(58)【調査した分野】(Int.Cl.,DB名)
前記複数の接続ユニットの各1つは、前記伸長形状において前記構造のねじれおよび/または曲げに耐えるよう構成された堅いフレームを備えている、請求項3に記載の伸縮式構造。
前記複数の部分は、前記構造が前記伸長形状から前記収納形状へ動く場合に、前記構造の内部に向かって折り畳まれるように配置されている、請求項1〜4のいずれか一項に記載の伸縮式構造。
前記伸縮式構造が前記収納形状である場合に、前記複数の壁の隣接する壁内の前記複数の部分が重ならないように、前記複数の部分が構成されている請求項5に記載の伸縮式構造。
前記複数の部分の各1つは、台形の形をしており、かつ前記伸縮式構造が前記収納形状である場合に前記複数の壁の隣接する壁内の前記複数の部分が重ならないような角度に形成された側辺部を備える、請求項6に記載の伸縮式構造。
前記伸縮式構造が、望遠鏡本体を形成し、かつ前記構造の内面および外面の少なくとも1つに取り付けられた可撓性のシュラウド(3101)をさらに備え、該シュラウドは、前記構造の前記壁を通じる光の伝播を遮るように配置されている、請求項1〜9のいずれか一項に記載の伸縮式構造。
【発明の概要】
【発明が解決しようとする課題】
【0004】
そのうえ、多くの用途では、単純な直線構造または平面構造よりも閉じた構造を使用することが求められる。例えば、直径が数メートル、および長さが十メートル単位、および光のビームのために遮るもののない、すなわち支持ブーム/マストのない経路を提供する内断面を有する望遠鏡のシュラウドを提供することが求められる。あるいは、管状構造は、日よけまたは邪魔板のために必要となることがあり、または管状または多角形断面により提供される剛性を増すために単に望まれる。特に、内部の構成要素を遮蔽し、かつ構造の支持を提供する望遠鏡本体の場合、展開構造には正確に管理された寸法が必要である。管状の展開構造についての従来技術の解決法は、複雑、かつ扱いにくい機構が必要である入れ子構造、および空間内が化学的架橋によって強化された膨張式の構造を含むが、最終的な寸法を十分に管理することができない。本発明は、既存の装置についての欠点に対処することを目的とする。
【課題を解決するための手段】
【0005】
本発明によると、収納形状および伸長形状の間で移動可能な伸縮式構造が提供され、該構造は、それぞれが複数の反復ユニットを備える複数の壁を備え、壁は、伸長形状では、各壁が実質的に平面となり、かつ構造が多角形断面を有するように配置され、各反復ユニットは、複数のヒンジによって接続された複数の部分を備える。
【0006】
複数のヒンジは、複数の第1ヒンジを備えることができ、かつ構造は、複数の第2ヒンジをさらに備えることができ、複数の壁の各1つの内の隣接する反復ユニットは、互いに複数の第2ヒンジの1つによって直接接続されている。
【0007】
複数のヒンジは、複数の第1ヒンジ備えることができ、かつ構造は、複数の第2ヒンジ、および複数の反復ユニットの隣接するユニットを接続するよう構成された複数の接続ユニットをさらに備えることができ、各接続ユニットは、複数の第2ヒンジの1つによって複数の反復ユニットの1つに接続されている。
【0008】
複数の接続ユニットの各1つは、伸長形状において構造のねじれおよび/または曲げに耐えるよう構成された堅いフレームを備えることができる。
【0009】
複数の部分は、構造が伸長形状から収納形状に動く場合に、構造の内部に向かって折り畳まれるように配置されることができる。
【0010】
複数の部分は、伸縮式構造が収納形状の場合に複数の壁の隣接する壁内の複数の部分が重ならないように構成されることができる。複数の部分の各1つは、台形形状とすることができ、かつ伸縮式構造が収納形状の場合に複数の壁の隣接する壁内の複数の部分が重ならないような角度に形成された側辺部を備えることができる。
【0011】
構造は、伸長形状においてN辺の正多角形断面を有することができ、かつ複数の部分の各1つの側辺および長辺の間の角度αは、
【数1】
によって与えられる。
【0012】
複数のヒンジは、複数の第1および第2ヒンジを備えることができ、各壁内の反復ユニットは、複数の第3ヒンジによって接続され、ならびに伸長形状において、各第1ヒンジは、2つの第2ヒンジの間に介在し、かつ壁の縦端部に実質的に垂直な第1ヒンジ軸を有し、第2ヒンジは、前記第1ヒンジ軸に対して傾斜した第2ヒンジ軸を有する。
【0013】
伸縮式構造は、望遠鏡本体を形成することができ、かつ構造の内面および外面の少なくとも1つに取り付けられた可撓性のシュラウドをさらに備えることができ、シュラウドは、構造の壁を通じる光の伝播を遮るよう配置されている。
【0014】
複数の部分は、少なくとも1つの堅いパネルまたはフレームを備えることができ、パネルは、開口部を含む。
【0015】
少なくとも1つの第1、第2および第3ヒンジは、テープバネヒンジを備えることができ、収納形状において弾性エネルギーを蓄えるようにテープバネヒンジが配置され、ヒンジは、構造を伸長形状にさせる力を構造に加える。少なくとも1つの第1、第2および第3ヒンジは、ヒンジに取り付けられた部分の両端に配置されたテープバネを備えることができ、両側のテープバネは、対向する湾曲部を有する。
【0016】
伸縮式構造は、構造の内面および/または外面に固定された複数のスタッドをさらに備えることができ、複数のスタッドは、構造の上部から下部への連続的な荷重経路を提供するように、収納形状において一直線になるよう配置されている。
【0017】
構造は、一端部における断面が他端部における断面より小さくなるように、構造の一端部から他端部へ線形的なテーパー状とすることができる。
【0018】
本発明によると、収納形状および伸長形状の間で移動可能な伸縮式構造がさらに提供され、構造は、複数の反復ユニットをそれぞれ備える複数の壁を備え、壁は伸長形状において各壁が実質的に平面となり、かつ構造が多角形断面を有するように配置され、各反復ユニットは、複数の第1および第2ヒンジによって接続された複数の部分を備え、各壁内の反復ユニットは、複数の第3ヒンジによって接続され、かつ伸長形状において、各第1ヒンジは、2つの第2ヒンジの間に介在し、および壁の縦端部に実質的に垂直な第1ヒンジ軸を有し、第2ヒンジは、前記第1ヒンジ軸に対して傾斜した第2ヒンジ軸を有する。したがって構造は、コンパクトに収納形状に折り畳まれることができ、例えば打ち上げロケットに収まるように構造を組み込んだ人工衛星が可能となる。そして例えば、構造が取り付けられた人工衛星本体から所望の距離だけ離すように、構造の一端部に取り付けられたペイロードを移動するために、構造は、後の段階において展開可能である。構造の内部は、収納形状および伸長形状のどちらにおいても大部分は遮るものがない状態とすることができる。
