検索結果は、多くのクリックを受けるのが通常であり、低いユーザ需要を有する検索結果は、少ないクリックを受けるのが通常である。従来の技術は、高いユーザ需要を有する検索結果と、低いユーザ需要を有する検索結果とを区別できないので、検索結果の全体の質を体感できるほど向上させることなく、低いユーザ需要を有する多くの検索結果がサーバからクライアントに伝送され、その上、不必要にネットワークトラフィックを増加させる。
【図面の簡単な説明】
【0006】
以下の詳細な説明及び添付の図面において、発明の様々な実施形態が開示される。
【0007】
図1】ユーザ需要値を決定するためのシステムの一実施形態を示す図である。
【0008】
図2】製品情報に関連付けられるカテゴリ格付け情報及び属性格付け情報を決定するプロセスの一実施形態を示すフローチャートである。
【0009】
図3】検索結果のなかで製品情報をそれに関連付けられるユーザ需要値に基づいてランク付けするためのプロセスの一実施形態を示すフローチャートである。
【0010】
図4】ユーザ需要値に基づいて製品情報をランク付けするためのシステムの一実施形態を示す図である。
【0011】
図5】前処理モジュールの一例を示す図である。
【0012】
図6】ランク付けモジュールの一例を示す図である。
【発明を実施するための形態】
【0013】
発明は、プロセス、装置、システム、合成物、コンピュータ読み取り可能ストレージ媒体に実装されたコンピュータプログラム製品、並びに/又は結合先のメモリに保存された命令及び/若しくは結合先のメモリによって提供される命令を実行するように構成されるようなプロセッサなどの、数々の形態で実現することができる。本明細書では、これらの実現形態、又は発明がとりうるその他のあらゆる形態を、技術と呼ぶことができる。総じて、開示されるプロセスのステップの順序は、発明の範囲内で可変である。別途明記されない限り、タスクを実施するように構成されるものとして説明されるプロセッサ又はメモリなどのコンポーネントは、所定時にタスクを実施するように一時的に構成される汎用コンポーネントとして、又はタスクを実施するように製造された特殊コンポーネントとして実装することができる。本明細書で使用される「プロセッサ」という用語は、コンピュータプログラム命令などのデータを処理するように構成される1つ以上のデバイス、回路、並びに/又は処理コアを言う。
【0014】
発明の原理を例示した添付の図面とともに、以下で、発明の1つ以上の実施形態の詳細な説明が提供される。発明は、このような実施形態との関わりのもとで説明されるが、いずれの実施形態にも限定されない。発明の範囲は、特許請求の範囲によってのみ限定され、発明は、数々の代替形態、変更形態、及び均等物を網羅している。以下の説明では、発明の完全な理解を与えるために、数々の具体的詳細が明記される。これらの詳細は、例示を目的として提供されたものであり、発明は、これらの詳細の一部又は全部を伴わずとも、特許請求の範囲にしたがって実施することができる。明瞭さを期するために、発明に関連する技術分野で知られる技術要素は、発明が不必要に不明瞭にされないように、詳細な説明を省略されている。
【0015】
製品(商品)情報をそれぞれの決定されたユーザ需要値に基づいてランク付けすることが、開示される。様々な実施形態において、製品情報に関連付けられるユーザ需要値が、その製品情報をユーザが所望すると予測される程度を示すために使用される。このようなランク付けは、高いユーザ需要に関連付けられている製品情報が、低いユーザ需要に関連付けられている製品情報よりも早い段階で表示されることを可能にし、これは、特定の製品情報を探しているユーザが、表示された検索結果の中で所望の製品情報に行き当たるまでに、所望しない検索結果の間を行き来する手間を省くことができる。より所望の検索結果を優先することによって、製品情報のウェブページに関連付けられるクリックスルー率も向上される。
【0016】
図1は、ユーザ需要値を決定するためのシステムの一実施形態を示す図である。システム100は、デバイス102と、ネットワーク104と、ランク付けサーバ106と、データベース108と、ウェブサーバ110とを含む。一部の実施形態では、ネットワーク104は、高速データネットワーク及び/又は電気通信ネットワークを使用して実装される。ランク付けサーバ106及びウェブサーバ110は、一部の実施形態では、別々に機能するが互いに連携しあうように構成され、一部の実施形態では、組み合わさって機能するように構成されている。
【0017】
デバイス102の例には、ラップトップコンピュータ、デスクトップコンピュータ、スマートフォン、モバイル端末、タブレット型端末、又はその他の任意の計算装置がある。デバイス102は、ランク付けサーバ106とやり取りするように構成されている。様々な実施形態において、ランク付けサーバ106とのやり取りを可能にするために、ウェブブラウザなどのアプリケーションが、デバイス102にインストールされる。例えば、デバイス102のユーザは、ウェブブラウザのアドレスバーに特定のURLを入れることによって、ウェブサーバ110に関連付けられている/ウェブサーバ110によって提供されているウェブサイトにアクセスすることができる。例えば、ウェブサーバ110は、電子商取引ウェブサイトに関連付けることができる。ユーザ(例えば潜在的買い手)は、1枚以上のページを通じてブラウズすることができる製品情報(ウェブサイトで販売されている製品に関する情報)を含む検索結果の一覧を受信するために、(直接的に又はウェブサーバ110を通じて)ランク付けサーバ106に検索クエリを送信することができる。以下で論じられるように、返された検索結果は、ランク付けサーバ106によって決定されたそれぞれのユーザ需要値に基づいて、ランク付けされる。デバイス102は、また、検索クエリに対して返された製品情報を表示することもできる。
