(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0012】
発明の要約
当該発明の化合物は、リン脂質またはホスホノ脂質基に共有結合され得るイミダゾキノリン分子を含むアジュバント分子である。当該発明は、広義には、式I:
【化1】
【0013】
(式中、
R
1は、H、C
1-6アルキル、C
1-6アルキルアミノ、C
1-6アルコキシ、C
3-6シクロアルキルC
1-6アルキル、C
3-6シクロアルキルC
1-6アルキルアミノ、C
3-6シクロアルキルC
1-6アルコキシ、C
1-6アルコキシC
1-6アルキル、C
1-6アルコキシC
1-6アルキルアミノ、C
1-6アルコキシC
1-6アルコキシであって;分岐鎖または非分岐鎖であり、場合により、ヒドロキシル、アミノ、チオ、ヒドラジノ、ヒドラジド、アジド、アセチレニル、カルボキシルまたはマレイミド基で末端が置換されていてもよく、
Zは、C
2-C
6アルキルまたはアルケニルであって、非置換であるか、または-(O-C
2-C
6アルキル)
1-6-で末端が置換されており、
Yは、O、NHであり、
Xは、O、CH
2、CF
2であり、
Wは、OまたはSであり、
mは、1〜2であり、
Aは、
【化2】
【0015】
(式中、
R
2は、H、または直鎖/分岐鎖/不飽和のC
4-C
24アルキルまたはアシルであり、
R
3は、直鎖/分岐鎖/不飽和のC
4-C
24アルキルまたはアシルである)
であり、
R
4、R
5は、独立して、H、C
1-C
6アルキル、C
1-C
6アルコキシ、ハロゲン、またはトリフルオロメチルであるか;あるいは一緒になって6員アリール、1個の窒素原子を含有するヘテロアリール、シクロアルキル、または1個の窒素原子を含有するヘテロシクロアルキル環を形成し;非置換であるか、または1個または複数のC
1-C
6アルキル、C
1-C
6アルコキシ、ハロゲンまたはトリフルオロメチルで置換されている)
で表される化合物、あるいはその製薬上許容可能な塩である。
【0016】
一実施形態においては、当該発明の化合物は、より詳しくは、式II:
【化4】
【0017】
(式中、
R
1は、H、C
1-6アルキル、C
1-6アルキルアミノ、C
1-6アルコキシ、C
3-6シクロアルキルC
1-6アルキル、C
3-6シクロアルキルC
1-6アルキルアミノ、C
3-6シクロアルキルC
1-6アルコキシ、C
1-6アルコキシC
1-6アルキル、C
1-6アルコキシC
1-6アルキルアミノ、C
1-6アルコキシC
1-6アルコキシであって;分岐鎖または非分岐鎖であり、場合により、ヒドロキシル、アミノ、チオ、ヒドラジノ、ヒドラジド、アジド、アセチレニル、カルボキシルまたはマレイミド基で末端が置換されていてもよく、
nは、1〜6であり、
Yは、O、NHであり、
Xは、O、CH
2、CF
2であり、
Wは、OまたはSであり、
mは、1〜2であり、
R
2は、H、または直鎖/分岐鎖/不飽和のC
4-C
24アルキルまたはアシルであり、
R
3は、直鎖/分岐鎖/不飽和のC
4-C
24アルキルまたはアシルである(例えば、W=O、X=O、m=lの場合、ホスファチジル、リソホスファチジルエーテルまたはエステルである))
により表される。
【表1】
【実施例1】
【0019】
4-アミノ-1-[2-(1,2-ジパルミトイル-sn-グリセロ-3-ホスホ)アルキル]-1H-イミダゾ[4,5-c]キノリン(化合物(I)、Y=W=X=O、m=1)を調製するための一般的手順
【化5】
【0020】