【0019】
伸長形状において、第1および第2ヒンジ、および縦端部は、各第1ヒンジの両側に三角形領域を形成することができる。伸長形状において、構造の角は、2つの隣接する壁の縦端部が接触する場所に形成されることができ、かつ収納形状において、構造は、前記縦端部が実質的に接触したままであるように第1、第2および第3ヒンジに沿って折り畳まれることができる。1つの連続的なシートの材料からできているシュラウドは、構造の表面に取り付けられることができ、かつシュラウドを引き伸ばす、または引き裂くことなく、収納形状に構造の端に沿って折り畳まれることができる。
【0020】
伸長形状において、壁内の第1および第2ヒンジは、1つの平面上にあることができ、かつ収納形状において、前記第1および第2ヒンジは、前記平面から外へ移動することができる。
【0021】
構造は、伸長形状においてN辺の正多角形断面を有することができ、かつ第1および第2ヒンジ軸の間の角度αは、
【数2】
によって与えられる。
【0022】
各壁は、複数の第4ヒンジによって隣接する壁に接続されることができる。これらのヒンジは、伸長形状において伸長式構造の剛性を増す追加的な構造支持を提供することができる。
【0023】
伸長形状において、第4ヒンジの各1つは、構造の断面を形成する多角形の内角に向かって開口するように配置されることができる。
【0024】
第1、第2および第3ヒンジの各1つは、ヒンジに取り付けられた部分が同一平面上になるように、伸長形状において180°の角度に開口するように配置されることができる。
【0025】
第1および第2ヒンジは、収納形状において、構造の角を形成する複数の部分が構造の内部に向かって折り畳まれるように協働することができる。収納形状において、反復ユニット内の第1および第2ヒンジが接触する点は、構造内部から離れるように動く。
【0026】
伸縮式構造は、望遠鏡本体を形成することができ、かつ構造の内面および外面の少なくとも1つに取り付けられた可撓性のシュラウドをさらに備え、シュラウドは、構造の壁を通じる光の伝播を遮るように配置される。したがって望遠鏡には、長い光学台を設けることができる一方で、打ち上げロケットに搭載するために比較的小さい体積に収納されることができる。
【0027】
複数の部分は、第1および第2の三角形部分を備えることができ、各第2の三角形部分は、実質的に各第1の三角形部分の2倍の長さである。
【0028】
複数の部分は、少なくとも1つの堅いパネルまたはフレームを備えることができ、パネルは開口部を含む。
【0029】
少なくとも1つの第1、第2、第3および第4ヒンジは、テープバネヒンジを備えることができ、かつテープバネヒンジは、収納形状において弾性エネルギーを蓄積するよう配置され、ヒンジは構造が伸長形状にさせる力を構造に加えることができる。したがって構造は、自己展開式とすることができ、すなわち締結装置が解放されると自動的に展開することができ、構造を拡張するための外力を与える必要がない。テープバネヒンジが直線形状にロックアウトする傾向を有するため、構造は、所望の寸法を有する伸長形状に確実にロックアウトさせることができる。
【0030】
第1、第2および第3ヒンジの各1つは、ヒンジに取り付けられた部分の両側に配置されたテープバネを備えることができ、両側のテープバネは、対向する湾曲部を有し、かつ第4ヒンジの各1つは、ヒンジに取り付けられた部分の一側に配置されたテープバネを備えることができる。両面のテープバネ装置は、ヒンジの座屈に対する抵抗を増し、かつヒンジが構造の伸長中に所望の角度を越えることを防ぐ、非偏心の荷重経路を提供する。
【0031】
少なくとも1つの複数の部分、および第1、第2、第3および第4ヒンジは、炭素繊維強化ポリマー複合材から形成されることができる。この材料は、強く、軽量で、堅い構造の構築を可能にする。
【0032】
伸縮式構造は、構造の内面および/または外面に固定された複数のスタッドをさらに備えることができ、かつ複数のスタッドは構造の上部から下部への連続的な荷重経路を提供するように、収納形状において一直線になるように配置されることができる。したがって構造は、スタッドのラインに沿った圧縮によって収納形状に最初から組み込まれることができる。スタッドはまた、収納形状における部分間の分離距離を制御することができる。
【0033】
構造は、一端部における断面が他端部における断面より小さくなるように、構造の一端部から他端部へ線形的なテーパー状とすることができる。この装置を例えば構造がその長さに沿った一定の大きさの断面を有する必要がないような収束光ビームを有する望遠鏡に使用することができる。
【0034】
本発明の実施形態は、添付の図面を参照して一例として説明されるだろう。
【発明を実施するための形態】
【0036】
図1は、本発明の実施形態による伸縮式構造の壁部100の一部を表す。壁部100は、完全伸長形状における構造として示されている。壁部が複数の類似のユニット(括弧Aによって示される)を備えていることがわかり、該ユニットは、z軸に沿って共に連結され、かつ繰り返されている。これら反復ユニットのそれぞれは、それ自体が6個の三角パネル101,102,103,104,105および106を備え、基本的な反復ユニットの全体の形が実質的に長方形となるように三角パネルが配置されている。三角パネルは、複数のヒンジ109,110,111,112,113および114によって互いに連結されている。反復ユニットAは、追加的なヒンジ(例えばヒンジ107および108)によってz方向に隣接するユニットに連結されている。
【0037】
これらのヒンジは共に2つのグループに分けることができる。第1グループは、伸長方向(すなわちこの実施形態においてはz軸)に垂直な軸を有する第1ヒンジ107,108,111および112である。示された実施形態において、全ての第1ヒンジは、y軸に平行な軸を有するが、このグループは、またxy平面上にある軸を有する任意のヒンジを備えることができる。第2グループは、第1グループに対して傾斜した軸を有する第2ヒンジ109,110,113および114である。第1および第2ヒンジの両方は、反復ユニットの中心点で交差するライン上に配置されている。