【0018】
製品情報に関連付けられているユーザ需要値は、その製品情報をユーザが所望すると予測される程度を示すために使用される。様々な実施形態において、製品情報のユーザ需要値は、データベース108に保存されている過去の検索データ(例えば、製品情報のインプレッション数、表示された製品情報に対するクリック数、製品情報に関連付けられているウェブページに関連付けられているトラフィックヒット値)を使用して、ランク付けサーバ106によって決定される。様々な実施形態において、製品情報に関連付けられているユーザ需要値は、その製品情報について過去検索データをもとに決定されたカテゴリ格付け情報及び属性格付け情報に少なくとも部分的に基づいて、ランク付けサーバ106によって決定される。
【0019】
様々な実施形態において、検索クエリに対する検索結果として返される製品情報は、対応するそれらのユーザ需要値に基づいて、ランク付けすることができる。例えば、高いユーザ需要値に関連付けられる製品情報は、検索結果の中で早い段階で表示され、低いユーザ需要値に関連付けられる製品情報は、検索結果の中で遅い段階で表示される。検索結果は、通常、(検索結果の質に応じて)1枚以上のウェブページ上に表示されるので、早い段階で表示される(例えば、1枚目の検索結果ウェブページ上に表示される)製品情報は、検索ユーザにとって所望のものであり、したがって、全検索結果の中から容易に見つけることができる。
【0020】
図2は、製品情報に関連付けられるカテゴリ格付け情報及び属性格付け情報を決定するプロセスの一実施形態を示すフローチャートである。
【0021】
様々な実施形態において、製品情報に関連付けられるカテゴリ格付け情報及び属性格付け情報は、製品情報にユーザ需要値を割り当てる前に決定することができる。決定されたカテゴリ格付け情報及び属性格付け情報は、(例えばデータベースに)保存することができ、その後、製品情報に対応するユーザ需要値を決定するときにアクセスすることができる。後述のように、ユーザ需要値の決定は、格付け情報に少なくとも部分的に基づくので、ユーザ需要値を決定する前にカテゴリ格付け情報及び属性格付け情報を決定することは、ユーザ需要値と格付け情報とを同時に決定することよりも、効率的だと考えられる。
【0022】
様々な実施形態において、1つの製品情報は、1つ以上の製品に関する情報集合を含むことができる。例えば、1つの情報集合に2つ以上の製品が含まれる場合には、それらの製品は、1つ以上の共通の性質によって関係付けることができる。例えば、製品情報は、ある電子商取引ウェブサイト用に使用され、そのウェブサイトで販売中の一連の製品を表すことができる。電子商取引ウェブサイトの製品について、ユーザがクエリを提出すると、そのクエリに応答し、そのクエリに一致する製品情報が、検索ユーザへの検索結果として返される。検索結果に含められている各製品情報は、その製品情報に関連付けられている1つ以上の製品に充てられたウェブページに飛ぶためにユーザがクリックすることができるリンク(例えばURL)であることができる。
【0023】
製品情報の分類を記述するために、カテゴリを使用することができる。様々な実施形態において、各製品情報は、少なくとも1つのカテゴリの特性及び少なくとも1つの属性の特性に関連付けられる。例えば、携帯電話に関連付けられる製品情報は、携帯電話というカテゴリに関連付けることができる。携帯電話というカテゴリに関連付けられる属性の例として、ブランド、規格、及び画面サイズが挙げられる。少なくとも1つのカテゴリ及び少なくとも1つの属性に加えて、各製品情報は、一部の実施形態では、例えば、製品キーワード、製品価格、製品ブランド、及び製品モデルに関連付けることもできる。様々な実施形態において、ある製品情報のカテゴリ及びその製品情報の(1つ以上の)属性について、別々の格付け情報が決定される。
【0024】
様々な実施形態において、格付け情報は、製品情報のカテゴリに対応する特性及びその製品情報の(1つ以上の)属性に対応する特性についてのみ決定される。なぜならば、どの製品情報も、これら2つの特性を含み、したがって、カテゴリ特性及び属性特性は、各製品情報を記述するのに役立つからである。
【0025】
ステップ202において、製品情報から、その製品情報に関連付けられるカテゴリ及び複数の属性が抽出される。様々な実施形態において、製品情報に関連付けられるカテゴリ及び複数の属性は、保存されている数々の製品情報のそれぞれについて決定される。例えば、保存されている製品情報は、電子商取引ウェブサイトで販売中の製品を(少なくとも部分的に)表すことができる。
【0026】