以下のように、当技術分野で公知の方法(Crossmanら, J Chem Soc, Perkin Trans 1, 1997, 2769; Westerduinら, Tet Lett, 1986, 15, 6271; Nikolaevら, Carbohydr Res, 1990, 204, 65) に従い、4-アミノ-1-ヒドロキシアルキル-イミダゾキノリンIII(Gersterら, J Med Chem 2005, 48, 3481; Izumiら, Bioorg Med Chem 2003, 11, 2541)を1-H ホスホネートIVとカップリングさせることによりイミダゾキノリンモノホスフェートジグリセリドVを調製した:イミダゾキノリンIII(1 eq)およびH-ホスホネートIV(2 eq)をn-ヘプタン中に懸濁させ、溶媒を蒸発させた後、高真空下で一晩乾燥させた。得られた残渣をピリジン中に溶解させ(0.01M 化合物III)、ピバロイルクロリド(12.4 eq)で処理し、次いで、室温で6時間撹拌した。ヨウ素(4 eq)を含む19:1のピリジン・水(0.04M)の溶液を加え、得られた混合物を室温で1時間撹拌し、次いで、CHCl
3および1M Na
2S
2O
5水溶液の間に分配した。これらの層を分離し、水層をCHCl
3で2回抽出した。合わせた有機抽出物を1Mのトリエチルアンモニウムボレートバッファー(pH 8)で洗浄し、乾燥させ(Na
2SO
4)、濃縮した。得られた残渣をシリカゲルフラッシュクロマトグラフィーにより精製し(勾配溶離、0→25% MeOH-CHCl
3)、次いで逆相クロマトグラフィーにより精製し(1%TEA含有CH
3CN中のBakerbond C8、0→60%の1% Et
3N含有MeOH-CH
3CNで溶離)、無色固体として化合物Vを得た。
【実施例2】
【0021】
4-アミノ-1-(4-ヒドロキシブチル)-2-エトキシメチル-(1H-イミダゾ[4,5-c]キノリンハイドロクロリド(化合物(III)、R
1=CH
2OCH
2CH
3、n=4)の調製
【化6】
【0022】
(1) 4-ヒドロキシ-3-ニトロキノリン(Gersterら, J Med Chem 2005, 48, 3481)を含むDMF(0.7M)の懸濁液をPOCl
3(1.2 eq)で滴下処理し、50℃で30分間撹拌した。反応混合物を氷水中へ注ぎ入れ、CH
2Cl
2で2回抽出した。合わせた有機層を水で洗浄し、乾燥させ(Na
2SO
4)、濃縮した。得られた粗生成物を4-アミノ-ブタノール(1.3 eq)およびトリエチルアミン(1.9 eq)を含むEtOHの溶液に加え、15分間加熱還流した。濃縮後、シリカゲルフラッシュクロマトグラフィー(勾配溶離、2→4% MeOH-CHCl
3)により黄色固体として4-(4-ヒドロキシブチル)アミノ-3-ニトロキノリンを97%の収率で得た。
【0023】
(2) 上記(1)で調製した化合物を含むEtOAc(0.1M)の溶液を、5% Pt/C(5% w/w)およびMgSO
4(1.5 eq)の存在下、50 psigで6時間水素化した。反応混合物をセライトにより濾過し、濃縮した。得られたオレンジ色の油をエトキシ酢酸(11 eq)で150℃にて1時間加熱した。反応混合物を0℃に冷却し、濃NH
4OHでpH 10まで塩基性化し、CH
2Cl
2で2回抽出した。合わせた有機層を乾燥させ(Na
2SO
4)、濃縮した。シリカゲルフラッシュクロマトグラフィー(1:60 MeOH-CHCl
2)によりエトキシアセテート誘導体が得られ、2.6M NaOH(5.0 eq)を含むEtOH(0.20M)で室温にて1時間処理した。エタノールを減圧下で除去し、水層をAcOEtおよびCH
2Cl
2で数回抽出した。合わせた有機層を乾燥させ(Na
2SO
4)、濃縮した。シリカゲルフラッシュクロマトグラフィー(勾配溶離、1:50→1:15 MeOH-CHCl
3)により固体として1-(4-ヒドロキシブチル)-1H-イミダゾ[4,5-c]キノリンを収率74%で得た。
1H NMR (CDCl
3, 400 MHz) δ 9.29 (s, IH), 8.25 (dd, 2H), 7.67 (m, 2 H), 4.89 (s, 2H), 4.71 (t, 2H), 3.79 (m, 2H), 3.62 (dd, 2H), 2.12 (m, 2H), 1.82 (m, 2H), 1.25 (t, 3H)。
【0024】
(3) 上記(2)で調製した化合物および過酢酸(1.2 eq)を含むエタノール(0.4M)の溶液を60℃で2.5時間加熱した。濃縮後、得られた粗生成物をシリカゲルクロマトグラフィーにより精製し(勾配溶離、1:30→1:6 MeOH-CHCl