図2,
図3aおよび
図3bを参照して以下に説明されるように、第2ヒンジにより、構造は収納形状につぶされることができる。
【0038】
図2は、
図1に示されるものと同じだが、部分的に折り畳まれた状態の壁部100を表す。構造100がz軸に沿って折り畳まれると、第2ヒンジ109,110,113および114により、小さい三角パネル101,102,103および104は、大きいパネル105および106の間に折り曲げられることができる。z軸に沿ってさらに圧縮されると、構造100は、パネル101,102,103,104,105および106が全て実質的に平行かつ互いに重なり合った完全に折り畳まれた状態となる。完全伸長形状および完全に折り畳まれた形状の関係は、
図3aによく示されており、様々な伸長段階の構造100が図示されている。全てのパネルが実質的に平行に水平面で互いに重なり合った、構造が完全に折り畳まれた形状においては、小さい三角パネルは、大きいパネルの間に折り曲げられ、かつ大きいパネルの間に挟まれる。この完全に折り畳まれた状態は、z軸に沿って見た壁部100を示す
図3bに図示されている。このように小さい部分101,102,103および104を折り曲げることにより、折り畳まれた構造の形状を小さくすることができることがよくわかる。この形状により、折り畳まれる構造は、完全に伸長された状態(
図1参照)の構造の全体の長さと比較して小さい体積に収まることができる。
【0039】
この構造の別の利点は、多角形断面を有する伸縮式構造を形成するために多数の壁部が接続できることである。
図4は、伸長されている場合に(
図4は、完全に折り畳まれた形状の構造を示す)正方形断面を有する伸縮式構造400を形成するために、4つの壁部401,402,403および404がそれらの側辺部で接続された実施形態を表す。しかし、他の実施形態において、異なる数の壁部を接続することができる。完全に折り畳まれた状態において隣接する壁部(例えば401および402)を互いに接続する角度を調整するために、
図4に示す角度αを変えることができる。本実施形態において、αは22.5°だが、例えば接続された3つの壁部が三角形断面を形成することができるようαを30°まで調整することができる。
【0040】
構造400は、管状、すなわち中空であり、かつ平面の側壁により円形というよりも多角形の断面を有する閉じた外壁を有する。断面がN辺の正多角形を有する管状構造において、原則はα=90/N(°)である。しかしまた、不規則な多角形断面を有する構造を構成することが可能であり、その場合、多角形の関連する辺の長さに伴いαも変化するだろう。
【0041】
図4に示された実施形態において、各壁部は、側辺部にて複数の第3ヒンジ405,406,407および408によって隣接する壁部に接続される。完全に折り畳まれた形状において、これら各ヒンジは、180°の角度に開かれ、ヒンジによって接続された三角パネルは同一平面に並ぶ。
【0042】
図5は、
図4に図示した構造の側面図を示す。構造は、伸長形状で示され、第3ヒンジ405,408,501,502,503,504,505,506が壁部分401の側辺部に沿って(すなわち、完全に拡張伸長された状態においてz軸に沿って見て構造400の角に)ある状態が明瞭に示されている。構造は、正方形断面を有しているため、第3ヒンジ405,408,501,502,503,504,505,506のそれぞれ1つによって接続されたパネルは、完全伸長形状において90°の角度をなす。これは、正方形の内角に対応する。しかし、当業者には、この角度が管状構造を構成するのに使用される壁の数、すなわち構造の断面が三角形、正方形、五角形、六角形などに依存することがわかるだろう。角度は、また断面が構造の長さに沿って一定であるか、すなわち構造が一端部から他端部にむけてテーパー状であるかに依存する。構造がテーパー状である場合、各側壁の端は平行ではなく、したがって90°/Nの法則は適用されない。テーパー状の断面はまた、追加的なヒンジを使用する必要がある、より複雑な折りたたみ形状となる。
【0043】
図6は、
図6(a)の収納された(すなわち完全に折り畳まれた)段階から
図6(d)の展開された(すなわち完全に伸長された)段階への様々な伸長段階の
図4および
図5の構造400を示す。図の上の列は、
図5に類似の側面斜視図に相当し、図の下の列は、
図4に類似の上から見た図に相当する。
図7は、斜視図を用いた類似の展開順序を示す。
【0044】
上述の実施形態は、小さい体積に折りたたむことができる多様な伸縮式構造を提供する。ある実施形態においては、構造は、例えば構造の一端部につながれたケーブルによって伸長方向の外力を加えることにより展開されることができる。しかし、
図8〜
図13を参照して説明される代替の実施形態においては、構造の伸長に必要な力は、構造が折り畳まれた状態において弾性エネルギーを蓄えるテープバネヒンジによって提供される。
【0045】
図8a〜
図8cは、テープバネヒンジの作用の基本的な原理を示す。ヒンジ801は、巻尺に類似した、比較的浅い曲率半径で幅方向に湾曲した薄壁のストリップとして形成されている。テープバネ801は、弾性材料から製造され、したがって
図8aに示すように、変形される場合著しい量の弾性エネルギーを蓄えることができる。この蓄えられたエネルギーは、変形したテープバネを閉じる力が取り除かれた場合に元のまっすぐな形状に跳ね返ろうとする復元力を提供する。湾曲した断面はまた、まっすぐで変形してない状態の場合にテープバネに追加的な剛性を与える。
【0046】
ヒンジは、1つのテープバネ(例えば
図8a)から、または
図8bおよび
図8cに示すように背合わせに配置された一対のテープバネから形成されることができる。
図8bは、2つのテープバネ802および803が互いに凹側を面してパネルの反対側に配置されるように(一点鎖線は、パネル平面を表す)形成されたヒンジを示す。別の方法としては、
図8cに示すように、テープバネ804および805は、凸側を互いに面するように配置することができる。これらの構成のどちらも