ステップ204において、クックログ及びインプレッションログに少なくとも部分的に基づいて、製品情報に関連付けられるクリックスルー率が決定される。
【0027】
過去の検索クエリで(例えば検索結果のなかで)使用された製品情報に関連付けられている保存されたログは、クリックログ及びインプレッションログを含むことができる。例えば、クリックログ及びインプレッションログを決定するために、過去における所定の長さの時間からの過去クエリを検討することができる。一部の実施形態では、各製品情報が(例えば過去の検索について返された検索結果の一部として)ユーザに表示された回数を記録するために、インプレッションログが使用される。各製品情報がユーザに表示された回数は、その製品情報に関連付けられるインプレッション数と呼ぶこともできる。一部の実施形態では、ユーザに表示された各製品情報がクリックされた回数を記録するために、クリックログが使用される。
【0028】
様々な実施形態において、インプレッションログ及びクリックログを使用して、保存されている各製品情報についてのクリックスルー率が決定される。様々な実施形態では、各製品情報のクリックスルー率は、既知の方法を使用して決定することができる。例えば、各製品情報についてのクリックスルー率を決定するために、その製品情報に関連付けられているインプレッション数がインプレッションログからアクセスされ、その製品情報に関連付けられている合計クリック数がクリックログからアクセスされる。次いで、その製品情報に関連付けられるクリックスルー率が、合計クリック数を合計インプレッション数で割った商として決定される。クリックスルー率は、通常、ランキング結果の質を測定するために使用される。
【0029】
一部の実施形態では、製品情報についてのクリックスルー率を決定する前に、クリックログ及びインプレッションログに含まれる特定のデータに対し、フィルタリングを実施することができる。例えば、過去におけるある検索に応答し、表示された全ての製品情報がクリックされるとすれば、そのような検索は、有用な情報を提供しない。なぜならば、表示されたどの製品情報も、クリックされたことによって等しく需要があるように見えるので、そのような検索は、どの製品情報がその他の製品情報よりも需要が高いかを決定するのに役立たないからである。したがって、この検索に関連付けられるクリックデータ及びインプレッションデータは、クリック/インプレッションログに記録されず、記録されたとしても、それらは、その製品情報のクリックスルー率の決定には使用されない。別の例では、ある検索に関連付けられるクリックデータ及びインプレッションデータが、ユーザ需要を決定するのに有用であるか否かを決定するために、その検索に応答して製品情報がクリックされる回数に対し、閾値を設定することができる。表示された製品情報がクリックされた回数が、閾値を超えるときは、その閾値を超えたクリック回数は、その製品情報のクリックスルー率の決定において検討されない。これらの実施形態では、ステップ202及び204は、ステップ202又は204のいずれか一方をもう一方よりも先に実施することによって、順々に実施することができる。一部の実施形態では、ステップ202及び204は、少なくとも部分的には同時に実施することができる。
【0030】
ステップ206では、製品情報に関連付けられているクリックスルー率に少なくとも部分的に基づいて、その製品情報に関連付けられるカテゴリ格付け値及び複数の属性格付け値が決定される。
【0031】
各製品情報は、それに対応するカテゴリ及び属性によって記述することができるので、製品情報のクリックスルー率は、製品情報に関連付けられるカテゴリのクリックスルー率として、及び同じく製品情報に関連付けられる属性のクリックスルー率として使用することもできる。例えば、ある製品情報のカテゴリをMとし、関連付けられる属性をN1、N2、……、Nnとする。ユーザが、所定の検索クエリに対する検索結果をレビューする過程においてこの製品情報をクリックすると、この製品情報に対応するカテゴリM及び属性N1、N2、……、Nnは、全て、そのクリックを受けたと見なされ、ユーザが、この製品情報をクリックしないと、この製品情報に関連付けられるカテゴリ及び属性もまた、クリックを受けなかったと見なされる。
【0032】
このように、製品情報に関連付けられるカテゴリ及び属性は、その製品情報について決定されたクリックスルー率と同じクリックスルー率に関連付けられる。次いで、カテゴリに関連付けられているクリックスルー率及び各属性に関連付けられているクリックスルー率は、それらのそれぞれの格付け値を決定するために使用される。一部の実施形態では、カテゴリに関連付けられる格付け値は、それに関連付けられているクリックスルー率及び/又はそれに関連付けられるウェブサイトトラフィックレートに少なくとも部分的に基づいて決定される。一部の実施形態では、属性に関連付けられる格付け値は、それらに関連付けられているクリックスルー率及び/又はウェブサイトトラフィックレートに少なくとも部分的に基づいて決定される。
【0033】
一部の実施形態では、各個々のカテゴリに対応する格付け値が、事前に決定され、格付け値と製品情報のカテゴリとの対応関係を含む表に保存される。このような表の一例が、以下に表1として示されている。