3)、黄色固体として1-(4-ヒドロキシブチル)-1H-イミダゾ[4,5-c]キノリン5-N-オキシドを94%の収率で得た。
【0025】
(4) 上記(3)で調製した化合物を含むCH
2Cl
2(0.43M)の懸濁液をNH
4OH(30% 水溶液、2.7mL)で処理し、続いてp-トルエンスルホニルクロリド(1.0 eq)で滴下処理した。得られた混合物を室温で1.5時間撹拌し、次いで濃縮した。シリカゲルフラッシュクロマトグラフィー(勾配溶離、1:30→1:9 MeOH-CHCl
3)によりオレンジ色固体として4-アミノ-1-(4-ヒドロキシブチル)-1H-イミダゾ[4,5-c]キノリンが定量的収率で得られた。
【0026】
(5) 50℃の上記(4)で調製した化合物を含むジオキサン(0.12M)の溶液を、4N HClを含むジオキサン(1.5 eq)で滴下処理し、次いで、室温まで冷却させた。固体沈殿物を回収し、ジオキサンで洗浄し、乾燥させ、4-アミノ-1-(4-ヒドロキシブチル)-1H-イミダゾ[4,5-c]キノリン塩酸塩を89%の収率で得た。
1H NMR (CDCl
3-CD
3OD, 400 MHz) δ 8.13 (d, IH), 7.97 (d, 1H), 7.65 (t, 1H),7.55 (t, 1H), 4.89 (bs, 2H), 4.68 (m, 2H), 3.75 (m, 2H), 3.68 (dd, 2H), 2.10 (m, 2H), 1.80 (m, 2H), 1.29 (t, 3H)。
13C NMR (CDCl
3-CD
3OD, 100 MHz) δ 151.9, 148.1, 135.8, 133.7, 130.2, 128.7, 125.8, 125.4, 122.5, 121.2, 118.8, 112.1, 66.8, 64.0, 60.8, 46.8, 28.6, 26.6, 14.5。[M+H]
+のHRMS計算値 315.1821、実測値 315.1839。
【実施例3】
【0027】
(L1)
4-アミノ-1-[2-(1,2-ジパルミトイル-sn-グリセロ-3-ホスホ)エチル]-1H-イミダゾ[4,5-c]キノリン(化合物(I)、R
1=H、Y=W=X=O、n=2、m=1、R
2=R
3=n-C
15H
31CO)の調製
【化7】
【0028】
上記実施例1に記載した一般的手順に従い、化合物L1を80%の収率で調製した。
1H NMR (CDCl
3-CD
3OD, 400 MHz): δ 8.22 (s, 1H), 8.16 (d, 1H), 7.41 (t, 1H); 7.21 (t, 1H), 6.92 (d, 1H), 5.26 (m, 1H), 4.82 (bs, 2H), 4.67(bs, 2H), 4.42 (dd, 1H), 4.20 (dd, 1H), 4.05 (t, 2H), 3.14 (q, 1H), 2.31 (m, 4H), 1.59 (m, 4H), 1.25 (m, 48H), 0.88(m, 6H);
13C NMR (CDCl
3-CD
3OD, 100 MHz): δ 173.6, 173.2, 148.1, 145.8, 134.5, 133.9, 129.3, 125.5, 124.5, 118.4, 112.3, 100.3, 77.2, 70.1, 70.0, 63.5, 62.3, 45.9, 34.1, 33.9, 31.7, 29.5, 29.5, 29.3, 29.2, 29.1, 29.1, 28.9, 28.9, 24.7, 24.7, 22.5, 13.9, 8.3。[M+H]
+のHRMS計算値 859.5714、実測値 859.5688。
【実施例4】
【0029】
(L2)
4-アミノ-1-[2-(1,2-ジパルミトイル-sn-グリセロ-3-ホスホ)エチル]-2-ブチル-1H-イミダゾ[4,5-c]キノリン(化合物(I)、R
1=n-C
4H
9、Y=W=X=O、n=2、m=1、R
2=R
3=n-C
15H
31CO)の調製
【化8】