図8aに示す1つのバネヒンジに比べて、これらの二重バネヒンジは、伸長形状の構造の剛性を増すため、特定の用途に好都合である。二重バネ装置はまた所望の180°の角度を越えてヒンジが開かないことを確実にすることにより、構造が展開された場合の行き過ぎを予防する自動的に中心に戻る機能を提供する。そのうえ、二重バネ装置は、壁部の平面に対して対称な断面を有するため、非偏心の荷重経路が提供され、圧縮時の座屈に抵抗するヒンジの性能を強化する。
図8a、
図8bおよび
図8cの全ての実施形態に共有されるテープバネヒンジの1つの特徴は、ヒンジを伸長(すなわちまっすぐな)形状にロックアウトする傾向にあるということである。
【0047】
壁部内の隣接するパネルを接続するヒンジの形成にテープバネが使用される場合、格納のために構造が折り畳まれている場合にテープバネは、弾性エネルギーを蓄える。これは、構造を開かせ、かつテープバネヒンジを真っ直ぐに伸長させる復元力を提供する。これは、圧縮の際に構造を折り畳まれた状態に格納する必要があるが、またこの圧縮力が除去されると、変形したヒンジによって提供される力によって構造は、自然に伸長するということを意味する。テープバネヒンジが比較的薄く、かつ弱い力しか加えられない場合であっても、無重力環境(例えば軌道上の人工衛星)においては、この力は、外力を加える必要なく構造を伸長させるのに十分である。したがってテープバネヒンジの利用により、構造の自己展開が可能となる。
【0048】
図9aおよび
図9bは、完全伸長形状(
図9a)および完全に折り畳まれた形状(
図9b)両方の伸縮式構造400(
図4および
図5を参照)を示す。明確化のために、1つのパネル901が直接隣接するパネル902,903および904,および接続ヒンジ905,906および405と共に強調されている。
【0049】
図9aおよび
図9bから、完全伸長形状および完全に折り畳まれた形状両方の各テープバネヒンジ905,906および405の配置が明確にわかる。これらのヒンジは、伸張状態および折り畳まれた状態のそれらの開口角度に基づいて2つの異なるタイプに分類することができる。以下タイプIヒンジと呼ぶ第1の分類は、ヒンジ905および906を備える。これらのヒンジは、完全伸長形状(
図9a参照)においては180°の角度まで開き、かつ完全に折り畳まれた形状(
図9b参照)においては閉じられる(すなわち0°または360°)。以下タイプIIヒンジと呼ぶ第2の分類は、完全伸長形状においては90°の角度まで開き、かつ完全に折り畳まれた形状においては180°の角度まで開くヒンジ405を備える。
図1および
図5を簡単に参照すると、ヒンジ107,108,109,110,111,112,113および114は全てタイプIヒンジであり、ヒンジ405,408,501,502,503,504,505および506は全てタイプIIヒンジであることがわかる。
【0050】
図10は、タイプIヒンジ905(
図9aおよび
図9b参照)の構造を示し、取り付けられたパネル901および902を180°の角度にロックアウトするよう配置されている(すなわちヒンジがロックアウトされた場合にパネル901および902が同一平面上にある)。ヒンジ905は、2つのテープバネパネル1004および1005を備え、それぞれは、1つの構成要素として形成され、かつ複数の一体化したテープバネを備える。テープバネは、湾曲した部分(例えば1008および1009)として断面に明瞭に見える。各テープバネは、ボルト(例えばボルト1006)によってパネル1001または1002に固定された平らな部分によって分離されており、かつまたパネルの開口部によって分離されている。例えば、テープバネ1008および1009は、開口部1007によって分離される。テープバネヒンジが曲がる場合、ヒンジは頂点で平らになることにより変形して幅を増加させ、したがってこの増加した幅に対応するために1007などの開口部が設けられている。
【0051】
本実施形態において、テープバネパネル1004および1005,およびパネル901および902は全て炭素繊維強化ポリマー複合材から形成されている。パネル901および902は、その厚みのためテープバネヒンジよりも剛性が高い。しかし、本発明は、この1つの材料に限定されず、代替の実施形態において、パネル901および902および/またはテープバネパネル1004および1005は、異なる材料から形成されることができる。
【0052】
図11は、
図9bに示されるラインXI−XIに沿った断面を示す。構造が完全に折り畳まれた形状においてパネル901,902および903が直接互いの上に積み重なっていることがわかる。
【0053】
図12は、管状構造が完全伸長形状の場合の、タイプIIヒンジ405(
図9aおよび
図9b参照)の構造を示す。このタイプIIヒンジ405は、完全伸長形状において、取り付けられたパネル901および904を90°の角度にロックアウトするように配置され、それにより構造の多角形断面の角を形成している。ヒンジは、二重バネ装置のヒンジ905(
図10参照)とは異なり、1つのシートのテープバネ1205を備える。タイプIIヒンジは、構造が完全伸長形状の場合、主としてせん断応力にさらされ、したがって二重バネヒンジによって提供される追加的な剛性が必須ではない。タイプIIヒンジに代替の二重バネ装置の代わりに単独バネ装置を選択することは、構造の全体重量、複雑さおよび費用を減少させるのに好都合である。とはいえ、パネル取り付け部に適切なスペーサを用い2つのバネを背合わせに取り付けることにより二重バネ装置をタイプIIヒンジに利用する代替の実施形態が可能である。
【0054】
テープバネヒンジが180°にロックアウトする自然な傾向を有するため、タイプIIヒンジの所望の90°の角度は、テープバネシート1205をパネル901,904に45°の角度で固定することにより達成される。当業者には、パネル901,904の取り付け角度を変えることにより他の角度を成すことができる(すなわち構造の代替の断面形状が選択された場合)ことがわかるだろう。タイプIヒンジ905と同様に、ヒンジ405は、ボルト1206によってパネルに固定される。テープバネシートの構造は、開口部1207によって分離される複数のテープバネ1208,1209を備えるタイプIヒンジのものと実質的に似ている。
【0055】
図13aは、