【0034】
【表1】
【0035】
一部の実施形態では、カテゴリ(又は属性)の格付け値に、(例えばシステム管理者が)重み値を割り当てることができる。表1において、格付け1は、(表1に示されている格付けの中で)最も高い重み値に関連付けられ、格付け2は、次に高い格付け値に関連付けられ、格付け3は、最も低い重み値に関連付けられている。その他の実施形態では、その他の関連付けが可能である。
【0036】
一部の実施形態では、製品情報に関連付けられている基準であって、関連付けられるカテゴリの格付け値を決定するために使用される基準を保存するために、別の表を使用することができる。このような表の一例が、以下で、表2に示されている。
【0037】
表2の例では、以下のように、用語が定義される。高PVカテゴリは、確立された期間内におけるそのウェブサイトトラフィックヒットが第1の閾値を超えるカテゴリを言う。第1の閾値は、(例えば現検索クエリの検索ワードに関係する)全ての製品情報に対応するカテゴリに対応するウェブサイトへのトラフィックヒットの総和に占める百分率(例えば10%)の閾値として設定することができる、又は例えば100回の訪問若しくは200回の訪問のように、固定の訪問回数として設定することができる。確立された期間は、2週間であってよい、又は実際のデータ処理状況に基づいて決定することができる別の期間であってよい。低PVカテゴリは、確立された期間内におけるそのウェブサイトトラフィックヒットが第2の閾値未満であるカテゴリを言う。第2の閾値は、製品情報に対応するカテゴリに対応するウェブサイトへのトラフィックヒットの総和に占める百分率(例えば1%)として設定することができる、又は例えば5回の訪問のように、固定の訪問回数として設定することができる。中間PVカテゴリは、確立された期間内におけるそのウェブサイトトラフィック値が第1の閾値と第2の閾値との間であるカテゴリ、すなわち高PVカテゴリでも低PVカテゴリでもないカテゴリを言う。一部の実施形態では、平均カテゴリ(又は表4で使用されるような属性)クリックスルー率は、ユーザによってサブミット(提示)された現検索クエリに応答して検索結果として返される製品情報に関連付けられる全てのカテゴリ(又は属性)に関連付けられるクリックスルー率の平均である。以下で、プロセス300において説明されるように、1つ以上のクエリワードを含む検索クエリが、ユーザによってサブミットされ、その検索クエリに応答し、クエリワードに一致する/関係する製品情報が決定され、それらの製品情報のカテゴリに関連付けられるクリックスルー率を使用して、表2などの表の場合の平均クリックスルー率を決定することができる。
【0038】
【表2】
【0039】
一部の実施形態では、各個々の特性に対応する格付け値は、格付け値と製品情報の属性との対応関係を含む保存された表のなかに、事前に決定されている。このような表の一例が、以下に表3として示されている。
【0040】
【表3】
【0041】
表3では、2つの格付け値(格付け1及び格付け0)のみが示されているが、属性に対応するとして可能な属性値は、3つ以上でも可能である。表3において、格付け1は、最も高い重み値に関連付けられ、格付け0は、次に高い重み値に関連付けられ、以下同様に続く。
【0042】
一部の実施形態では、製品情報に関連付けられている基準であって、関連付けられるカテゴリの格付け値を決定するために使用される基準を保存するために、別の表を使用することができる。このような表の一例が、以下に表4として示されている。
【0043】
【表4】
【0044】
例えば、7つの製品情報(製品情報M、製品情報N、製品情報O、製品情報P、製品情報Q、製品情報R、及び製品情報S)が、全て、同じ属性D1を含み、1つの製品情報(製品情報Z)のみが、属性D2を含むとする。製品情報M、製品情報N、製品情報O、製品情報P、製品情報Q、製品情報R、及び製品情報Sのいずれに関連付けられるクリックスルー率も、製品情報Zに関連付けられるクリックスルー率を合計で上回るので、属性D1もやはり、D2よりも高いクリックスルー率に関連付けられ、したがって、同様に、D2よりも高い属性格付け値に関連付けられる。
【0045】
表1、表2、表3及び表4は、例にすぎず、上記の例には、製品情報のカテゴリ及び/又は属性に関連付けられる格付け値を決定するために、その他の変更を加えることが可能である。例えば、一部の実施形態では、それぞれのカテゴリ格付け値を決定するために使用される、製品情報に関連付けられている基準において、各カテゴリの格付け値を決定するための基準として、平均カテゴリクリックスルー率単独、又は各カテゴリに関連付けられるウェブサイトトラフィックヒット単独、又はこれら2つの組み合わせを使用することができる。あるいは、例えば、一部の実施形態では、格付けを決定するための基準として、平均カテゴリクリックスルー率に加えて、又は平均カテゴリクリックスルー率に代わって、平均カテゴリクリックスルー率と同じ効果を実現することができるその他のデータを使用することもできる。あるいは、例えば、一部の実施形態では、カテゴリ格付け値を決定するための基準として平均カテゴリクリックスルー率が使用されるときに、その他の百分率の閾値を使用することもでき、そのような使用は、表2に示すような100%、75%、及び90%の閾値に限定されない。それぞれの属性格付け値を決定するために使用される、製品情報に関連付けられている基準において、各属性の格付け値を決定するための基準として、平均属性クリックスルー率単独、又は各属性に関連付けられるウェブサイトトラフィックヒット単独、又はこれら2つの組み合わせを使用することができる。