【0030】
上記実施例1に記載した一般的手順に従い、化合物L2を78%の収率で調製した。
1H NMR (CDCl
3-CD
3OD, 400 MHz): δ 8.23 (bs, 1H), 7.39 (t, 1H), 7.22 (bs, 1H), 6.93 (bs, 1H), 5.25 (m, 1H), 4.7 (bs, 2H), 4.6 (bs, 2H), 4.42 (dd, 1H), 4.19 (dd, 1H), 4.04 (t, 2H), 3.06 (bs, 2H) 2.32 (m, 4H), 1.96 (p, 2H) 1.59 (m, 6H) 1.26 (m, 48H), 1.07 (t, 3H), 0.88 (m, 6H);
13C NMR (CDCl
3-CD
3OD, 100 MHz): δ 173.6, 173.2, 157.2, 147.4, 135.2, 133.6, 128.8, 124.2, 123.6, 120.9, 118.2, 112.2, 77.2, 70.0, 69.9, 63.2, 62.2, 46.3, 33.9, 33.7, 31.6, 29.3, 29.3, 29.3, 29.1, 29.0, 28.95, 28.9, 28.8, 28.7, 28.6, 27.0, 24.5, 24.5, 22.3, 22.1, 13.6, 13.4。[M+H]
+のHRMS計算値 915.6340、実測値 915.6309。
【実施例5】
【0031】
(L3)
4-アミノ-1-[2-(1,2-ジパルミトイル-sn-グリセロ-3-ホスホ)エチル]-2-エトキシメチル-1H-イミダゾ[4,5-c]キノリン(化合物(I)、R
1=CH
2OCH
2CH
3、Y=W=X=O、n=2、m=l、R
2=R
3=n-C
15H
31CO)の調製
【化9】
【0032】
上記実施例1に記載した一般的手順に従い、化合物L3を86%の収率で調製した。
1H NMR (CDCl
3-CD
3OD, 400 MHz) δ 8.05 (bs, 1H), 7.29 (t, 1H), 7.09 (bs, 1H), 6.78 (bs, 1H), 5.11 (m, 1H), 4.80 (bs, 4H), 4.60 (bs, 2H), 4.28 (dd, 1H), 4.07 (dd, 1H), 3.90 (t, 2H), 3.54 (q, 2H), 2.18 (m, 4H), 1.59 (m, 4H), 1.16 (m, 51H), 0.76(m, 6H);
13C NMR (CDCl
3-CD
3OD, 100 MHz): δ 173.4, 173.0, 153.3, 148.2, 135.7, 134.7, 129.1, 124.4, 124.2, 121.1, 119.1, 112.8, 77.2, 70.2, 70.2, 66.6, 65.4, 64.2, 63.5, 62.5, 57.7, 47.1, 45.7, 34.3, 34.1, 31.9, 29.7, 29.7, 29.6, 29.5, 29.3, 29.3, 29.1, 29.1, 24.9, 22.7, 15.0, 14.1, 8.6。[M+H]
+のHRMS計算値 917.6132、実測値 917.6162。
【実施例6】
【0033】
(L4)
4-アミノ-1-[2-(1,2-ジパルミトイル-sn-グリセロ-3-ホスホ)ブチル]-2-エトキシメチル-1H-イミダゾ[4,5-c]キノリン(化合物(I)、R
1=H、Y=W=X=O、n=4、m=l、R
2=R
3=n-C
15H
31CO)の調製
【化10】
【0034】
上記実施例1に記載した一般的手順に従い、化合物L4を26%の収率で調製した。
1H NMR (CDCl
3, 400 MHz): δ 11.2 (bs, 1H), 7.78 (d, 1H), 7.30 (t, 1H), 7.20 (d, 1H), 6.78 (t, 1H), 6.39 (bs, 1H), 5.28 (m, 1H), 4.79 (s, 2H), 4.43-4.50 (m, 3H), 4.11-4.27 (m, 5H), 3.67 (dd, 2H), 2.41 (bs, 2H), 2.30 (dd, 4H), 1.96 (bs, 1H), 1.60 (m, 4H), 1.25 (m, 54H), 0.88 (1, 6H);