図12に示すテープバネヒンジを示し、テープバネヒンジは、取り付けられたパネル901および904の互いに関する面内の回転に対応するために屈曲している。構造が伸長される、または折り畳まれると、より小さい三角パネル(すなわち完全伸長形状において構造の角を形成するパネル)は小さい相対的な面内の回転に供される。この回転の効果により、完全に折り畳まれた形状から構造が伸長する当初は一端部におけるパネル間の間隙が狭くなり、そして構造が完全伸長形状に近づくと再び開く。本実施形態において、
図13aに示すようにテープバネがヒンジの一端部に向かってまっすぐになることによるこの回転に対応するために、テープバネシート1205が屈曲する。
【0056】
図13bは、
図9bに示されるラインXIII−XIIIに沿った断面を示す。構造が完全に折り畳まれた形状の場合にパネル901および903は互いの上に直接積み重ねられ、パネル904および901は同じ平面内に互いに隣接している(すなわちヒンジ405が180°に開いている)ことがわかる。ヒンジ405,501(
図5参照)は、互いの上に直接横になり、ヒンジ502,503も同様であり、ヒンジの各組は、間隙によって分離されている。この間隙は、パネル902に類似した一対の大きいパネル(図示せず)によって満たされている。
【0057】
図14は、
図5に示す実施形態と実質的に全く同一の伸縮式構造1400を示すが、三角形パネルの表面に複数のスタッド(黒い点で示される)が追加されている。これらのスタッドは、ヒンジに対して対称に位置しており、例えばスタッド1401および1402の位置は、ヒンジ1404の軸に対して対称である。同様に、第1スタッド1402は、ヒンジ1405の軸に対して対称に位置する、対応する第2スタッド1403を有する。これらのスタッドの機能を
図15を参照して説明する。
【0058】
図15は、構造が完全に折り畳まれた(すなわち収納された)形状における
図14に示した構造1400を通る断面を示す。構造がこの形状になる場合、ヒンジ軸に対して対称な位置にあるため(スタッド1501は、パネルの後に取り付けられているため、
図14には示されていない)、スタッド1401,1402,1501および1403はz軸に沿って一列に並ぶ。完全に折り畳まれた形状において、対向するパネルのスタッドは、互いに接触し、それによりパネルの分離を制御する。構造全体を通して均一なパネルの分離を確実にすることは、構造が滑らかかつ均等に展開できるようにヒンジの張力が均一に分散されるという利点がある。
【0059】
スタッドはまた、
図15の垂直の矢印によって示される構造の全長を通じる荷重経路を提供する。したがって構造に対する任意の圧縮負荷は、ヒンジを通じるよりも、スタッドおよびパネルの厚みを通じて伝わる。これは、例えば構造が人工衛星本体に含まれ、打ち上げ手続きの間著しい加速度にさらされる場合にヒンジによって伝わる負荷を減らす。
【0060】
そのうえ、この荷重経路は、収納形状の場合の構造に圧縮力を与えることに使用することができる。これは、収納形状の場合にパネルおよびヒンジの任意の移動を防ぎ折り畳まれた構造を所定の場所にしっかり保持する。
【0061】
図16は、人工衛星が軌道上にある場合に(
図16b)ペイロード1601および人工衛星本体1602の間の実質的な分離を提供するために伸縮式構造1400が用いられている人工衛星1600を示す。構造1400の外周周りに一連の支柱を備えた押さえ機構1603が設けられ、支柱は、環状の端板1604,1605に接続されている。収納形状(
図16a)において、構造1400は、スタッド(
図15参照)のラインに沿って構造1400を圧縮する接触ネジ(図示せず)を調整することにより、圧縮されて予め組み込まれている。この圧縮力は、押さえ機構1603の支柱の対応する張力および端板1604,1605の屈曲によって釣り合っている。他の実施形態において、完全に収納形状において展開構造の環状の体積の内側または外側のどちらかに配置された連続的な円筒または多角形の外殻構造に、支柱を置換することができる。
【0062】
人工衛星1600が軌道上に配置されると、押さえ機構1603が解放される(例えば爆発ボルトを発火させることにより)。張力が取り除かれ、ヒンジに蓄えられた弾性エネルギーによって提供される力のもと、構造1400は完全長に伸長する。ヒンジに蓄えられたエネルギーを変える、例えばテープバネの形状(例えば湾曲、厚さまたは幅)を変化させることによって、またはヒンジの剛性を増加/減少させるために異なる材料を選択することによって、構造が展開する速度を制御することができる。
【0063】
あるいは、
図17に示す減衰機構によって展開速度を制御することができる。
図17は、構造の一端部の端板1707の接点1701および1702に取り付けられた第1および第2ケーブル1703,1704によって伸縮式構造1700の展開速度が制限される本発明の実施形態を示す。第1および第2ケーブル1703,1704の反対の端部は、それぞれ回転ダンパーを駆動するドラム1705および1706に接続されている。収納形状において、各ケーブルは、取り付けられたドラムの周囲に巻かれ、展開中に構造1700が伸長すると、ダンパーはケーブル1703および1704の張力を維持し、構造の伸長速度を調整する。この装置は、構造の一端部のペイロードが、構造が完全伸長形状にロックアウトする際の突然の減速によって損傷を受ける可能性のある繊細な機器を含む場合、または宇宙機姿勢制御システムへの外乱を制限する必要がある場合に使用することが特に適している。本発明は正方形の断面を有する実施形態に関してこれまで説明されたが、本発明は、幅広い範囲の断面形状を有する構造に等しく適用できる。
図18は、三角形(a)、正方形(b)、五角形(c)および六角形(d)断面をそれぞれ有する伸縮式構造1802,1802,1803および1804を示す。図の上の列は、完全伸長形状の構造を示し、図の下の列は、完全に折り畳まれた形状の構造を示す。
【0064】
図18において、各図は、同じ縮尺で描かれており、各構造は、同じ領域(斜線部分)の円を囲んでいる。N辺の正多角形断面を有する構造のため、各反復ユニットは、tanα(
図4参照)に一致する高さ/幅の比率を有する。ここでα=90°/Nである。
図18a〜
図18dより明らかなように、辺の数が増えるに従い、αは減少し、したがって各反復ユニットの高さは、減少する(反復ユニットの幅、すなわち多角形の辺の長さもまた減少するという事実によって複合される)。したがって完全に伸長された状態の構造の全長を同じにするには、より多くの反復ユニットが必要であり、構造の複雑さが増す。しかし、断面として多くの数の辺を有する多角形を選択することの利点は、