【0046】
図3は、検索結果のなかで製品情報をそれに関連付けられるユーザ需要値に基づいてランク付けするためのプロセスの一実施形態を示すフローチャートである。
【0047】
ステップ302において、1つ以上のクエリワードを含む検索クエリが受信される。一部の実施形態では、検索クエリは、ウェブサイトにおいて、そのウェブサイトに関係するコンテンツを探しているユーザによってサブミットされる。検索クエリは、1つ以上のクエリ又はキーワードを含むことができる。例えば、ウェブサイトが電子商取引ウェブサイトである場合、ユーザは、そのウェブサイトで販売中の製品を検索するために、そのウェブサイトにおいて、検索クエリをサブミットすることができる。検索クエリに応答し、電子商取引ウェブサイトは、検索クエリのクエリワードに一致する/関係する1つ以上の製品情報を含む検索結果を返すことができる。
【0048】
ステップ304において、1つ以上のクエリワードに関係する複数の製品情報が決定される。一部の実施形態では、ウェブサイトに関連付けられている製品情報を保存するデータベースの中で、クエリワードに一致する/関係する製品情報が検索される。例えば、各製品情報は、各特性(例えばカテゴリや属性)を異なる変数として保存することができるデータ構造の形で保存することができる。各製品情報の属性の値は、どの製品情報がクエリワードに一致する変数値を有するか否かを決定するために、クエリワードに照らしてチェックすることができる。一致するこれらの製品情報は、検索クエリに対する検索結果の一部として表示される。ただし、製品情報は、以下で説明されるように、表示される前にランク付けされる。
【0049】
ステップ306において、複数の製品情報のそれぞれに対応するカテゴリ及び複数の属性が抽出される。一部の実施形態では、製品情報に関連付けられるカテゴリ及び属性は、ステップ304において検索クエリのクエリワードに一致する/関係すると決定された各製品情報(又はそのデータ構造)から抽出される。一部の実施形態では、各製品情報から2つ以上のカテゴリを抽出することができる。
【0050】
ステップ308において、複数の製品情報のそれぞれについて、その製品情報に関連付けられるカテゴリ格付け値及び複数の属性格付け値が決定される。
【0051】
一部の実施形態では、(例えば、電子商取引ウェブサイトに関連付けられている)各製品情報に関連付けられるカテゴリ及び属性が、プロセス300に先立って既に決定され、(例えばデータベースに)保存されている。一部の実施形態では、各製品情報に関連付けられるカテゴリ情報及び属性情報は、プロセス200などのプロセスを使用して決定されている。例えば、製品情報に関連付けられるカテゴリの格付け値を決定するために、表1のような表を検索することができる。また、例えば、製品情報に関連付けられる各属性の格付け値を決定し、最も高い格付け値を有する幾つかの属性を決定するために、表3のような表を検索することができる。
【0052】
一部の実施形態では、各製品情報について、1つ以上の関連属性のうちのどの属性が、同じ製品情報に関連付けられるその他の属性と比べて最も高い格付け値を有するかが、更に決定される。例えば、製品情報Xが、属性A、属性B、及び属性Cに関連付けられていると想定する。この例では、属性Aは、格付け値1に関連付けられ、属性Bは、格付け値1に関連付けられ、属性Cは、格付け値0に関連付けられている。格付け値1が最も高い格付け値であると想定すると、属性A及び属性Bは、ともに、最も高い格付け値1に関連付けられている。したがって、製品情報Xの場合は、最も高い格付け値に関連付けられる属性が2つある。
【0053】
ステップ310において、複数の製品情報のそれぞれに関連付けられるカテゴリ格付け値及び複数の属性格付け値に少なくとも部分的に基づいて、複数の製品情報に対応する複数のユーザ需要値が決定される。
【0054】
一部の実施形態では、検索クエリに一致する/関係することを見いだされた各製品情報に関連付けられるカテゴリ格付け値及び属性格付け値が、その製品情報に関連付けられるユーザ需要値を決定するために使用される。
【0055】
一部の実施形態では、検索クエリに応答して見いだされた製品情報に関連付けられるユーザ需要値が、その製品情報に関連付けられるカテゴリ格付け値及び属性格付け値に少なくとも部分的に基づいて決定される。検索クエリに応答して見いだされた全ての製品情報のユーザ需要値が決定されると、それらの製品情報は、その対応するユーザ需要値に基づいてランク付けされ、検索結果の中に表示することができる。例えば、高いユーザ需要値に対応する製品情報は、比較的低いユーザ需要値に対応する製品情報よりも、検索結果の一覧のなかで高くランク付けされるとともに、早い段階で表示される。
【0056】
例えば、製品情報に関連付けられるユーザ需要値は、次式(1)を使用して決定することができる。