13C NMR (CDCl
3, 100 MHz): δ 173.4, 173.0, 150.9, 148.9, 134.7, 134.2, 128.0, 124.3 (2), 120.5, 118.4, 111.8, 70.3, 70.2, 66.8, 64.7, 64.4, 64.3, 63.4 (2), 62.4, 46.6, 34.2, 34.1, 31.9, 29.6 (3), 29.4, 29.3 (2), 29.2, 29.1, 28.2, 27.4, 24.8 (2), 22.6, 15.1, 14.1。[M+H]
−のHRMS計算値 943.6289、実測値 943.6251。
【実施例7】
【0035】
4-アミノ-1-[2-(1,2-ジパルミトイル-sn-グリセロ-3-ジホスホ)アルキル]-1H-イミダゾ[4,5-c]キノリン(化合物(I)、Y=W=X=O、m=2)を調製する一般的手順
【化11】
【0036】
以下のように、当技術分野で公知の方法(Biochim. Biophys. Acta 1980, 619, 604, J. Biol. Chem., 1990, 265(11), (6112-6117) J. Org. Chem. 1997, 62, 2144-2147) に従い、イミダゾキノリンIIIから粗製形態で調製したイミダゾキノリンモノホスホモルホリデート(monophosphomorpholidate)VIを1,2-ジアシル-sn-グリセロール-3-ホスフェートナトリウム塩VIIとカップリングさせることによりイミダゾキノリンジホスフェートジグリセリドVIIIを調製した:POCl
3(2.0 eq)およびイミダゾキノリンIII(1.0 eq)を0℃でトリメチルホスフェート(0.38M)に加えた。0℃で15時間撹拌した後、反応混合物をH
2OとEt
2Oの間に分配し、それらの層を分離した。有機層をH
2Oで3回抽出し、合わせた水層のpHをaq NH
4OHでpH 9に調節した。水溶液を濃縮し、高真空下で乾燥させ、CHCl
3-MeOH-H
2O-Et
3Nを用いるシリカゲルクロマトグラフィーにより得られた残渣を精製した(勾配溶離、90:10:0.5:0.5→60:40:5:1)。得られた生成物を50℃でジオキサン(0.12M)中に溶解させ、4N HCl(1.5 eq)で処理した。沈殿したHCl塩を回収し、ジオキサンですすぎ、高真空下で乾燥させた。この塩を含む1:1のt-BuOH-H
2O (0.5M)の懸濁液にモルホリン(5.0 eq)を加え、反応混合物を90℃に加熱し、1,3-ジシクロヘキシルカルボジイミド(DCC、5.0 eq)を含むt-BuOH (0.33M)の溶液で処理した。90℃で1時間後、冷却した反応混合物をH
2OとEt
2Oの間に分配し、これらの層を分離した。有機層をH
2Oで2回抽出し、合わせた水層を濃縮し、高真空下で乾燥させた。得られた粗製ホスホモルホリデートVI(1.5 eq)およびVII(1.0 eq)を少量のピリジンに溶解した懸濁液を真空下で濃縮し、その後、トルエンで2回同時蒸発させ、高真空下で乾燥させた。この手順を2回以上繰り返した。次いで、この乾燥固体を含むピリジン(0.10M)の懸濁液に4,5-ジシアノイミダゾール(DCI、3.0 eq)を加え、反応混合物を室温で10日間撹拌した。生じた混合物を濃縮し、得られた残渣をH
2O-CH
2Cl
2の間に分配し、これらの層を分離した。水層をCH
2Cl
2で2回抽出し、合わせた有機層を乾燥させ(Na
2SO
4)、濃縮した。CHCl
3-MeOH-H
2O(勾配溶離、90:10:0.5→70:30:2)を使用するシリカゲルクロマトグラフィーにより無色固体として化合物VIIIを得た。
【実施例8】
【0037】
(L5)
4-アミノ-1-[2-(1,2-ジパルミトイル-sn-グリセロ-3-ジホスホ)エチル]-2-エトキシメチル-lH-イミダゾ[4,5-c]キノリン(化合物(I)、R