図18の下の列から明らかである、すなわち辺の数が増加するにつれ完全に折り畳まれた形状において構造によって占められる領域が減ることである。
【0065】
したがって当業者は構造の複雑さの増加と収納された状態における増加した充填効率との釣り合いの必要性に応じて適切な断面を選択するだろう。
【0066】
さらに、本発明は、正多角形断面に限定されない。長方形断面を有する管状伸縮式構造1901の例が
図19に示されている。
図19の上部の図は、部分伸長状態の構造1901を示す。真ん中の図は、完全伸長状態の1つの反復ユニットの詳細を示し、下の図は、完全に折り畳まれた状態の構造を示す。反復ユニットの高さは、辺aおよび辺b両方の長さに依存し、三角法を使用して計算することができる。
図9に示す実施形態において、b=2aであり、反復ユニットの高さは0.56aである。辺の長さaおよびbの長方形断面を有する任意の構造では、反復ユニットの高さcは、
【数3】
を用いて計算することができる。
ここで、k
1=a+b、およびk
2=−abである。
【0067】
図20は、本発明の他の実施形態による、長方形断面を有する伸縮式構造2001の代替形を示す。
図19に示す実施形態とは異なり、大きいパネル2002および2003は、三角形ではなく、台形であることに留意しなければならない。したがってこの実施形態において、
図19に対して上記に示された方程式は適用されない。正多角形断面を有する構造にも類似の配置が可能である。
【0068】
図19に示した構造1901と比較すると、伸縮式構造2001は、より短い反復ユニットを有し、したがって完全に伸長した形状において構造が所定の全長を満たすためには、より多くの反復ユニットが必要である。したがって構造2001は、構造1901より複雑になるが、部分2002および2003においてまっすぐな水平の辺が維持され、特定の外部部品の取り付けを簡素化することができるため、特定の用途においては、好都合であることがわかるだろう。
【0069】
図5に関して簡単に説明したように、テーパー状の断面を有する伸縮式管状構造を構成することがまた可能である。
図21aおよび
図21bは、伸縮式構造2100が構造の一端部から他端部へ線形に大きさが減少する正方形断面を有する本発明の実施形態を示している。構造2100は、完全伸長形状(
図21a)および完全に折り畳まれた形状(
図21b)の両方にて示されている。均一な断面を有する構造(例えば
図4および
図5の構造400)のように、構造2100は、複数の反復ユニットを備える。しかし、線形的なテーパー状の断面により、構造2100の反復ユニットは、構造の一端部から次へ線形に拡大縮小する、すなわち反復ユニットは、類似しているが、全く同一ではない。構造2100において、下の三角形パネルを2つの部分に分割する追加的なタイプIIヒンジ2109が設けられる。これは、構造の展開中に、取り付けられたパネルが互いに対して相対的に面内で回転することに対応するものである(
図13aに示す状況に類似している)。
【0070】
図21aから、各反復ユニットが複数の第3ヒンジ2101,2102,2103,2104および複数の第4ヒンジ2105,2106を含むことがわかる。各第4ヒンジ2105,2106は、一対の第3ヒンジの間にあり、かつ構造の側辺部2107,2108に垂直である。第3ヒンジ2101,2102,2103,2104は、
図1の第2ヒンジ109,110,113,114に類似し、第4ヒンジ2105,2106は、
図1の第1ヒンジ111,112に類似している。
図22は、部分伸長形状(左図)および完全伸長形状(右図)の両方の構造2100を示す。
【0071】
続けて
図21aおよび
図21bを参照すると、構造が完全に折り畳まれた形状に畳まれる場合、第4ヒンジ2105,2106により、側辺部2107,2108は、第1および第2平面2110,2111(
図21b参照)の上につぶれることができる。第4ヒンジ2105,2106が側辺部2107,2108に垂直にあるためにこれが可能となる。第1および第2平面2110,2111の相対的な角度、したがって隣接する壁部2112,2113,2114,2115が互いに接続される角度およびテーパーの度合い制御するために、第3ヒンジ2101,2102,2103,2104(
図21a参照)の角度は、調整されることができる。これにより構造は、異なるテーパーの任意の辺の数を有する多角形断面を有して構成することができる。
【0072】
本実施形態において、z軸に沿って完全に折り畳まれた状態(
図21b)を見ると、構造が正方形断面を有し、かつ第1および第2平面2110,2111が各壁部と45°の角度を成しているため、隣接する壁部2112,2113,2114,2115は、互いに90°に接続されている。
【0073】
図23は、本発明の代替の実施形態による、段階的な方法にて構造の長さに沿って減少する断面を有する伸縮式構造2300を示す。構造2300は、完全伸長形状にて示されており、かつ全長に亘ってそれぞれが均一の断面を有する複数のセグメント2301,2302,2303に分割されている。したがって各セグメント2301,2302,2303は、構造が
図4および
図5の構造400に類似している。セグメント2301,2302,2303は、堅い環状ユニット2304,2305によって接続されている。
【0074】
図24aおよび
図24bを参照すると、角パネル(すなわち伸長形状における構造の角を形成するパネル)が省かれた本発明の実施形態が示されている。本実施形態において、構造2400は、伸長形状において、壁が互いに90°をなし、かつ構造が正方形断面を有するように配置された4つの壁を備える。しかし、他の実施形態において、断面は、任意の正多角形または不ぞろいの多角形を備えることができる。
図24aにおいて、伸長形状においてx軸に沿って見た、すなわちyz平面にある壁部を直接見た、構造2400が示されている。
図24bは、収納形状においてz軸から下を見た構造2400を示している。
【0075】
構造2400の各壁内の反復ユニットは、第1テープバネヒンジ2403によって互いに接続された2つのパネル2401,2402を備える。各パネル2401,2402は、各パネル2401,2402の側辺部が、構造が収納形状の場合に(