【0057】
V=W*α/C1+W*β*N1/Nw (1)
【0058】
この式では、Vは、ユーザ需要値を表し、Wは、ユーザの好みの重み(例えば、システム管理者によって又はデフォルトによって割り当てられる値であることができる)を表し、C1は、製品情報に関連付けられるカテゴリ格付け値を表し、N1は、製品情報に関連付けられる属性の中で最も高い格付け値に関連付けられる属性の数を表し、N1は、製品情報に関連付けられる属性の総数を表し、α及びβは、1〜0までの間で設定される値であってよく、αとβとの和は、1に等しくてよい。例えば、αの値が0.8で、βの値が0.2であってよい。しかしながら、α及びβの値は、実際の状況に基づいて決定することができ、与えられた例に限定されない。一部の実施形態では、各製品情報のユーザ需要値を式(1)に基づいて取得し、次いで、それらのユーザ需要値に基づいて様々な製品情報をランク付けすることができる。
【0059】
その他の幾つかの実施形態では、統計的回帰などの機械学習法を使用してユーザ需要値を決定することもできる。例えば、機械学習法は、先ず、各製品情報を手動でサンプルタグ付けし、ログ情報に基づいて各製品情報の需要の程度を決定することによって使用することができる。次いで、それらのサンプルに含まれる各製品情報のカテゴリ格付け値及び属性格付け値が決定され、ユーザ需要値を決定するために使用されるモデルをトレーニングするための基準として使用される。次いで、(例えばステップ302において)受信された検索クエリに応答し、検索クエリの検索ワードに一致する製品情報のユーザ需要値を、トレーニングされたモデルによって生成されたそれらの製品情報についてのカテゴリ格付け値及び属性格付け値に基づいて予測することができる。
【0060】
ステップ312において、複数の製品情報が、対応する複数のユーザ需要値に少なくとも部分的に基づいてランク付けされる。
【0061】
一部の実施形態では、ランク付けされた製品情報の一覧が作成される。この一覧では、例えば、最も高いユーザ需要値に関連付けられる製品情報が先ずランク付けされ、次いで、2番目に高いユーザ需要値に関連付けられる製品情報がランク付けされ、以下同様に続く。一部の実施形態では、ステップ302においてサブミットされた検索クエリに対して表示される検索結果は、ランキング一覧に基づいて順番に並べられた製品情報を特色とする。例えば、高いユーザ需要値に関連付けられる製品情報は、比較的早い段階で(例えば先頭から数枚の検索結果ウェブページの中に)表示される一方で、低いユーザ需要値に関連付けられる製品は、比較的遅い段階で(例えば最後数枚の検索結果ウェブページの中に)表示される。高いユーザ需要値に関連付けられる製品情報(ユーザが興味を持っている/所望している/求めていると予測される情報)を早い段階で表示することによって、検索ユーザは、自分の検索クエリに一致する所望の製品情報を迅速に見つけることができる。
【0062】
一部の実施形態では、設定された閾値よりも低いユーザ需要値に関連付けられる製品情報が破棄される。なぜならば、設定された閾値よりも低いユーザ需要値に関連付けられる製品情報は、ユーザが所望するものではないと見なされるからである。
【0063】
一部の実施形態では、既知のテキスト相関モデル及び/又は市場メカニズムモデルの技術に少なくとも部分的に基づいて、製品情報の格付け値を決定するプロセスが実施される。次いで、関連付けられた格付け値における各製品情報のランキングを、そのユーザ需要値を同じ格付け値のその他の製品情報のユーザ需要値と比較に基づいて調整することができる。一部の実施形態では、製品情報の値の格付けは、ユーザ需要値を決定する前に実施することができる。
【0064】
プロセス200及び/又は300は、C++を使用して実行することができ、Linux(登録商標)をベースにしたシステムに実装することができる。
【0065】
図4は、ユーザ需要値に基づいて製品情報をランク付けするためのシステムの一実施形態を示す図である。この例では、システム400は、受信モジュール11と、検索モジュール12と、抽出モジュール13と、発見モジュール14と、取得モジュール15と、ランク付けモジュール16とを含む。
【0066】
要素及びモジュールは、1つ以上の汎用プロセッサ上で実行されるソフトウェアコンポーネントとして、プログラマブルロジックデバイス及び/若しくは特定の機能を実施するように設計された特殊用途向け集積回路などのハードウェアとして、又はそれらの組み合わせとして実装することができる。一部の実施形態では、要素及びモジュールは、本発明の実施形態で説明される方法を(パソコン、サーバ、ネットワーク機器などの)計算機器に実行させるための幾つかの命令を含み尚且つ(光ディスク、フラッシュストレージデバイス、モバイルハードディスクなどの)不揮発性のストレージ媒体に保存することができるソフトウェア製品の形で具現化することができる。要素及びモジュールは、1つのデバイスに実装する又は複数のデバイスに分散させることができる。
【0067】