1=CH
2OCH
2CH
3、Y=W=X=O、n=2、m=2、R
2=R
3=n-C
15H
31CO)の調製
【化12】
【0038】
上記実施例6に記載した一般的手順に従い、化合物L5を22%の収率で調製した。
1H NMR (CDCl
3, 400 MHz): δ 8.17 (bs, 1H), 7.10-7.40 (2-3 m, 2-3H), 5.25 (bs, 1H), 4.60-5.00 (bm, 3H), 4.38 (m, 1H), 4.05-4.22 (m, 3H), 3.60-3.82 (m, 4H), 3.41 (bs, 1H), 3.10 (dd, 2H of Et
3N), 2.28 (m, 4H), 1.84 (dd, 1H), 1.56 (m, 5H), 1.25 (m, 54H), 0.88 (t, 7H);
13C NMR (CDCl
3, 100 MHz): δ 173.5, 173.1, 152.4, 147.7, 135.8, 134.2, 128.8, 124.5, 123.6, 122.0, 118.8, 112.2, 77.2, 70.0, 68.1, 66.5, 63.8, 62.4, 54.6, 46.5, 45.5, 38.5, 33.9, 33.0, 29.5, 29.4, 29.1, 28.9, 28.7, 25.0, 24.6, 23.5, 22.7, 22.5, 14.6, 13.8, 13.7, 13.2, 10.7, 8.1。[M+H]
+のHRMS計算値997.5796、実測値997.5776。
【実施例9】
【0039】
脂質付加したTLR7/8のin vivo試験
TLR7/8リガンドは、マウスでの様々な面における免疫応答を(注目に値するものとしてはCD8応答を)促進し得る。TLR7/8リガンド(「コア(core)」化合物)と対応するその脂質付加した誘導体との間の応答における差は、下記のような技術を用いて調査する。
【0040】
比較試験用の化合物製剤は、本試験での対応群の対照比較を勘案すると、異なる分子量のコア分子と脂質付加した分子を検討する必要がある(例えば、45および4.5μgの脂質付加した化合物L3は、ほぼ15および1.5μgの対応するコア化合物「L3コア」に対応する)。また、高用量のL3(200μg)およびL3コア(150μg)も試験する。こうした試験の1つにおいて、以下に要約し記載した製剤(表1)を使用し、6〜8週齢のC57BL/6(H2Kb)メスマウス(10匹/群)にワクチン接種する。これらのマウスには、14日間あけて2回接種し、1週、3週および4週に採血する(正確な採血日数は
図1を参照)。マウスの筋肉内にワクチン接種する。SIV-p27タンパク質をコードする組換えアデノウイルスおよびアジュバントp27を使用する異種プライム・ブースト法を対照群として使用し、アデノウイルスを5×10
8 VPの用量で接種する。この試験方法を
図1に示す。
【表2】
【0041】
この試験方法において、QS21およびMPL免疫賦活剤を含有する、リポソームベースまたは水中油型ベースのいずれかのアジュバント組成物中で分子を製剤化する。TLR7/8Lの付加値を評価するには、TLR7/8L、QS21およびMPLを含有する製剤により誘導される自然免疫応答および獲得免疫応答を、対応するQS21およびMPL含有製剤により誘導されたものと比較する。
【0042】
抗原特異的CD8およびCD4応答の誘導は、第2回接種の7日後、細胞内サイトカインを測定することにより評価する。末梢血リンパ球(PBLs)は、全p27抗原を網羅するペプチドプールの存在下で刺激される(15mersペプチド、11ずつオーバーラップ)。サイトカインの分泌はブレフェルジンAにより遮断され、3種のサイトカイン(IFNγ、TNFαおよびIL2)の存在は、適切な抗体で細胞内染色した後、流動細胞計測法により評価する。
【0043】
上記で述べたものと類似する試験を、CRX-642およびその脂質付加した対応物L3を使用して実施した。
図2および