図24bに示すように)隣接する壁内のパネルが重ならないような角度に形成された台形の形をしている。これにより、構造2400が伸長形状から収納形状に変わる際に、パネルを内向きに折り畳むことができる。各壁の全てのパネルが内向きに畳まれることが可能なため、外向きに畳まれるパネルがなく、この実施形態は、収納形状における構造2400の専有面積(すなわち構造の外周によって形成される領域)が伸長形状の構造2400の専有面積と比較して増加しないという利点を有する。したがって伸長形状における構造の任意の所与の寸法に対して、
図24aおよび
図24bに示すような構造は、
図18に示す構造の場合のようにパネルが内向きおよび外向きの両方に畳まれる構造よりも、収納形状においてより小さい容積を占めることが可能となる。他の実施形態において、中央の領域が立ち入り禁止である場合(例えば中央の領域が他の機器によって占められる場合)、パネルを外向きに畳むように配置することができる。
【0076】
本実施形態において、隣接する壁部の間の角度が90°であるため、各パネル2401,2402の側辺部はパネルの長辺に対して45°の角度に配置されている。しかし、他の実施形態において、隣接する壁内のパネルの相対的な高さ、および構造が伸長形状の場合の隣接する壁の間の角度に応じて他の角度を採用することができる。一般論として、N辺の正多角形に対応する断面を有する構造については、パネルの側壁および長い壁の最大角度(°)は、(90−360/2N)で計算することができる。
【0077】
また本実施形態において、各反復ユニットは、第2テープバネヒンジ2404,2405によって同じ壁内の隣接する反復ユニットに接続される。構造は、収納形状から伸長形状に動く、およびその逆の場合、各第1テープバネヒンジ2403によって接続された2つのパネルは、180°の角度まで互いに対して回転する。同様に、各第2テープバネヒンジ2404,2405によって接続された2つのパネルは、また180°の角度まで互いに対して回転する。
【0078】
図25aおよび
図25bを参照すると、複数の支持ユニットを備える本発明の実施形態が示されている。複数の支持ユニットは、隣接する壁の間の物理的な連結を提供することによって伸縮式構造2500を強く、かつ硬くすることができる。本実施形態において、支持ユニットは、比較的堅い材料から形成された開口した正方形のフレームを備える。各反復ユニット2501,2502は、どちらかの端部にて複数の第2ヒンジ2504,2505によって支持ユニット2503に接続されている。支持ユニットは、伸長形状において構造を強化することができ、かつ収納形状から伸長形状、およびその逆に動く間、構造の壁の間の固定された角度(本実施形態においては例えば90°)の維持を補助することができる。つまり、硬いフレームは、隣接する反復ユニットの間のせん断接合を提供することにより、構造の曲げ剛性およびねじれ剛性を強化することができる。ここで
図26を参照すると、各反復ユニットが2つの分かれた支持ユニットを備えた、本発明の実施形態による伸縮式構造が示されている。より具体的には、構造2600は、複数の反復ユニット、または「ベイ(bays)」2610,2620,2630を備え、各反復ユニットは、両端部に個別の支持ユニットを備える。
図25aおよび
図25bの実施形態と同様に、本実施形態において、各支持ユニットは、複数のテープバネヒンジを介して反復ユニットのパネルが接続される硬いフレームを備える。
【0079】
図25aおよび
図25bの実施形態と比較すると、
図26に示されたような構造は、簡略化された製造および組み立て工程により利益を受けることができる。複数の反復ユニット2610,2620,2630は、完全な構造を形成するために共に重ねられ、結合される前に個別に組み立てることができる。隣接する反復ユニット2610,2620は、各ユニットのそれぞれの支持ユニット2611,2621を共に接続する、例えば支持ユニット2611,2621を共にボルト締めすることによって結合される。
【0080】
図27は、
図27(a)の収納状態から
図27(d)の展開状態への様々な伸長段階の
図25aおよび
図25bの構造2500を示す。上の列の図は、
図25aに示したものと類似した側面の透視図に相当し、下の列の図は
図25bに示したものと類似した上からの図に相当する。
図27に示すように、各壁の全てのパネルが内向きに畳まれるため、収納形状から伸長形状、およびその逆に構造が動く場合に、構造の専有面積(下の列の図を参照)は、増加しない。
図28は、類似の展開順序を3−Dの斜視図で示す。
【0081】
ここで
図29および
図30を参照すると、
図25aおよび
図25bの構造に類似の伸縮式構造が伸長形状(
図29)および収納形状(
図30)の両方で示されている。
図29に示すように、伸縮式構造2900は、構造が伸長形状において正方形断面を有するように、互いに90°に配置された4つの類似した壁を備える。各壁は、6つの反復ユニット2901,2902,2903,2904,2905,2906を備える。また、
図29および
図30に示すように、構造2900は、隣接する反復ユニットの間の境界ごとに支持ユニットを備える。しかし、他の実施形態において、より少ない支持ユニットを設けることができる。例えば本発明の他の実施形態においては、支持ユニットは2個または3個の反復ユニットごとに、または必要に応じて任意の他の間隔でのみ設けられることができる。
【0082】
図29および
図30に示すように、収納形状において、複数の第1ヒンジ(すなわち1つの反復ユニット内のパネルを接続するヒンジ、
図24aの第1ヒンジ2403を参照)は、180°の角度に閉じられる。つまり、複数の第1ヒンジのそれぞれ1つに取り付けられたパネルは、収納形状から伸縮された形状に構造が移ると180°互いに対して回転する。複数の第2ヒンジ(すなわちパネルを支持ユニットに接続するヒンジ、
図25aの第2ヒンジ2504,2505を参照)は、収納形状において90°の角度に閉じられる。したがって構造が収納形状の場合に、各第2ヒンジよりも各第1ヒンジによってより多くのエネルギーが蓄積される。したがって収納形状においてテープバネヒンジに蓄積されたエネルギーによって生じる構造を開く力は、要求される力の大小に応じて、第1および第2テープバネヒンジの1つを追加または除去することにより細かく調整することができる。より多くのエネルギーが第1ヒンジに蓄積されるため、第1ヒンジの1つを追加または除去することは、第2ヒンジの1つを追加または除去することよりも蓄積された全エネルギーに対してより大きな効果がある。