受信モジュール11は、ユーザによってサブミットされた1つ以上のクエリワードを受信するように構成されている。検索モジュール12は、受信モジュール11に結合され、受信モジュール11によって受信されたクエリワードに一致する/関係する製品情報を検索するように構成されている。抽出モジュール13は、検索モジュール12に結合され、クエリワードに一致する/関係するものとして検索モジュール12によって発見された各製品情報のカテゴリ及び属性を抽出するように構成されている。発見モジュール14は、抽出モジュール13に結合され、各製品情報に関連付けられるカテゴリ及び属性の情報をもとに、抽出モジュール13によって抽出された、最も高い格付け値に関連付けられる属性の数と、カテゴリの格付け値とを決定するように構成されている。取得モジュール15は、発見モジュール14に結合され、発見モジュール14によって発見された、製品情報に関連付けられる最も高い格付け値に関連付けられる属性の数と、カテゴリの格付け値とに基づいて、クエリワードに一致する/関係する製品情報のユーザ需要値を決定するように構成されている。ランク付けモジュール16は、取得モジュール15に結合され、取得モジュール15によって決定されたユーザ需要値に基づいて、製品情報をランク付けするように構成されている。
【0068】
一部の実施形態では、システム400は、前処理モジュール17も含むことができる。前処理モジュール17は、発見モジュール14に結合することができ、過去の検索データに基づいて、製品情報に関連付けられるカテゴリ格付け情報及び属性格付け情報を決定するように構成されている。一部の実施形態では、前処理モジュール17によって決定されたカテゴリ格付け情報及び属性格付け情報は、発見モジュール14に提供することができる。
【0069】
図5は、前処理モジュールの一例を示す図である。一部の実施形態では、図5の例は、システム400の前処理モジュール17を実現するために使用することができる。この例では、前処理モジュールは、抽出要素171と、計算要素172と、格付け要素173とを含む。抽出要素171は、電子商取引ウェブサイトに関連付けられる保存されている製品情報のカテゴリ及び属性を抽出するように構成されている。計算要素172は、電子商取引ウェブサイトにおける過去の検索データに関連付けられたクリックログ及びインプレッションログに基づいて、保存されている各製品情報についてのクリックスルー率を決定するように構成されている。格付け要素173は、抽出要素171及び計算要素172に結合され、様々な基準に基づいて、製品情報に関連付けられるカテゴリ及び属性への格付け値の割り当てを実施するように構成されている。例えば、カテゴリ及び/又は属性のための格付け値は、その対応する製品情報に関連付けられるクリックスルー率及び/又はウェブサイトトラフィックレートに基づいて決定することができる。
【0070】
図6は、ランク付けモジュールの一例を示した図である。一部の実施形態では、図6の例は、システム400のランク付けモジュール16を実現するために使用することができる。この例では、ランク付けモジュールは、第1のランク付け要素161と、第2のランク付け要素162とを含む。第1のランク付け要素161は、検索クエリのクエリワードに一致する/関係する製品情報のカテゴリ及び属性に格付け値を割り当てるように構成されている。一部の実施形態では、第2のランク付け要素162は、第1のランク付け要素161に結合され、特定の格付け値に関連付けられる製品情報のランク付けを、その製品情報のユーザ需要値及び同じ格付け値に関連付けられる1つ以上のその他の製品情報のユーザ需要値に基づいて調整するように構成されている。一部の実施形態では、第2のランク付け要素162は、取得モジュール15にも結合される。一部の実施形態では、第2のランク付け要素162は、製品情報のランク付けを、決定されたユーザ値に基づいて各格付け値に関連付けて調整するときに、更に、所定の閾値未満のユーザ需要値に関連付けられる製品情報をフィルタリング除去する(例えば破棄する)ように構成することもできる。低いユーザ需要値を伴う製品情報は、ユーザがあまり興味を持っていないと思われ、したがって、そのような情報の破棄は、そうでなければサーバとクライアントとの間でのデータ伝送に費やされたであろうリソースを節約できると考えられる。
【0071】
本開示は、代表的な実施形態を参照にして説明されてきたが、使用された用語は、説明のための代表的なものであり、非限定的な用語であることを理解されるべきである。本開示は、発明の趣旨又は内容から逸脱することなく多岐にわたる形態で具体的に実現することができるので、上述された実施形態は上記詳細のいずれにも限定されないこと、ただし、添付の特許請求の範囲に定められた趣旨及び範囲の範囲内であるとして広義に解釈されるべきことを理解されるべきである。したがって、特許請求の範囲内に入る全ての変更及び修正、又はそれらの均等物が、添付の特許請求の範囲によって網羅されるべきである。
【0072】
以上の実施形態は、理解を明瞭にする目的で、ある程度詳細に説明されてきたが、発明は、与えられた詳細に限定されず、発明を実現するには、多くの代替的手法がある。開示された実施形態は、例示的なものであり、非限定的である。