図3は、第2回免疫処置の7日後に認められたp27特異的T細胞頻度を示す。用量応答方法において、L3含有リポソームをMPLおよびQS-21製剤と同時投与した場合、TLR7/8L非含有の対照製剤と比較すると、p27特異的CD8頻度が明らかに上昇した(
図2)。注目すべきは、リポソームベース製剤および水中油滴型ベース製剤のいずれもが、TLR7/8L非含有の対応の対照製剤と比較して、脂質付加したTLR7/8Lの存在下でCD8応答に上昇が認められたことである。さらに、サイトカイン産生CD8 T細胞を生成する能力は、TLR7/8リガンドの脂質付加特性に依存的であったが、コア分子L3コアではL3と対照的に応答の増加はなかった。
【0044】
誘導されたCD 8応答の評価を補足する場合、抗原特異的細胞毒性活性をin vivoで評価することができる。簡潔に説明すると、全タンパク質を網羅するp27ペプチド群でパルスした標的と、対照の未パルス標的とを免疫化マウスに注射し、注射した24時間後に、p27特異的細胞毒性をパルスした標的の消失により評価する。
【0045】
補足的な細胞毒性活性試験は、上記で説明したL3コアおよびL3の誘導CD8応答を評価することにより実施した。脂質付加したTLR7/8リガンドがベースの製剤で免疫したマウスでは、コアTLR7/8リガンドがベースの製剤を接種したマウスと比べて、より高い細胞毒性活性が検出された(
図3)。この活性は、特に脂質付加したTLR7/8Lが高用量で使用された場合に、QS21およびMPLのみをベースとした対照製剤により誘導されたものよりも高かった。
【0046】
CD8応答について示したように、L3含有リポソームがリポソームベースのMPLおよびQS-21含有製剤と同時投与された場合、対照製剤と比較すると、p27特異的CD4頻度は増加し、その応答は注射されたTLR7/8L用量に依存していた(
図4)。CD8応答の場合のように、コア分子L3コアは、対照製剤により誘導されるものを上回るCD4応答を誘導することはできなかった。
【0047】
また、脂質付加したTLR7/8Lは、エマルションベースの製剤で投与した場合、対照製剤により達成されたレベル以上にCD4 T細胞応答を増加させることもできた。
【0048】
脂質付加した場合、種々の製剤中のTLR7/8リガンドの付加値は、サイトカイン産生T細胞頻度において(CD8およびCD4の両T細胞)5倍まで増加することが示されている。興味深いことに、T細胞応答のサイトカインプロファイルは、高頻度のダブルポジティブT細胞を特徴としていた(IFNγ
+ TNFα
+)。
【0049】
さらなる研究からは、脂質付加したTLR7/8化合物に自然ケモカインおよび炎症誘発性サイトカインを誘導する能力が示唆されており、これらのうち、I型IFNがナイーブCD8 T細胞のプログラミング(生存、分化、メモリー進化)に欠かせないことがわかっている。これらのサイトカインは、第1回注射の3時間後および24時間後に、マウスの血清で測定する(
図5および
図6)。
【0050】
L3コアおよびL3に関するサイトカインプロファイルの結果からは、同様のサイトカインプロファイルがリポソームベースの製剤およびエマルションベースの製剤の間で認められることが明らかである。TLR7/8リガンドは、それらの形質細胞性樹状細胞を刺激する能力によってIFNαを誘導することが知られており、実際、L3で免疫したマウスの血清中に、IFNαが用量依存的に、またそのコア相当物のL3コアに関するレベルよりも高いレベルで検出された。バックグラウンドレベルに近い、低IL-12p70産生も検出された。INFγレベルは低用量のL3で増加したが、他の炎症性サイトカイン(例えば、TNFαまたはIL-6)は、L3コアおよびL3の両方がQS21およびMPLに加えられた場合に増強された。ケモカインMCP-1およびMIGは、両方とも、両化合物で10倍まで増加した。概して、これらのデータからは、試験した脂質付加分子が、in vivoにおいてサイトカイン産生を誘導するのに、対応のコア分子よりも強力でないとしても、同程度の有効性をもつことが示唆される。