【0083】
ここで
図31aおよび
図31bを参照すると、柔軟なシュラウドを備える、本発明の実施形態による伸縮式構造が示される。構造3100は、
図29および
図30に実質的に類似しており、光の伝播を遮るよう配置された可撓性のシュラウド3101を有している。このような実施形態は、不必要な光が望遠鏡に入ることを防ぐ必要のある望遠鏡本体として利用に特に適している。シュラウド3101は、ポリマーまたはフォイルの比較的薄いシートから形成されることができ、伸びる、または裂けることなく収納形状に折り畳むことができる。
図31bは、構造が収納形状に折り畳まれた場合にシュラウド3101の一部によって採用されることができる1つの可能な折りたたみ配置を示す。他の実施形態においては、構造3100が収納形状に折り畳まれる際に、シュラウド3101はランダムに畳まれることができる。
【0084】
シュラウド3101は、構造3100の内面または外面に取り付けられることができ、かつ複数の層を備えることができる。例えば、シュラウド3101は、構造3100の内面に取り付けられる第1の層と、構造3100の外面に取り付けられる第2の層とを備えることができる。
【0085】
ここで
図32aおよび
図32bを参照すると、本発明の実施形態によるテープバネヒンジの入れ子が示されている。
図32aにおいて、複数のテープバネヒンジが真横から示されている。本実施形態において、3つのヒンジが各位置において入れ子になっているが、他の実施形態においては、任意の数のヒンジを入れ子にすることができる。
図32bにおいて、同じヒンジ組立体3200が伸長形状(左図)においてヒンジが開いた状態、および収納形状(右図)において180°の角度に閉じた状態にて側面から示されている。ヒンジ組立体3200は、2つのパネル3202,3203を互いに接続する複数のテープバネヒンジ3201を備える。
【0086】
ここで、「入れ子」という語句は、構造が収納形状においてエネルギーの蓄積を増やすために、多数のテープバネヒンジをパネルの同じ位置にて互いの上に積み重ねることを意味する。出願人によって行われた実験は、テープバネヒンジの入れ子は、構造が収納形状である場合に蓄積されたエネルギー量を増加させる効率的な方法であることを示している。この方法(すなわちテープバネの入れ子)は、十分な数のテープバネを互いに並んで配置するにはパネルの辺長が短すぎる場合の実施形態における使用に特に適している。
【0087】
本発明の様々な実施形態を、図を参照して説明してきたが、当業者は添付の特許請求の範囲によって定義された本発明の技術的範囲から逸脱することなく様々な改良、追加、および代替が可能であることを理解するだろう。記載された任意の実施形態の任意の機構は、異なる実施形態の任意の機構と組み合わせて使用することができる。例えば、本発明は、ヒンジによって連結された多数のパネルを備える実施形態(例えば
図1)に関して説明された。堅いパネルのみが示されているが、いくつかの実施形態においては、重量を減らすためにパネルに開口部を設けることが望ましい。同様に、構造は、複数の開口した、ヒンジによって連結された堅いフレームを備えることができ、この場合、構造は、伸長された状態において、骨格を形成する。
【0088】
側壁を連結する角ヒンジ(すなわちタイプIIヒンジ)(例えば
図5のヒンジ405,408,501〜506)が設けられた様々な伸縮式構造が説明された。しかし、いくつかの実施形態においては、これらの角ヒンジの数を減らすことが可能であり(例えば、4番目の反復ユニット毎にヒンジを設ける)、または他の実施形態においては全てを省くことが可能である。構造が完全伸長形状の場合に、角ヒンジは、第一にせん断応力に抵抗し、かつ構造に取り付けられた堅い端部材が十分な支持を提供することができる場合には必要ではない場合がある。
【0089】
テープバネヒンジに関しては、構造の堅いパネルにボルト締めされた複数のテープバネを備える1つまたは2つのシートとしてヒンジが提供されている実施形態が説明された。しかし、当業者は代替の装置が可能であることを容易に理解するだろう。例えば、テープバネの代わりに平らなバネ付のヒンジを設けることができ、この場合構造自体はテープバネのロックアウト機能を提供するようさらに適合されることができる(例えば、互いに対して180°などのある角度を越えることを防ぐために、一方または両方のパネルに止め具を貼ることにより)。そのうえ、ヒンジは、一方または両方のパネルに一体とすることができる、すなわちパネルおよびヒンジは、後で組み立てられる個別の構成要素ではなく、1つの構成要素として形成されることができる。
【0090】
実施形態は、三角形パネルの間の多数の空間(例えば
図1の各反復ユニットの中心の穴参照)を特徴として説明された。望遠鏡の鏡筒として構造が用いられる場合などの特定の利用において、構造の内部に不要な光が入ることを防ぐためにこれらの開口部を塞ぐことが必要である(
図31aおよび
図31bを参照)。
図31aおよび
図31bに関して説明されたような可撓性のシュラウドを記載された任意の実施形態の構造の外部および/または内部に取り付けることが可能であり、パネルおよび/またはテープバネヒンジの間の任意の開口部を完全にカバーする。
図18に示されたような角パネルを特徴とする実施形態において、ヒンジおよびパネルの配置により、構造の表面が実質的に連続したまま、すなわち構造を伸長する間、隣接するパネルの間に開口する大きい空間または間隙がないような方法にて、構造は折り畳まれた形状に畳まれることができる。したがって構造に取り付けられた可撓性のシュラウドは、伸びる、または裂ける危険がなく折り畳まれた形状に畳まれることができる。同様に、パネルの間の間隙にかかる構造に取り付けられた任意の構成要素(例えば構造の端から端まで続く電気ケーブル)は、構造が収納される、または伸長される場合に伸びるまたは縮む必要なくヒンジラインに沿って簡単に折り畳まれることができる。
【0091】
本発明の特定の実施形態は上記に説明されたが、多くの変形、および改良が可能であり、特許請求の範囲によって定義された本発明の技術的範囲内であることが当業者には明らかである。