適用例1:製品情報をランク付けするための方法であって、複数の製品情報のそれぞれについて、その製品情報に関連付けられるカテゴリ格付け値及び複数の属性格付け値を決定し、前記複数の製品情報のそれぞれに関連付けられる、前記カテゴリ格付け値と前記複数の属性格付け値の少なくとも1つとに少なくとも部分的に基づいて、前記複数の製品情報に対応する複数のユーザ需要値を決定し、前記対応する複数のユーザ需要値に少なくとも部分的に基づいて、前記複数の製品情報をランク付けすること、を備える方法。
適用例2:適用例1に記載の方法であって、更に、1つ以上のクエリワードを含む検索クエリを受信することを備える方法。
適用例3:適用例2に記載の方法であって、前記複数の製品情報は、前記1つ以上のクエリワードに応答した結果として決定される、方法。
適用例4:適用例1に記載の方法であって、更に、前記複数の製品情報のそれぞれに対応するカテゴリ及び複数の属性を抽出することを備える方法。
適用例5:適用例1に記載の方法であって、更に、前記ランク付けされた複数の製品情報を、最も高いユーザ需要値に関連付けられる製品情報から順に表示することを備える方法。
適用例6:適用例1に記載の方法であって、製品情報に関連付けられているカテゴリ格付け値及び複数の属性格付け値は、ストレージからアクセスされる、方法。
適用例7:適用例6に記載の方法であって、製品情報に関連付けられるカテゴリ格付け値及び複数の属性格付け値は、過去の検索データに少なくとも部分的に基づいて決定される、方法。
適用例8:適用例7に記載の方法であって、前記過去の検索データは、クロックログ及びインプレッションログの1つ以上を含む、方法。
適用例9:適用例7に記載の方法であって、前記過去の検索データは、製品情報に対応するクリックスルー率を含む、方法。
適用例10:適用例1に記載の方法であって、製品情報に対応するユーザ需要値は、その製品情報に関連付けられるカテゴリ格付け値と、その製品情報に関連付けられ最も高い格付け値に関連付けられる属性の数と、その製品情報に関連付けられる属性の合計数との関数に少なくとも部分的に基づく、方法。
適用例11:製品情報をランク付けするためのシステムであって、プロセッサであって、複数の製品情報のそれぞれについて、その製品情報に関連付けられるカテゴリ格付け値及び複数の属性格付け値を決定し、前記複数の製品情報のそれぞれに関連付けられる、前記カテゴリ格付け値と前記複数の属性格付け値の少なくとも1つとに少なくとも部分的に基づいて、前記複数の製品情報に対応する複数のユーザ需要値を決定し、前記対応する複数のユーザ需要値に少なくとも部分的に基づいて、前記複数の製品情報をランク付けするように構成されているプロセッサと、前記プロセッサに接続され、前記プロセッサに命令を提供するように構成されている1つ以上のメモリと、を備える、システム。
適用例12:適用例11に記載のシステムであって、前記プロセッサは、更に、1つ以上のクエリワードを含む検索クエリを受信するように構成されている、システム。
適用例13:適用例12に記載のシステムであって、前記複数の製品情報は、前記1つ以上のクエリワードに応答した結果として決定される、システム。
適用例14:適用例11に記載のシステムであって、前記プロセッサは、更に、前記複数の製品情報のそれぞれに対応するカテゴリ及び複数の属性を抽出するように構成されている、システム。
適用例15:適用例11に記載のシステムであって、前記プロセッサは、更に、前記ランク付けされた複数の製品情報を、最も高いユーザ需要値に関連付けられる製品情報から順に表示するように構成されている、システム。
適用例16:適用例11に記載のシステムであって、製品情報に関連付けられる、カテゴリに対応する格付け値及び複数の属性に対応する複数の格付け値は、ストレージからアクセスされる、システム。
適用例17:適用例16に記載のシステムであって、製品情報に関連付けられる前記カテゴリ格付け値及び前記複数の属性格付け値は、過去の検索データに少なくとも部分的に基づいて決定される、システム。
適用例18:適用例17に記載のシステムであって、前記過去の検索データは、クロックログ及びインプレッションログの1つ以上を含む、システム。
適用例19:適用例17に記載のシステムであって、前記過去の検索データは、製品情報に対応するクリックスルー率を含む、システム。
適用例20:適用例11に記載のシステムであって、製品情報に対応するユーザ需要値は、その製品情報に関連付けられるカテゴリ格付け値と、その製品情報に関連付けられ最も高い格付け値に関連付けられる属性の数と、その製品情報に関連付けられる属性の合計数との関数に少なくとも部分的に基づく、システム。
適用例21:非一時的なコンピュータ読み取り可能ストレージ媒体に実装された、製品情報をランク付けするためのコンピュータプログラム製品であって、複数の製品情報のそれぞれについて、その製品情報に関連付けられるカテゴリ格付け値及び複数の属性格付け値を決定するためのコンピュータ命令と、前記複数の製品情報のそれぞれに関連付けられる、前記カテゴリ格付け値と前記複数の属性格付け値の少なくとも1つとに少なくとも部分的に基づいて、前記複数の製品情報に対応する複数のユーザ需要値を決定するためのコンピュータ命令と、前記対応する複数のユーザ需要値に少なくとも部分的に基づいて、前記複数の製品情報をランク付けするためのコンピュータ命令と、を備えるコンピュータプログラム製品。
図1
図2
図3
図4
図5
図6